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Predictive models‑assisted 
diagnosis of AIDS‑associated 
Pneumocystis jirovecii pneumonia 
in the emergency room, 
based on clinical, laboratory, 
and radiological data
Oscar José Chagas 1*, Fabio Augusto Rodrigues Gonçalves 2, Priscila Paiva Nagatomo 1, 
Renata Buccheri 3,5, Vera Lucia Pereira‑Chioccola 4, Gilda Maria Barbaro Del Negro 1 & 
Gil Benard 1

We assessed predictive models (PMs) for diagnosing Pneumocystis jirovecii pneumonia (PCP) in AIDS 
patients seen in the emergency room (ER), aiming to guide empirical treatment decisions. Data from 
suspected PCP cases among AIDS patients were gathered prospectively at a reference hospital’s ER, 
with diagnoses later confirmed through sputum PCR analysis. We compared clinical, laboratory, and 
radiological data between PCP and non‑PCP groups, using the Boruta algorithm to confirm significant 
differences. We evaluated ten PMs tailored for various ERs resource levels to diagnose PCP. Four 
scenarios were created, two based on X‑ray findings (diffuse interstitial infiltrate) and two on CT 
scans (“ground‑glass”), incorporating mandatory variables: lactate dehydrogenase,  O2sat, C‑reactive 
protein, respiratory rate (> 24 bpm), and dry cough. We also assessed HIV viral load and CD4 cell count. 
Among the 86 patients in the study, each model considered either 6 or 8 parameters, depending on 
the scenario. Many models performed well, with accuracy, precision, recall, and AUC scores > 0.8. 
Notably, nearest neighbor and naïve Bayes excelled (scores > 0.9) in specific scenarios. Surprisingly, 
HIV viral load and CD4 cell count did not improve model performance. In conclusion, ER‑based PMs 
using readily available data can significantly aid PCP treatment decisions in AIDS patients.
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PCP  Pneumocystis jirovecii Pneumonia
PCR  Polymerase chain reaction
PLHIV  People living with HIV

Global HIV data show that in 2021, 38,4 million people were living with HIV (PLHIV) worldwide, with 650,000 
associated deaths. Most of these deaths occurred in Sub-Saharan Africa, followed by East Asia and Latin 
 America1,2. In Brazil, recent data reported 50,000 new annual infections, a 5% increase since 2010, and almost 
13,000 associated  deaths3. Unfortunately, late presentation to care and initiation of antiretroviral therapy (ART) 
with advanced HIV disease are still common in Latin America, with almost 56% of the new diagnoses having 
T CD4 lymphocytes (CD4) counts below 200 cells/mm3 at the time of  diagnosis2,4. Consequently, opportunistic 
infections remain a major cause of HIV-associated deaths in this  region5,6.

Although Pneumocystis jirovecii pneumonia (PCP) incidence has continuously decreased after the introduc-
tion of ART and  prophylaxis7,8, it remains among the leading pulmonary opportunistic infections in several 
developing and developed  countries5,6. The estimated incidence in Brazilian AIDS patients varies widely, ranging 
from 5.6 to 36%, owing to the variability in the methods and source of samples used to reach the  diagnosis9,10. 
PCP accounts for almost 400,000 cases/year, with 200,000 deaths/year, mainly in developing  countries11.

Diagnosing PCP continues to pose challenges due to various factors, including the lack of conventional 
culture systems for P. jirovecii12, the limited specificity of clinical symptoms, the reduced sensitivity of the usual 
diagnostic methods, and the complexities associated with sample collection. Numerous studies have highlighted 
the polymerase chain reaction (PCR) assay as a more sensitive method for diagnosing PCP. However, no standard 
technique has been widely incorporated in routine laboratories, nor are molecular biology and biomarkers assays 
easily  accessible13. As a result, the lack of a PCP diagnosis leads to the implementation of empirical treatment in 
almost all cases, particularly in resource-limited settings.

More recently, the expanded use of machine learning (ML) has increased the possibilities of using health care 
data, enabling the creation of systems that assist human  decision14. ML has already been tested in different areas 
of health care, showing promising clinical  applications15. Several reports of ML application in infectious diseases 
improved the diagnosis, especially in settings lacking specific laboratory or radiology  tests16.

Our research aimed to identify and evaluate predictors associated with PCP in AIDS patients among different 
types of supervised ML algorithms. We constructed predictive models based on clinical, laboratory, and radiology 
aspects easily accessible at most emergency rooms (ERs), including those from low-income countries. Some of 
the predictive models achieved high accuracy in different ERs’ scenarios. They can constitute valuable tools to 
improve the physicians’ decision-making process of treating AIDS patients with suspected PCP.

Material and methods
Study design and patients
This was a prospective study that enrolled AIDS patients admitted between December 2016 and February 2020 
at the ER of the Instituto de Infectologia Emílio Ribas (IIER), who were initially suspected of having PCP 
according to the following criteria: the presence of subacute cough and dyspnea (≥ 7 days), a current CD4 cell 
count < 250 cells/mm3, and poor compliance to or not on ART. Induced sputum was collected in a room with 
negative pressure before starting treatment for PCP (or with up to one dose) through inhalation of hypersaline 
solution (3–5% of NaCl), for 15–20 min, collected in a sterile container and stored at 4ºC until DNA extraction 
up to the next day, as previously  described17. We performed an “in-house” quantitative PCR (qPCR) assay after 
DNA extraction of induced sputum, and serum samples collected simultaneously to the induced sputum were 
tested with the Fungitell®  assay18 (Associates of Cape Cod, East Falmouth, MA, USA) for (1,3)-β-d-glucan (BDG) 
measurement according to the manufacturer’s instructions.

We used this qPCR as standard diagnoses and considered patients with PCP when the threshold (Cq) of 
the qPCR was less or equal to 31 and colonized or without PCP when Ct was greater than 31, as previously 
 described17. We collected demographic, clinical, laboratory, and radiological data of all patients. To predict PCP, 
we opted to include data usually associated with PCP in AIDS patients, which could be quickly accessed at ERs 
with different levels of resources (Table 1).

Statistical analysis
All categorical variables were compared using Fisher’s exact test, and continuous variables were tested for normal 
distribution using the Shapiro–Wilk test before statistical analysis. The Shapiro–Wilk test showed a non-normal 
distribution of all variables. The continuous variables were expressed as the median and interquartile range (IQR) 
and compared using the Student t test.

The patients’ variables that were gathered were first tested by classical statistical models comparing the patients 
with qPCR-confirmed PCP with those in whom the qPCR ruled out PCP. The variables that presented statistical 
difference were additionally evaluated through Boruta algorithm (Fig. 1—Supplementary information)19. The 
validated variables were further analyzed using univariable and multivariable logistic regression to calculate 
the odds ratio (OR) and corresponding 95% confidence interval (CI) to confirm whether the selected variables 
are risk factors for PCP before being considered for use in the predictive models. All statistical analyses were 
performed using R Statistical Software v4.2.2 (R Core Team, 2022: A language and environment for statistical 
computing, R Foundation for Statistical Computing, Vienna, Austria)20. For all analyses, differences with p < 0.05 
were deemed statistically significant.
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Data preprocessing
Before model fitting, categorical variables were transformed into binary dummy variables, as most predictive 
models are affected by the difference in the variables’ scales. As data contained various scales for various quanti-
ties (e.g., C-reactive protein (CRP), lactate dehydrogenase (LDH), CD4 cell count, HIV viral load), data normali-
zation was necessary to rescale all numeric values with a standard deviation of one and a mean of zero. This makes 
the various predictive models more effective. All values were normalized to reduce the dimension-introduced 
bias using Z-score  standardization21. The dataset was randomly divided into a 70% training set to construct the 
predictive model and a 30% testing set for performance assessment, stratifying by the PCP  outcome22.

Missing values
For physical parameters, radiological and laboratory data, which were associated with observed variables based 
on the clinical decision practice, we identified missing, not at random. The overall dataset exhibited a missing 
data rate of 3%. For each variable requiring imputation, a bagged tree was created where the outcome is the PCP 
variable, and the predictors are all other variables. One advantage of the bagged tree is that it can accept predic-
tors with missing  values23. The matrix layout of all intersections is demonstrated in the supplementary material 
(Fig. 2—Supplementary information).

Imbalanced data
This dataset was unbalanced. In this study, an unbalanced ratio showed that the minority class was 51.2%, less 
than the majority class when analyzing the number of observations. Therefore, to reduce data bias, we opted for 
the synthetic minority over-sampling technique (SMOTE)24, which manages overfitting induced by a limited 
decision interval and controls the generation and distribution of manual samples using the minority class sample.

Predictive models
Predictive models training may overfit algorithms to the nuances of a specific dataset, resulting in a model that 
does not generalize well to new  data22. We compared ten predictive models to evaluate their effectiveness in 
predicting PCP in patients with AIDS. For the linear model, we opted for simple probabilistic classifiers, such 
as Naïve Bayes (NB)25, elastic network model (EN)26, and linear support vector machines (LSVM)27. For the 
kernel-based model, we utilized a multilayer perceptron (MLP)28. For the decision tree approach, the random 
forest (RF)  model29, decision tree, bagged trees (BT), boosted trees light GBM (LightGBM), and the extreme 
gradient boosting (XGBoost)  model30 have been used. Finally, multi-class algorithms as nearest neighbor (NN) 
were  built31. We aimed to include different classes of ML methods.

Evaluation metrics
In the training set, the k-fold cross-validation with three folds and ten resamples was used to mitigate the poten-
tial bias or variance issues stemming from a single train-test split. An ANOVA-based racing tuning method was 
employed to optimize the hyperparameters for each candidate model, focusing on accuracy  enhancement32.

Finally, after completing adjustments and training with the training set, the models were evaluated against 
the test set to ensure an accurate estimation of the performance of the model candidates without overfitting. The 
accuracy, precision, recall, F1-Score, and the area under the ROC curve (AUC) of each model were evaluated 
to establish a model ranking. Generally, these metrics indicate good performance when scores exceed 0.8 and 
poor performance below 0.733.

Table 1.  Characteristics that were statistically significant between the group with PCP (Cq ≤ 31) and without 
PCP (Cq > 31). a n/N (%); Median (IQR). b Fisher´s exact test; Wilcoxon rank sum test.

Characteristics Non PCP (n = 54)a PCP (n = 32)a Total p-valueb

Presence of dry cough 13/54 (24%) 18/32 (56%) 31/86 (36%) 0.005

Respiratory frequency (bim) 24 (20–30) 28 (24–35) 26 (20–32) 0.02

Respiratory frequency (> 24 bim) 24/54 (44%) 5/32 (16%) 29/86 (34%) 0.009

O2 saturation (%) – pulse oximetry 94 (92–96) 91.5 (85.8–95) 94 (90–96) 0.01

X-ray with diffuse interstitial infiltrate 33/54 (41%) 30/32 (94%) 63/86 (73%)  < 0.001

CT scan with "ground grass" 22/54 (41%) 30/32 (94%) 52/86 (60%)  < 0.001

LDH (U/L) 248 (200–388) 422 (319–569 302(223–496)  < 0.001

CRP (mg/dL) 134. (67–199) 63 (34–107 96 (43–186) 0.019

O2 saturation (%)—arterial blood gas 95 (93–96) 92 (88–95) 94 (92–96) 0.005

CD4 cell count (cells/mm3) 58.5 (26.8–106.1) 15.5 (6.8–54.8) 38.5 (10–92) 0.003

HIV viral load (copies/mL) 90,787 (6,254–262,203) 324,527 (72,531–860,093) 142,435 (20,312- 442,627) 0.002

CMV disseminated disease 5/54 (9.3%) 9/32 (28%) 14/86 (16%) 0.033

BDG (pg/mL) 26 (1–69) 523 (349–523) 71 (10–523)  < 0.001

O2 saturation > 94% (pulse oximetry) 25/54 (46%) 10/32 (31%) 35/86 (41%) 0.2
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Ethical approval
The Comitê de Ética em Pesquisa from the Instituto de Infectologia Emílio Ribas approved the study (protocol 
06/2016). All study was conducted in accordance with relevant institutional guidelines, and all patients consented 
to participate by signing an informed consent form.

Results
Ninety-seven PLHIV admitted to the emergency unit of the IIER with respiratory manifestations suggestive of 
PCP were enrolled. Eight patients were excluded for being transferred to another health service within the first 
24 h of admission (n = 6) or for failing to provide induced sputum (n = 2). Therefore, 86 patients underwent the 
radiology and laboratory workouts prescribed by the attending physician. Variables statistically different between 
the two groups, with and without qPCR-proven PCP, are shown in Table 1. Additional sociodemographic and 
clinical data are shown in Supplementary Table 1. Patients with PCR results suggestive of colonization were 
grouped with the PCR negative patients, since the purpose of the study was to support the treatment decision.

As previously described, the two groups did not significantly differ regarding sociodemographic aspects or 
other clinical, radiology, and laboratory  variables17.

In our study, the clinical, laboratory, and radiological variables commonly associated with PCP that showed 
statistical differences were as follows: dry cough, increased respiratory frequency, decreased  O2 saturation  (O2sat) 
in arterial blood gas, elevated LDH levels, lower CRP values, low CD4 cell count, higher HIV viral load, chest 
X-ray showing diffuse interstitial infiltrate (DII), CT scan indicating a “ground-glass” image, presence of associ-
ated cytomegalovirus disease (CMV), and higher BDG values. BDG value was excluded since it is not available 
in most Brazilian ERs. These variables were then submitted to Boruta’s analyses to determine the weight of each 
to the diagnosis of PCP. Boruta’s analysis validated all variables except CMV co-infection. Ground-glass opacity 
on the CT scan was most strongly associated with PCP prediction, followed by LDH, arterial  O2sat, CRP, and HIV 
viral load. Less but still significantly associated with PCP prediction were chest X-ray with DII, CD4 cell count, 
a respiratory rate greater than 24 bpm, and dry cough (Fig. 1—Supplementary information).

In parallel, we also designed four possible scenarios aiming at encompassing the variable range of facilities 
provided at ERs in Brazil, as depicted in Table 2. We used six variables in two scenarios and eight variables in the 
other two. The scenarios were headed depending on whether the ER has X-ray equipment or a CT scan (which 
presents greater sensitivity for diagnosing interstitial pulmonary  diseases34), associated with the following set 
of variables: LDH (U/L),  O2sat on arterial blood (%), CRP (mg/dL), respiratory rate > 24 bpm and dry cough. 
As CD4 cell and HIV viral load are carried out only in a few Brazilian Ministry of Health’s reference laborato-
ries, their results are not promptly accessible, so they were included for analyses only in secondary scenarios as 
additional variables.

We applied ten predictive models, as described in the methods section, to the four scenarios and used five 
metrics to evaluate the designed models’ performance, as presented in Tables 3, 4, 5, and 6. Recall is relevant in 
settings where no patient should miss specific treatment because, e.g., the disease may be life-threatening (as is 
the case in PCP). However, it can otherwise lead to the treatment of false positive cases. Precision informs the 

Table 2.  Features of Brazil’s ERs: four possible scenarios. a Mandatory variables: LDH (U/L)/SatO2 on arterial 
blood (%)/CRP (mg/dL)/respiratory rate > 24 bpm/dry cough. b Additional variables: HIV viral load (copies/
mL)/CD4 cell counts (cells/mm3).

Scenario A: Chest X-ray + Mandatory  variablesa

Scenario B: Thorax CT scan + Mandatory variables

Scenario C: Chest X-ray + Mandatory variables + Additional  variablesb

Scenario D: Thorax CT scan + Mandatory variables + Additional variables

Table 3.  (Scenario A): Performance of predictive models for Scenario A (Chest X-ray with DII + mandatory 
variables: LDH (U/L)/O2sat on arterial blood (%)/CRP (mg/dL)/respiratory rate > 24 bpm/dry cough).

Model Accuracy Precision Recall F1-Score AUC 

NearestNeighbor 0.923 0.900 0.9 0.900 0.909

RandomForests 0.885 1.000 0.7 0.824 0.906

NaiveBayes 0.885 0.818 0.9 0.857 0.963

ElasticNet 0.808 0.778 0.7 0.737 0.800

DecisionTree 0.769 0.833 0.5 0.625 0.712

BoostedTreesLightGBM 0.731 0.714 0.5 0.588 0.728

LinearSVM 0.731 0.667 0.6 0.632 0.737

BaggedTrees 0.692 0.600 0.6 0.600 0.766

BoostedTreesXGBoost 0.692 0.625 0.5 0.556 0.763

MultilayerPerceptron 0.692 0.600 0.6 0.600 0.656
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capacity of the model to indicate the correct treatment for true positive PCP cases. Accuracy corresponds to both 
the ability to implement treatment for truly positive PCP cases and not implementing treatment for negative 
patients. AUC indicates the utility of the predictor in giving the best points of balance between true positive and 
false positive rates and summarizing the performance across all operating point tradeoffs.

All ten models performed satisfactorily in the four scenarios, suggesting that selecting the variables based 
on prior knowledge of statistical and Boruta analyses was appropriate. Four notably performed particularly 
well: NB, NN, RF, and XGBoost. They in general yielded indices greater than 0.8 for most scenarios and all five 
metrics, which is the usual recommendation for diagnostic  tests33. One of the most familiar criteria used in 

Table 4.  (Scenario B): Performance of predictive models for Scenario B (Thorax CT scan with "ground-grass" 
opacity + mandatory variables: LDH (U/L)/O2sat on arterial blood (%)/CRP (mg/dL)/respiratory rate > 24 bpm/
dry cough).

Model Accuracy Precision Recall F1-Score AUC 

NaiveBayes 0.923 0.900 0.9 0.900 0.981

RandomForests 0.885 0.818 0.9 0.857 0.969

BoostedTreesXGBoost 0.885 0.889 0.8 0.842 0.938

BaggedTrees 0.846 0.875 0.7 0.778 0.934

NearestNeighbor 0.846 0.750 0.9 0.818 0.950

DecisionTree 0.808 0.727 0.8 0.762 0.741

BoostedTreesLightGBM 0.808 0.727 0.8 0.762 0.906

MultilayerPerceptron 0.808 1.000 0.5 0.667 0.812

ElasticNet 0.769 0.643 0.9 0.750 0.925

LinearSVM 0.769 0.643 0.9 0.750 0.881

Table 5.  (Scenario C): Performance of the predictive models for Scenario C (Chest X-ray with 
DII + mandatory variables: LDH (U/L)/O2sat on arterial blood (%)/CRP (mg/dL)/respiratory rate > 24 bpm/dry 
cough + additional variables: HIV viral load (copies/mL)/CD4 cell counts (cells/mm3)).

Model Accuracy Precision Recall F1-Score AUC 

NaiveBayes 0.885 0.818 0.9 0.857 0.925

RandomForests 0.846 0.750 0.9 0.818 0.913

NearestNeighbor 0.846 0.750 0.9 0.818 0.900

LinearSVM 0.846 0.750 0.9 0.818 0.888

BoostedTreesXGBoost 0.769 0.643 0.9 0.750 0.813

BaggedTrees 0.731 0.636 0.7 0.667 0.828

ElasticNet 0.654 0.538 0.7 0.609 0.769

DecisionTree 0.654 0.538 0.7 0.609 0.759

BoostedTreesLightGBM 0.654 0.538 0.7 0.609 0.763

MultilayerPerceptron 0.654 0.538 0.7 0.609 0.787

Table 6.  (Scenario D): Performance of predictive for Scenario D (Thorax CT scan with “ground-grass” 
opacity + mandatory variables: LDH (U/L)/O2sat on arterial blood (%)/CRP (mg/dL)/respiratory rate > 24 bpm/
dry cough + additional variables: HIV viral load (copies/mL)/CD4 cell counts (cells/mm3)).

Model Accuracy Precision Recall F1-Score AUC 

RandomForests 0.923 0.900 0.9 0.900 0.950

NaiveBayes 0.885 0.818 0.9 0.857 0.944

DecisionTree 0.846 0.714 1.0 0.833 0.875

BaggedTrees 0.846 0.800 0.8 0.800 0.866

NearestNeighbor 0.846 0.750 0.9 0.818 0.938

LinearSVM 0.846 0.750 0.9 0.818 0.900

ElasticNet 0.808 0.692 0.9 0.783 0.900

BoostedTreesXGBoost 0.808 0.692 0.9 0.783 0.938

BoostedTreesLightGBM 0.769 0.643 0.9 0.750 0.888

MultilayerPerceptron 0.654 0.533 0.8 0.640 0.831
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the literature to evaluate the performance of a predictive model is the AUC, whose overall performance allows 
us to compare the performance of the predictive models graphically. Figure 1 depicts the AUC for these four 
models in the four scenarios, showing frequent indices above 0.9. However, as our primary goal is to provide 
treatment only for true PCP cases, avoiding unnecessary treatment of non-PCP cases, we opted for accuracy 
as the major criterion. Accuracy measures the overall correctness for true positive and true negative patients, 
informing the ability to implement treatment for PCP and not for non-PCP patients. Furthermore, accuracy, 
precision, and negative predictive value are prevalence-dependent metrics, whereas AUC, recall, and specificity 
are prevalence-independent.

Figure 1.  Area under the curve (AUC) of the predictive models with best performance calculated for each of 
the A, B, C and D scenarios: extreme gradient boosting (XGboost), Naïve Bayes, nearest neighbor, and random 
forest. Figure 1 shows AUC from predictive models that presented a greater performance for each scenario. 
Scenario A: NN, NB and RF. Scenario B: NB, RF, and XGBoost. Scenario C: NB, RF and NN. Scenario D: RF, NB 
and NN.
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Concerning the scenario A (Table 3), which mimics the usual common ERs’ setting (i.e., an X-ray is avail-
able, but not a CT scan), the NN model yielded the highest accuracy score (0.923), followed closely by both RF 
and NB with 0.885. All three also showed an AUC > 0.9. NN and NB presented precision and recall indices > 0.8. 
Although the RF model reached the highest precision (1.0), it presented a low recall (0.7), negatively impacting 
its F1-score. In addition, a fourth model, EN, also showed high accuracy (> 0.8) but somewhat weaker precision 
(0.78) and recall (0.7) scores. The remaining six models performed modestly only compared to those above 
three yielded accuracy indices between 0.7 and 0.8 and three below 0.7, with variable performances below 0.8 
in the other criteria.

In scenario B (Table 4), the models using CT scan instead of X-ray showed overall better performances than 
in scenario A, considering the remarkable (n = 8) number of predictive models that reached accuracy values > 0.8. 
This is likely because the thoracic CT scan has greater sensitivity than chest X-rays in detecting pulmonary inter-
stitial  lesions35. Differently from scenario A, in scenario B it was the NB that reached the highest accuracy (0.923) 
as well as ≥ 0.9 scores in the other metrics, especially the AUC, with a score of 0.981. Additional seven predictive 
models presented high accuracy scores (≥ 0.8), such as RF and XGBoost (0.885), with high scores (≥ 0.8) also in 
the other metrics. Although BT and NN showed good accuracy (0.846), NN yielded a modest precision (0.75), 
and BG a modest recall score (0.7). The remaining five models, decision tree, LightGBM, MP, EN, and LSVM, 
performed somewhat more modestly than those mentioned above.

The analyses of scenarios, including thorax CT scan, raised the issue of how important this variable for the 
models’ performance is. Even though its recognized better performance for diagnosing interstitial diseases, in 
scenarios B and D the models reached scores like those with chest X-ray, except for the highest AUC of 0.981 
with the NB in scenario B. The presence of “ground-glass” opacity in the thorax CT scan of PLHIV present-
ing pulmonary symptoms is well-established as highly associated with PCP or viral  infections35. However, it is 
not a specific signal and should not be taken alone for diagnosing PCP, especially in AIDS patients who not 
uncommonly develop concomitant pulmonary opportunistic  infections35. For this reason, we still recommend 
its utilization in settings where a CT scan is available.

In scenario C (Table 5), unexpectedly, adding CD4 cell count and HIV viral load to the variables of scenario 
A did not result in higher performances, with the highest accuracy score being 0.885 (NB). Four models reached 
an accuracy greater than 0.8, with recalls of 0.9. Still, three of them had precision values < 0.8, which can lead to 
the undesired outcome of implementing empirical treatment in non-PCP patients. Overall, the models’ perfor-
mance in this scenario was slightly weaker than in scenarios A and B.

Scenario D (Table 6), with the addition of CD4 cell count and HIV viral load to the set of variables, also did 
not further improve the model’s accuracy. The highest accuracy score was reached with RF (0.923), which also 
yielded scores greater than 0.9 regarding precision, recall, and AUC, a performance much like that observed 
with the NB in scenario B. In scenario B, the other seven models presented accuracy scores > 0.8. NB reached 
the second-highest best accuracy (0.885), followed closely by decision tree, BT, NN, and LSVM (0.846). These 
four models also performed well in the other metrics, reaching values ≥ 0.8.

Discussion
Predictive models for diagnostic purposes have already been tested in different areas of health  care36. Although 
many specialties were  covered36, there has been special interest in evaluating predictive models to improve 
decision-making processes in infectious diseases, from diagnosis to the risk of developing symptomatic infection 
and from predicting severity/mortality or complications to treatment response. These studies applied a wide range 
of models, the most commonly used being support vector machine (SVM), XGBoost, decision tree, RF, and NB, 
and several metrics used in the present  study36. Of the ten models we have tested, NB, RF, and NN presented the 
overall best performance, with NB being increasingly studied and generally yielding good accuracy  results37.

The use of predictive models in infectious diseases can be exemplified by the numerous models tested as 
alternative methods to diagnosing SARS-CoV-2 infection in a period when laboratory diagnosis was a chal-
lenge due to the high volume of patients, among other  issues38. For example, Mei et al. 2020, evaluated a data 
set acquired from Chinese patients for whom there was a clinical concern of COVID-19 between January and 
March 2020. SVM, RF, and MLP were applied using pulmonary CT scan data associated with easily accessible 
demographic, clinical, and laboratory variables similar to our study. Confirmatory diagnosis of COVID-19 
infection was achieved by real-time PCR (RT-PCR), being positive in 46.9% of the cohort. In this study, MLP 
performed better than the other two models, reaching a sensitivity of 0.843, a specificity of 0.828, and an AUC of 
0.92. However, contrary to our study, where imaging evaluation was based on the presence/absence of interstitial 
infiltrate/ground grass images according to the ER clinicians’ interpretation, they used a convolutional neural 
network model for CT scan analyses, which limits its applicability to limited-resource  ERs39. In addition, our 
slightly better results could be accounted for, at least in part, by using Boruta’s analysis of selected PCP-associated 
variables. This step seems important to increase the performance and can bring more confidence and adhesion 
by the clinicians than using random variables. We also designed our study to test a larger number of models to 
find the one that provided the best fit.

Predictive models were also used to investigate other viral diseases with some diagnostic  challenges40. Dengue 
diagnosis was retrospectively studied in a cohort of Paraguayan patients with fever and initial clinical dengue 
suspicion, subsequently confirmed either by IgM serology, virologic isolation, or RT-PCR. Moreover, the authors 
used the SVM, MLP, and radial basis function as predictive models throughout 37 clinical-epidemiological and 
demographic variables that can be associated with dengue. SVM performed better, reaching an accuracy of 0.92 
as well as a sensitivity of 0.93 and specificity of 0.92, providing an apparently helpful tool for the viral infection 
 diagnosis40.
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Studies comparable to ours were also done in acute bacterial diseases but with less successful results. A study 
investigated several models in diagnosing Clostridioides difficile infection (CDI) in a cohort of inpatients undergo-
ing C. difficile testing. This study used clinical-demographic and laboratory data and, as our study, ten different 
predictive models. However, all 10 presented weak performances, with AUC up to 0.60 (the single metric used). 
In addition, classical CDI-associated parameters were chosen, such as high white blood cells and creatinine value, 
which did not improve the performance. One possible concern is the eventual gastrointestinal tract coloniza-
tion with C. difficile, which can confound the diagnosis: in this study, from 3514 possible CDI records, only 136 
were  confirmed41.

The use of predictive models to study invasive fungal infections is still rare despite the fact that diagnosis 
of such infections still poses a challenge: usual diagnostic methods (e.g., blood culture) exhibit low sensitivity 
(compared with other types of infectious agents), some fungi lack or have slow growing properties in culture 
media, and in several instances, differentiation between colonization and invasion is  difficult42. A review of ML 
methods applied to clinical microbiology found 97 valid articles; only three dealt with fungal  infections16. Ripoli 
et al. 2020, evaluated a model to predict candidemia bloodstream infection (CBI) in at-risk patients using the 
records of a cohort of 157 patients with confirmed candidemia (positive blood culture) compared to 138 patients 
with bacteremia. The RF was applied to 17 clinic-demographic variables associated with an increased risk of 
developing candidemia. This model reached an AUC of 0.87, a sensitivity of 0.84, and a specificity of 0.9143. As 
in the present study, the model’s good performance was likely linked to the appropriate selection of variables. 
However, using blood culture as a gold standard may misdiagnose some patients, especially those with low fun-
gal burden. These promising results warrant that validation studies or other prospective real-world studies are 
undertaken. Another recently published study applied predictive models similar to ours in the context of PCP 
in kidney transplant recipients, with good results. However, the focus was not on the diagnosis of PCP but on 
the design of a prognostic model to predict the development of severe disease following PCP in these  patients44.

In fact, one major concern in ML studies aiming to improve medical processes is that there is little evidence 
that these models have entered into clinical practice. External validation is a mandatory step since assessing the 
model’s reproducibility and generalization is fundamental. Predictive models should not be addressed before 
extensive evaluation since mistakes and patient harm can occur, which enhances the importance of clinical 
knowledge and judgment. However, a survey of PubMed using "prediction models" retrieved almost 90,000 
related articles in the year 2019, but when searched allied with "external validation," only 7% of the studies 
 remained45.

Although we are just beginning to understand the wealth of opportunities afforded by ML methods, there is 
a growing concern in the academic community that, because the products of these methods are not perceived 
in the same way as other medical interventions, they do not have well-defined guidelines for development and 
use, and rarely undergo the same degree of scrutiny as others new technologies. The kind of evidence necessary 
to adequately recommend the widespread use of ML methods is still  debated46. Some steps should be followed 
to build confidence in the prediction model, such as adequate reporting of data source, study design, modeling 
processes, number of predictors, etc., which facilitates the interpretation and increases the clinician’s confidence. 
Predictive models are not meant to replace a clinician’s judgment, and they should be tested through application 
within existing workflows to convince clinicians of the test’s applicability since they tend to resist processes that 
interfere with their routine or challenge their  autonomy47,48.

Our study was conducted at the emergence room of a teaching reference center for infectious diseases, 
where the clinicians are highly skilled in diagnosing and treating AIDS-associated OIs. Empiric treatment was 
prescribed to 90% of the cohort’s patients who subsequently confirmed the diagnosis of PCP, but also to 30% of 
the patients in whom PCP was later ruled out (data not shown). On the other hand, the NN (scenario A) and NB 
(scenario B) predictive models would also indicate treatment for 90% of the confirmed PCP patients while treat-
ing only 1 out of 16 (6.25%) non-PCP patients, even if used by inexperienced clinicians. Unexpectedly, including 
CD4 cell count and HIV viral load did not improve overall predictive models’ performances (Table C and D), 
suggesting that, in our setting, they functioned only as marginal predictors. A likely explanation relies on the 
patients’ inclusion criterium of absence or irregular use of ART. Almost all (95%) of the patients had comparable 
high HIV viral load, and all had comparable low CD4 cell count (< 250 CD4 cells/mm).

Conversely, we estimate that implementing our tested model in non-specialized infectious diseases ERs may 
bring even more substantial improvement in the empirical treatment of patients with presumed PCP. We plan to 
proceed with validation studies at our reference hospital and other ER settings where patients with PCP are less 
prevalent and the medical staff is not specially trained in PCP diagnosis. Other limitations of our study are the 
relatively small sample size of the cohort and the fact that the data source arose from a single, reference hospital 
for infectious diseases with a high burden of AIDS patients, making it important cross-validation studies with 
larger cohorts.

Conclusion
In conclusion, after testing scenarios mimicking different ER settings, representative of either low/middle or 
wealthy countries, we strongly recommend that validation studies to be conducted with NN in X-ray-equipped 
ERs and with NB for CT scan-equipped ERs. Our models could be easily implemented in ER routine protocols to 
aid clinicians, particularly those not skilled in HIV/AIDS opportunistic infections, in the decision of introducing 
(or not) empirical treatment for suspected PCP patients.

Data availability
The data used in this study are available from the corresponding author upon reasonable request.
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