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Simulating worm feeding patterns 
with computational models
Neil Vaughan 

Worms create complex paths when moving through sediment to feed. This research applies computer 
simulation models to provide a unique approach to visualise and quantify the process by which 
complex worm paths can emerge from simple local movement decisions. A grid environment is 
proposed in which worms can move with choice of up to 8 directions at each step. This uses a square 
grid with diagonal paths which has not been investigated before and the resulting number of complex 
paths is increased compared to triangular grids. Results identify many novel worm paths. Some of the 
resulting paths are symmetrical, others produce repetitive looping paths, others return to the origin. 
Interesting worm paths are identified with chaotic movement. Some include oscillating between 
chaotic and ordered movement for which the outcome is still unknown after millions of steps. A 
conclusion that may be extrapolated to other creatures is that local movement decisions of a species 
substantially determine the overall global search strategy that emerges.

Bottom feeding ocean invertebrates and worms produce an intricate variety of meandering paths whilst 
searching for nutrients in sediment. Commonly these paths are difficult for us to observe on the deep ocean 
floor or underneath silt and sediment layers. However, fossilised remains of worms up to 1200 million years  old1 
provide a clear window for these benthonic invertebrate sediment feeding patterns to be  observed2. This enables 
comparisons to be made between feeding  patterns3 produced by various extinct or living species and genera that 
burrowed them (Fig. 1a), providing evidence about their behavioural  patterns4.

Worm feeding paths cover as much ground as possible, without retracing paths that have been previously 
traversed, as those contain fewer nutrients. Different worm decision rules result in different complex paths 
being traversed. Simple rules can result in surprisingly complex and intricate paths. However, the complexity 
of worm paths makes it difficult to determine how those worm paths end and whether the paths return to the 
place where they started.

Patterns produced by real worms (Fig. 1a) can be very different from each other. Therefore, this research 
doesn’t aim to exactly replicate these specific 6 example fossil patterns. Instead the aim is to create a simulation 
model solely using local movement decisions, capable of producing a similar variation of wide ranging, diverse 
global search behaviour patterns. The worms simulated in this research produce a similar variety of diverse 
interesting search patterns, as demonstrated by examples shown in Fig. 1b.

Previous worm computer simulation
A model known as Paterson’s worms was introduced using a hexagonal grid in 1971 by Mike Paterson and John 
Horton  Conway5, to model the feeding patterns of certain worms. Conventional models using a hexagonal 
 grid6 have allowed the worm to choose between 4 or 6 angles when changing  direction7, which resulted in 412 
unique  worms8. Some of the most complex paths were not solved until a new algorithm based on  hashlife9 
which gave ability to speed up simulations. Currently, more than fifty years later, with substantial analysis, the 
outcome of one worm still remains unknown: worm code  104201510. This worm is known to be active beyond 
at least 5.2 ×  1019 timesteps, which is more than the number of grains of sand on earth. These computer models 
simulate interesting feeding patterns produced by invertebrates. Since the original publication by  Gardner5, in 
over 50 years, there has not yet been any journal or conference publication to follow up on Paterson’s worms or 
any variation or extension to the original 1973 model.

Prescott and  Ibbotson11 used physical line following robots to create invertebrate style meandering patterns, 
and concluded that the intelligent behaviour capacity shown in the patterns of behaviour-based robots resembles 
that of animals in late pre-Cambrian period.

Various nature-inspired properties can be modelled by computer simulations, such as avoiding paths that have 
been already traversed, turning at regular intervals, at various angles and keeping close to previously traversed 
paths which is beneficial to keep the meandering path in a small confined  space2. By adjusting, tuning or evolving 
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the parameters of simulation, an effect resembling genetic variation is produced, which then controls aspects of 
the algorithmic behaviour. These parameters can affect properties such as the angle to turn when encountering 
a path that is already traversed, the distance to keep between a new path and an existing path, and the time 
interval between turns.

Contributions of this research
Some main contributions from this work are: (1) The introduction of a new grid type for simulating worms. 
(2) Several example images are shown of worms on this square grid, which have not been modelled before. (3) 
A category system to organise worms according to their termination or outcome letter: T, L, R, I, N. (4) A new 
Eq. (1) is proposed which estimates the maximum number of possible worms on this grid is over  1033. The time 
required to draw all worms that are possible on this new grid at a speed of 10 worms per second (wps), would be 
longer than twenty trillion times the age of the universe. (5) Highlighted multiple worms of unknown destiny, 
which appear to have potential to run indefinitely or for an unknown time. (6) All of the 4.5 million worms with 
rule lengths up to 11 have been run and analysed. (7) A large number (over 33,300) of random worm codes were 
generated and analysed up to population of 2 million. (8) A proof is developed that no worm can have over 60 
rules and in practice no worm has been seen to use over 34 rules.

These simulations provide one of the most clear ways to visualise and quantify how local movement decisions 
lead to emergence of complex structured global search patterns. This contributes to explaining variations seen 
in fossil records (Fig. 1a) between the global search strategies of different species. This research also develops 
methods for categorising the emergent search behaviours into distinct categories by quantifying their properties.

Methods
Methods of the novel proposed 8 path grid
The proposed simulation acts within a grid of points on an x, y plane, and has been developed with higher degrees 
of freedom than conventional hexagonal grid models. This research has developed a new computer simulation 
environment which allows diagonal turns, enabling greater flexibility, with 8 directions for the worms to turn onto 
after each step. In practice this is restricted to 7 because path 4 is always unavailable, due to the previous move.

Simulated movement of worms starts at a central point on an infinite grid. The worm initiates the path by 
taking one step and arriving at a new point. Thereafter, at each new grid point, eight lines meet. The worm then 
chooses one of the gridlines to move along. To simulate the worm’s senses, the worm detects which, if any, of 
the 8 gridlines have already been traversed. The worm can never travel along a line between two points that has 
already been traversed. Therefore, this produces a choice of up to 7 directions per step (0–3 and 5–7), excluding 
4 which is the line traversed on the previous step (Fig. 2a). The worm chooses a path from the available paths. 
The worm stores it’s decisions in memory. Each time an identical distribution of available paths is encountered 
again, it must make the same decision. If only one path is available, that path gets taken automatically without 
any rules. If the worm gets to a dead-end point where all lines have been taken, the worm  terminates5. The 

Figure 1.  Paths traced by (a) various species of worm invertebrate in fossils, (b) simulated worms developed in 
this research.

Figure 2.  (a) Description of numbering of the proposed grid. (b–f) Five stages detailing the growth process of a 
path produced by a simple example worm (26326) with five rules.



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10655  | https://doi.org/10.1038/s41598-024-61165-5

www.nature.com/scientificreports/

number of lines drawn at the time of termination is referred to as the worm’s population size. Each worm can be 
described by a genetic code such as 26,326 which refers to a worm with 5 rules and the numbers represent the 
path numbers taken when each rule is set, as with  Kahrkling12 notation.

An example of a basic worm in this proposed 8 path model (code 26326) is shown in Fig. 2b–f. The paths are 
numbered from 0 meaning continue straight forwards, through to 7 meaning 45 degree turn to left (Fig. 2a). All 
worms are initialised with one line towards the positive x axis. The worm’s first decision rule is to take path 2, so 
the worm takes a 90 degree turn to it’s right. Number 2 is stored in memory as the first rule. It encounters the 
same situation twice more, so each time it repeats this previous decision, causing the worm to arrive back at the 
origin (0, 0), having drawn a square (Fig. 2b). The worm has not encountered this situation before because path 2 
is traversed, so this time the worm chooses a new rule, path 6 which is a 90 degree turn to it’s left. The worm then 
turns right 3 times due to the first rule 2, again arriving at the origin having produced a double square pattern 
(Fig. 2c). It then chooses a new rule, path 3 which is a sharp 135 degree turn to the right (Fig. 2d). The worm then 
follows the first rule path 2 three times arriving at the origin for a third time (Fig. 2e). The worm finally chooses 
a new rule, path 6 (which is one of only two paths remaining) before following the initial rule three times. The 
worm then terminates because it arrives back at the origin for the fourth time (Fig. 2f) with no more paths are 
available. Measuring each worm’s population and the number of rules, allows comparison between worms. The 
worm 26326 in Fig. 2b–f terminates with population 14 and 5 rules.

Worm categories and worm codes
Five categories for worm termination are proposed. When a worm ends, it can be classed into one of the five 
categories below, representing the reason why the worm ended:

T = Terminated because no paths were available by arriving back at the origin (0,0). All child worms of this 
worm will also be in category T.
L = A repeating infinite loop was detected, could be of various lengths. All children of this will be the same 
category.
R = Running continuously until the population limit of the simulation (perhaps 2 million steps). These worms 
and all of their child worms could in future be re-run with higher computing power or techniques such as 
 hashlife9 to determine their outcomes.
I = Invalid rule, a rule specified to turn onto a path that is already traversed. All child worms of this will also be 
category I. These invalid rules are commonly encountered when setting rules in advance, but can be avoided 
if rules are chosen dynamically at runtime, or during recursive search if the parent worm has already been 
completed with code N.
N = Need more rules. The worm has used all of the specified rules but another rule was required. All children 
of this need to be run with additional rules to determine their outcomes.

Five different methods were implemented for generating unique worm rules. (1) Inputting a pre-set rule, 
where a complete worm rule, as a string such as 26326, is entered in advance and run. Some of these rules may 
be invalid. (2) Brute force by running every worm including invalid worms, by generating all worm rules from 
0 to 7 at every level. The resulting number of worms is found by the equation 

∑
i−1

n=0
3(7n) , where i is the rule 

length limit. This shows that there would be 342,947 worms with maximum rule length of 7 generated by this 
method. A substantial proportion (over 90%) of worms generated using brute force method will be category I 
invalid, as it is known that there are 28,305 valid worms up to rule length 7 (Table 1). (3) Randomly generating 
the next part of the rule when it’s required at run-time by randomly choosing an available path. This avoids all 
category L and N worms and can run to any rule depth, ending in three categories: T, L or R. (4) Recursive with 
pruning, which explores only available paths and only generates children within worms of category N. This can 
be run with a rule length limit such as all worms with rules to maximum length of 11. (5) Interactive evolutionary 
computation (IEC) where a message prompt allows the user to select a rule from available paths at run-time, 
which is available on the accompanying  website13 (Fig. 9).

Estimating the total number of unique worms
There are mirror image worms which can be excluded as duplicates. The first rule is restricted to paths 1, 2 or 3, 
when generating random or recursive worm codes. This avoids paths starting with 0 which only draws a straight 

Table 1.  Results from recursive run of all worms up to length of 11 rules with population limit of 250,000. 
This table shows the number of worms in each category (N, T, L, R) in the left row, for worms of each rule 
length (1–11 shown in the top row).

Worm category

Number of rules

1 2 3 4 5 6 7 8 9 10 11

N 3 21 104 457 1816 7143 27,221 101,175 367,557 1,296,123 4,420,602

T 0 0 0 0 15 56 240 1104 4273 16,218 59,674

L 0 0 2 18 71 220 843 2595 7249 20,631 59,793

R 0 0 0 0 0 0 1 3 43 146 436

Total 3 21 106 475 1902 7419 28,305 104,877 379,122 1,333,118 4,540,505
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line and path 4 which is already traversed. Also this avoids paths 7, 6 and 5 which are exact mirror  images7 of 1, 
2 and 3 respectively. Every worm code can be converted into a mirror image by converting the worm code, such 
that every rule digit 1, 2 or 3 becomes a 7, 6 or 5 respectively.

A proof has been developed to show that any worm on this grid will always be limited to use no more than 
60 rules. The first rule is restricted to 1, 2 or 3, to avoid mirror images. The  2nd rule always occurs at the origin 
with 6 paths available. All other rules including the third rule onwards, have 5 or less paths available. Worms 
have 7 sensors which have two states (binary): 1 or 0. The maximum number of rules is therefore  27 = 128 rules. 
For each of the 128 binary 7 digit path distributions, the number of paths available is the Hamming weight of the 
binary string (inverted so that a 1 represents an available path and a 0 represents a traversed path). Half of those, 
64 apply to situations with an even number of paths available, for example 00001100, (which becomes 1111011 
when inverted and ignoring path 4) and all others where the Hamming weight of the inverted binary string is 
even. In practice, the number of available paths is always odd, except when the worm is exactly located at (0, 0), 
which can only occur and result in a new rule a maximum of three times per worm. Of the 64 odd rules, 1 has 
7 paths, 21 have 5 paths, 35 have 3 paths and 7 have 1 path. The 1 rule with 7 paths is 0000000, the initial rule 
which is restricted to 3 (paths 1, 2 or 3). The 7 situations with 1 path are automatically selected without a rule. 
This leaves a maximum of 57 odd rules. Additionally a worm could potentially also use a maximum of 3 rules 
with an even number of paths and on those three occasions the number of available paths are known to be 6, 4 
and 2 respectively. Therefore it is not possible for any worm on this grid to use more than 60 rules.

Estimating the total number of unique worms on this grid helps to reveal the extent of variety, the full number 
of rulesets, or genetic pool. In order to estimate this, there are certain facts that restrict the total number. The 
fact that one worm cannot use more than 60 rules restricts the total number of worms. The number of available 
paths in each rule is used in the Eq. (1).

Equation (1) gives the maximum possible number of unique worms of length 60. If all parent worms of length 
1–59 are also included this increases to over 6*1033. In practice no rule length above 34 has been identified, so 
if rule length is limited to 34, this would be up to 1.5*1020 unique worms of length 34.

Estimating the number of worms including parents up to a given length is also useful. If all worms are run 
to a limit of rule length such as 7, it is useful to estimate how many valid worms there will be. The order that the 
number of paths per rule will occur in for a particular worm is unknown, but we can assume that all rules from 
the third rule onwards have 5 paths. Therefore the number of unique worms with length i = 7 is proven to be not 
more than 3*6*5*5*5*5*5 = 3*6*5i-2 = 18*55 = 56,250. Furthermore if all parent worms are included, this becomes 
3 + (3*6) + (3*6*5) + (3*6*5*5) + …. + (3*6*5i-2) = 70,311 unique worms of lengths 1 to 7.

Method for automatic detection of looping patterns
A method was developed to detect looping patterns during simulation. The benefits are: to enable early halting 
of a long running looping worm, avoid needing to run the children of looping worms and to avoid having to 
manually identify and label looping worm patterns. This works by searching within the stored sequence of rule 
activations. Patterns must repeat at least 4 times to be detected. Therefore the longest loop that can be detected 
is of length up to ¼ population size limit. This detects repeating loops consisting of any length including small 
or large complex sections with minimum length of 6 characters to avoid false detection of temporarily looping 
short sections. The method also enables counting the lengths of each loop, to identify which worms have the 
most complex repeating loop consisting of a large repeating section. The algorithm takes a substantial time to run 
when worms are of a long length, so the loop detection algorithm is only run once every few hundred thousand 
steps to reducing computation time.

Worms will always have a path back to the origin, so can never become blocked off from the origin centre 
point. Whenever a worm takes 1 step into a layer further away from the origin, the step’s even pair will be available 
to return to the origin. The number of paths outward from the origin in every layer is therefore even, given by 
the formula 24n− 16 where n is the layer number or the shortest distance to origin.

Results
Software development
Source code was developed in various languages. A JavaScript version of the worms simulator was developed 
which can be run in any web browser. This allows worms to be simulated by any user with access to a web browser 
on any platform, including Apple, Samsung, smartphones, iPhones, Windows, PCs, Linux or other platforms. 
An ANSI C version of the code was developed and compiled into a windows 64-bit .exe file which can simulate 
the worms at faster speeds and higher population sizes up to 10 million. A website was  developed13 to host the 
JavaScript worms implementation along with several example images of complete worms of various sizes and 
categories. The website also has an Interactive Evolutionary Computation (IEC) version (Fig. 9) with instructions 
for use and result tables containing the worm categories and image files in .PNG format for all 1902 worms with 
rule lengths between 1 and 5 (Table 1).

Minimum number of rules and population size
All worms with 1 or 2 rules are in category R. The shortest worms in category L infinite loops have rule length 
3, which are worms 337 and 377. The shortest worms in category T have rule length 5, such as worm 26326 in 
Fig. 2b–f. For worms that terminate T, the smallest possible population size is 14 (Table 4). Every population 
size from 14 to at least 225 has been seen to occur in category T.

(1)3 ∗ 6 ∗ 5
21

∗ 3
35

∗ 4 ∗ 2 = 48 ∗ 5
21

∗ 3
36

= 3.43 ∗ 10
33
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Verifying the maximum number of rules used by one worm
Currently no worms have been identified yet that use more than 34 rules. This appears to be because worms 
infrequently encounter 34 different scenarios before terminating, or hitting an invalid rule when using pre-set 
rules, or beginning a loop. This fits with the proof that no worm can use more than 60 rules. If a larger number 
of random worms are run it may be possible that worms using more than 34 rules may be identified, but this 
appears unlikely, because a large number of random worms has already been generated and rules are usually set 
early on. However some worms, such as worm 12053015626006367131237727 adds a new rule late on, as the 
26th rule is set after 40,000 population.

Recursive worm properties
The diagram in Fig. 3 shows the category of all worm codes generated recursively to a rule length of 9. The 
diagram becomes difficult to interpret as the rule length increases, because the number of worms increases with 
the rule length. Therefore the rule length 9 worms are drawn at 175,000 worms per pixel so a lot of overlapping 
occurs on this diagram.

Using recursive search, all worms to a rule depth of 11 were simulated to population limit of 250,000 to 
identify their categories. This was a total of over 4.54 million worms (Table 1) and each worm was generated 
and saved as a .PNG image file. Over 97% of all worms are in category N. This is because most worms needed 
more than 11 rules before the population limit was reached. Other than category N, about 1.3% are in category 
T, 1.3% in category L, and 0.01% are in category R. The numbers at each rule length also include the sum of all 
parent branch worms. Simulating to a greater rule length than 11 in future would need additional computational 
power or hashlife algorithms.

It was found that the 1 worm in category R at rule length 7 (Table 1) is actually a looping shape builder, 
which is not automatically detected. This also applies to some worms in category R in the subsequent lengths 
from 8 to 11.

Using Eq. (1), the maximum number of unique worms was estimated as 70,311, up to and including rule 
length 7. In practice there were 28,305 worms (Table 1), which as expected does not exceeded the predicted 
maximum given by Eq. (1).

It was found that in recursive worms, more worms start with rule 1 (54%) than with rule 2 or 3 (22% each) 
(Table 2) in all worms up to rule length 10. With lower rule lengths, this affect is less, as with rule length 4, 
36% start with rule 1. The proportion of worms starting with 1 may further increase above 54% as rule length 
increases beyond 10.

All 128 possible binary rules were observed being used, including all the 64 rules with an even number of 
paths available. Rules with an even number of available paths are rarer due to a maximum of 3 being used in a 
single worm. In recursive search, of all worms up to rule length of 10, all rules were activated. Some rules are 
used more often than others. The most common rule is 00001000, which is the first rule to activate and re-occurs 
whenever a worm is in an open space with all paths available. It makes up 12.7% of all rule activations in all 
worms up to rule length of 8.

Random worm properties
Simulations were completed for 33,300 random worms such as the worms shown in Fig. 6 up to population limit 
of 2 million. The total proportion of worms that terminated T was 67%, the proportion of Looping L was 30% 
and still running R was less than 3%. Lower population limits were also evaluated in random worm searches to 
identify the proportion of worms that end with categories R, T or L. This is shown in Fig. 4 by population size up 
to 2 M. Figure 4 shows that as the population limit increases, the proportion of worms in category R decreases 
and the proportion of worms in category T increases, but the proportion of worms in category L stays roughly 
consistent. Figure 5 shows how the proportion in worm categories changes in worms of differing numbers of 

Figure 3.  Diagram showing the categories of all possible worms up to a rule length of 9.

Table 2.  More worms start with rule 1 than with rule 2 or 3.

L8 (%) L9 (%) L10 (%)

1 as first rule 49.7 52.7 54.9

2 as first rule 24.2 22.9 22.1

3 as first rule 26.0 24.3 22.9



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10655  | https://doi.org/10.1038/s41598-024-61165-5

www.nature.com/scientificreports/

rules with 1 M population limit. Figure 5 shows that after running for 1 M steps, the worms that are most likely 
to still be category R have 25 or 29 rules. No worms with less than 16 rules were still running in category R at 
1 M steps (Fig. 5). The zigzag pattern appears to be caused by differences in the proportions in each category 
between odd and even numbers of rules.

Properties of Category T random worms were analysed. Worms that terminate T are completed, so analysing 
their properties appears more meaningful. In comparison, category R worms have not yet completed so they may 
change category later on and category L worms are infinite and may have been stopped at some arbitrary limit.

In random worms terminating T under a 1 million population limit, population sizes ranged from 14–916,441 
with mean of 12,761. Number of rules range from 5 to 34 (mean 21). This varies slightly from random worms 
including categories L and R with the same population limit (Table 1).

Random worms that terminate T are most likely to do so early on. For example, of all random worms that 
terminated T before 100,000, less than 1% did so in the between 50,000 and 100,000, such that 99% terminated 
T below 50,000. Similarly, in worms with 1 million population limit, only 2.5% had a population over 50,000 so 
97.7% of worms had population in the lowest 5%. Also 99.5% terminated under 500,000, whereas only 0.5% of 
worms terminated T from 500,000 to 1 million.

In random worms that terminate T, the relationship of rule count to population count is not closely related. 
For example, some worms with 20 rules run beyond 10 million population, whereas some worms with 34 rules 
terminated T early with low population below 3000.

Comparing characteristics of worms found by random and recursive searches
Worms are more likely to have an even number of rules than an odd number of rules. This applies to all worms 
selected randomly or recursively (Table 3). Population size also appeared to have slightly more chance of being 
even. The average population size of a worm was 37,926 for random worms, but in recursive worms the average 
population size depends on which starting worm is used.

Examples of worm images
Examples of fifteen worms found in random search are shown in Fig. 6. Most of these examples are still running 
in category R, with various small population sizes below 2000.

Several shoot growers were identified (Fig. 7a–g) resembling those from triangular  grids4. There are some 
even more basic loops with a length of only 4 lines in each repetitive segment.

Shape builders were found which produce triangles (Fig. 7h), squares (Fig. 7i,j), pentagons, hexagons (Fig. 7k), 
octagons (Fig. 7l,m), or other patterns such as stars (Fig. 7i) and spirals (Fig. 7n) and many other shapes, by 
adding consecutive layers to the outside at 45 or 22.5 degrees or intermediate angles. Several worms start by 

Figure 4.  The proportion of random worms that end in each category by population size.

Figure 5.  The proportion of random worms that end in each category by number of rules with 1 M population 
limit.
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tracing chaotic patterns resembling circles (Fig. 8d). A few worms that look like Fig. 8d may suddenly enter a 
repetitive infinite loop at any time, which goes off to infinity in one direction, in worm 1302702170717267161075 
this occurs after 306,000 population. Some loops are not entirely repetitive as the loop size grows over time with 
a repeating pattern, which consistently grows in size to infinity.

The most complex loop found so far has length of 42,621 (Fig. 7g). Longer loops still are sure to be found in 
longer runs.

Several worms were found to contain a mixture of order and chaos (Fig. 8a–c). Within this category, several 
particularly remarkable worms produced a regular square, containing irregular chaos (Fig. 8b,c). These worms 
oscillate irregularly between two behavioural modes, producing seemingly infinite patterns of ordered chaos. 
Over 1000 very similar variations of the worm in Fig. 8b were found by running a recursive search starting from 
the code of this worm.

Uncountable new worms found in this research still have an outcome which remains unknown (Fig. 8a–e). 
Many simulations continued running worms over 10 million population (Fig. 8e) with unpredictable chaotic 
movement, which may potentially continue infinitely or end at any moment. Many worms continue in category R 
beyond 10 million population. The majority of these grow in irregular shapes loosely resembling circles or clouds 
(Fig. 8d), but the paths of many other worms of unknown outcome also grow in very irregular shapes resembling 
extreme island coastlines (Fig. 8e). There remain substantial research tasks to explore larger proportions of the 
vast  1033 worm simulation genome, further categorising worm characteristics and path outcomes and employing 
further hashlife  algorithms9 to speed up worm simulation.

Interactive evolutionary computation
Several of the featured software implementations in java and C allow the user to interact with the rule setting 
process at runtime, to choose the worm’s next step. This is a form of Interactive Evolutionary Computation (IEC). 
In the web-based implementation (Fig. 9), the child worm can be selected by the user during runtime using IEC 
and is available to use through any web browser or device with no installation pre-requisites13. The provided code 

Table 3.  Comparison between characteristics of random and recursive worms, all to 1 M population limit.

Recursive search (n = 9845) starting 1
Recursive search (n = 1331) starting from bimodal 
worm in Fig. 8b Random search (n = 33,352)

Rule length—Min, max and average 1–24 (23.38) 18–26 (25.26) 3–34 (17.7)

Population size: min–max (average) 8–1,000,000 (4,499) 978–1,000,000 (70,035) 14–1,000,000 (37,926)

Proportion of worms with an odd number of rules 27.8% 35% 39%

Proportion of worms with an odd population size 49% 49% 30%

Figure 6.  Fifteen worms found by random rule generation. Most are still running in category R with various 
population sizes below 2000.
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allows full reproduction of any worm code from this article and experimentation to identify new worm patterns. 
The result of IEC is that each child worm can be seen to build upon the shape of the previous generation’s path.

Discussion
Many interesting worms remain in category R with unknown destiny that appear to continue chaotic movement 
potentially indefinitely. On the original Paterson’s worms hexagonal grid, only one worm remains in this category 
of unknown outcome (code 1042015)8,9. On this new proposed square grid, there are a huge number of worms 
of unknown outcome in category R. Of all the possible  1033 worms, it was found that approximately 2% continue 
running chaotically in category R beyond a million population size with unknown outcome, which currently 
leaves about  1031 worms with unknown outcome, for future research to explore.

To identify the final result of worms in category R and children of worms in category N, further investigation 
would be required with additional computing power or hashlife algorithms. The outcome of some worms in 
category T, L and I are known and completed, but there exist many more worms than could be examined.

When a number of worms are running, the timing with which they reach their final states appears to exhibit 
behaviour similar to a half-life, which can characterize rate of exponential decay. For example, all worms start in 
category R (Fig. 4). As the worms continue to run to larger population sizes, the number of worms remaining in 

Figure 7.  (a) ‘Shoot grower’ worm infinite loop (code 20502222252152221). (b) Pointy star grower with 
9 rules rotated (code 552553555). (c) ‘Shoot grower’ worm with 17 rules (code 633306666636673767). 
(d) A loop of 484 (code 50275752501275776276353217). (e) A loop of size 10,310 with 24 
rules (code 105372663603532736621176). (f) A loop of length 20,109 (code 1352527313371715661157). (g) 
A loop of size 42,621 (code 102727713362757175152736). (h) A triangle grower with 5 rules (code 16566). (i) 
Square grower with spiral inside (code 2176566567). (j) Square grower with star patterns (code 175316732673). 
(k) Hexagon grower (code 12622250737). (l) Octagon grower (code 1715166227). (m) Octagon 
spinner (code 331630707731625372). (n) spiral grower snail shell with 11 rules (code 31573150535).

Figure 8.  (a) Chaotic pattern with growing ordered sections at 1,000,000 
steps (code 2531353756513537112062). (b,c) regular squares containing random patterns at 1,000,000 
steps (codes 1571566002756310351671027 and 17500311512060116072057). (d) Growing unknown infinite 
path at 1,000,000 steps (code 15230365631501655775373337). (e) An irregular growing unknown/infinite path 
at 3,000,000 steps (code 270507163326720325110222771160).
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category R decreases, or decays. The data in Fig. 4 appears to approximately suggest that each time the population 
limit is increased by an order of magnitude, the number of worms remaining in category R decays by half. It 
appears to be a possible outcome that all valid category R worms eventually decay to become either category 
L or T. A mathematical proof would be required to demonstrate this as it won’t be possible to simulate all  1033 
worms, or to keep category R worms running for long enough.

The smallest worms to terminate complete in category T have a minimum population size of 14 and 5 rules. 
The smallest worms which enter infinite loops have 3 rules (Table 4).

Using the developed JavaScript website version, a random worm can easily be generated (Fig. 6) by pressing 
the key ‘g’. When a random worm is generated, it will be unique and will probably never be seen again. To find 
the exact same worm again would be equivalent to searching through every grain of sand on one hundred trillion 
earths. For example, none of the codes for the 15 worms in Fig. 1b or Fig. 6 were recorded, so it won’t be possible 
to find these exact worms again. This difficultly of recovering a worm’s genotype when given it’s phenotype 
increases further as rule length increases.

Worms have an even number of rules approximately twice as often as odd (Table 3) and this applies to any 
worms selected randomly or recursively. Random worms with over 20 rules are more likely to stay in category 
R for longer if they have an odd number of rules, indicated by the zigzag pattern in Fig. 5.

The majority (over 54%) of all worms start with rule 1 (Table 2), that is more common than worms starting 
with 2 and 3 combined. This proportion of worms starting with 1 increases beyond 55% as rule length increases 
beyond 10.

All  27 = 128 of the possible binary rules from the worm’s 7 sensors were observed being used in worms of 
rule length 10 or less.

An Eq. (1) was proposed for estimating the maximum number of possible unique worms for any given rule 
length.

In random worms, the proportion of worms in each category is T: 67%, L: 30% and R: 3%, in 33,300 worms 
at population limit of 2 million (Fig. 4).

The proposed grid produces much more variety in the digital species of worm that can now be modelled, 
which haven’t been possible before. The previous worm  system5 could model only 412 worms, whereas the 
proposed novel simulation environment with 8 path grid, can simulate a range of up to  1033 digital species of 
worm. This estimate may need further adjustments to increase accuracy due to other complex factors difficult to 
integrate into this estimation. To put into context, the total number of worms in this model is  1033 which is 100 
trillion times more than the number of grains of sand on earth, which is roughly  1018. The number of worms is 
clearly very large since it approaches the number of atoms in the universe which is  1078. If there are  1033 worms, 

Figure 9.  Worm Simulation code is available to run in web browser  online13. This includes Interactive 
Evolutionary Computation (IEC). Parent worms are on the left and the asterisk indicates which parent the user 
has chosen at each step to produce the genetic code for subsequent generations, moving from left to right.

Table 4.  Minimum number of rules and size of worms in each category.

T L R I N

Minimum population size 14 Infinite 1 (If population limit set to 1) 1 1

Minimum number of rules 5 3 1 1 0

Worm code 26326 (Fig. 2f) 337 and 377 1 4 None
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and if they could all be run at a speed of 10 worms per second, it would still take 3.17 *  1023 years to complete, 
which is twenty trillion times longer than the current age of the universe.

Conclusion
These simulations and developed tools provide one of the clearest ways to visualise and quantify how local 
movement decisions lead to emergence of complex structured global search patterns. This contributes to 
explaining variations seen in fossil records (Fig. 1a) between the global search strategies of different species. 
This research also develops methods for categorising the emergent search behaviours into distinct categories by 
quantifying their properties.

This research offers the first published contributions to further develop Paterson’s worms since it was 
introduced over 50 years  ago5.

In this model, decision rules are not set by the author, instead all possible sets of rules  (1033 variations) 
within this particular environment emerge from a given environment definition. The purpose of visually and 
quantitatively analysing the outcomes of emergent worm patterns is that it enables conclusions to be made 
about how variation in resultant search strategies between species of virtual and real organisms relates to local 
movement decisions.

One of the interesting aspects among these findings is that some newly identified worms can switch between 
ordered and chaotic modes of movement. Future research could explore this further and aim to identify 
explanations, for how these simple local rules can lead to complex paths and behaviours including switching 
between ordered and chaotic movement patterns (Fig. 8b). This bi-modal, oscillating behaviour has not been 
identified before because it does not occur in any of the original Paterson’s worms  models7. Within paths traced 
by these bimodal worms there are some further questions that could be investigated: what proportion of time 
is spent in the two modes? Are there other related yet undiscovered bimodal worms which spend more or less 
time in each mode? Are there any patterns within the durations spent in each mode?

These investigations and findings offer contributions to the field of Artificial life, studying biology by aiming 
to recreate aspects of biological phenomena, through the use of simulations with computer models. A conclusion 
that may be extrapolated to other creatures in addition to worms is that local movement decisions of a species 
appear to have substantial influence on determining the overall global search strategy that emerges.

Data availability
All of the worm codes for the worms shown in the figures of this paper are included within this paper. A 
collection of worm images and log files has been exported and is available from the author. This includes a set 
of worm path images for all worms up to a code length of 11. Log files from the random and recursive runs are 
available, enabling analysis of the categories of worm in both scenarios.

Code availability
Source code in JavaScript for simulating worms is available and has been stored in an online source code 
 repository14 with unique DOI under CC-BY licence. Readers can see this code running on the author’s  website13 
by using any compatible web browser on Windows, Apple or Unix, including Internet Explorer, Edge, Safari, 
Firefox, Google Chrome, including web browsers on Android or iOS smartphones.
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