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Robust detection and refinement 
of saliency identification
Abram W. Makram 1*, Nancy M. Salem 1, Mohamed T. El‑Wakad 2 & Walid Al‑Atabany 1,3

Salient object detection is an increasingly popular topic in the computer vision field, particularly for 
images with complex backgrounds and diverse object parts. Background information is an essential 
factor in detecting salient objects. This paper suggests a robust and effective methodology for salient 
object detection. This method involves two main stages. The first stage is to produce a saliency 
detection map based on the dense and sparse reconstruction of image regions using a refined 
background dictionary. The refined background dictionary uses a boundary conductivity measurement 
to exclude salient object regions near the image’s boundary from a background dictionary. In the 
second stage, the CascadePSP network is integrated to refine and correct the local boundaries of the 
saliency mask to highlight saliency objects more uniformly. Using six evaluation indexes, experimental 
outcomes conducted on three datasets show that the proposed approach performs effectively 
compared to the state-of-the-art methods in salient object detection, particularly in identifying 
the challenging salient objects located near the image’s boundary. These results demonstrate the 
potential of the proposed framework for various computer vision applications.

Salient object detection is an image analysis technique that intends to automatically identify the visually signifi-
cant regions in an image. Inspiration for salient object detection comes from the human visual system, which 
is able to quickly and efficiently recognize important objects in a visual scene. Therefore, the main contribution 
of salient object detection appears in assistive technologies for individuals with visual impairments1, including 
those using retinal prostheses to overcome the limited resolution of current retinal prostheses by identifying the 
most visually important areas in a scene and enhancing their visibility for retinal prosthesis users2. Also, Salient 
object detection has numerous applications in the fields of image processing and computer vision, including 
object recognition3, image editing, compression4, autonomous driving5, and medical imaging6.

Recently, deep learning has achieved a breakthrough in the saliency detection field, but there are some limita-
tions mainly related to the high computational power required and complex architectures. Also, they may fail to 
preserve the object boundary and edges. So, Traditional saliency detection provides a lifeline for applications with 
limited data and resources as they generally need less computational power and memory. Therefore, Traditional 
methods are still an attractive research area.

Inspired by the biological visual attention mechanism, traditional saliency detection methods typically rely 
on contrast analysis of low-level features. The primary system for saliency detection, introduced by Itti et al.7, 
utilizes a contrast-based model that specifically employs center-to-surround differences for multiscale low-level 
features. These methods exhibit some challenges related to (1) sensitivity to low-level features, where minor color 
variation can lead to inaccuracies, and (2) the lack of high-level contextual understanding. Therefore, incorporat-
ing background priors can alleviate these issues. This inclusion allows for a better understanding of the scene, 
leading to improved accuracy in saliency detection and a better balance between recognizing the global context 
and capturing local details in the image. The background priors are built on the observation that the areas of 
an image closer to the image border are more probable to belong to the background. On the other hand, using 
the image border areas directly as a background dictionary to find the salient object may fail to identify the 
near-boundary-salient object as the background dictionary includes parts of this object. Therefore, refining the 
background dictionary is a critical issue.

As background prior techniques appear to have some limitations related to near-boundary-salient object, 
this work proposes an improved approach that refines the background dictionary instead of using it directly. 
This refinement provides substantial progress in saliency detection accuracy. Figure 1 shows the pipeline of 
the proposed method. The proposed approach utilizes the boundary conductivity term8, which suggests that 
an image region is more potential to be a portion of the background if it is strongly linked to the image border, 
especially for large and homogeneous backgrounds. By refining the background dictionary, regions close to the 
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boundary and potentially be part of the salient object can be removed from the background dictionary; as a 
result, the salient object is identified more accurately. Once the refined background dictionary is obtained, the 
proposed method calculates the saliency values of the image regions by evaluating the reconstruction error of 
the regions using the refined background dictionary through sparse and dense representation9,10. Where a sig-
nificant difference exists between a salient object region and the background dictionary, a large reconstruction 
error will be obtained as the dictionary failed to reconstruct that region, implying that the region has a large 
saliency value. Conversely, if an image region is similar to the background, a small reconstruction error will be 
obtained, indicating that the region acquires a small saliency value. So, the proposed approach can effectively 
handle the near-boundary salient object detection issue, a common issue in background prior-based techniques.

Also, this study focuses on improving salient object segmentation and preserving the object boundary using a 
pre-trained CascadePSP network11. This network overcomes the shortage of segmentation refinement approaches, 
such as graphical models (Conditional Random Field12,13) or region growing14,15, which are sensitive to initial 
seeds and typically rely on low-level features; they don’t achieve significant improvement for refining the back-
ground prior-based saliency detection. The CascadePSP method refines an initial mask generated using the 
background prior-based method as input, which is a rough location of the object, in a cascading manner. It starts 
with a coarse initial mask and gradually refines the object’s details by feeding the outputs from early levels into 
the later levels of the network. The Pyramid Scene Parsing Network (PSPNet)16 is used for pyramid pooling in 
the CascadePSP network, which is effective for capturing contextual information regardless of input resolution. 
As a result, the CascadePSP method generates a more refined and precise segmentation mask.

The principal contributions of this work can be summarized as follows: A segmentation refinement model, 
The CascadePSP11, is integrated with a background-prior-based saliency detection method to refine the saliency 
masks and segment salient objects. Where saliency masks are generated by dense and sparse reconstruction in 
terms of a refined background dictionary10, The outcomes provide compelling evidence for the significance of 
a refined background dictionary in saliency detection and demonstrate how CascadePSP boosts performance.

Related work
In this section, we review related works in 2 categories17–19, including: (1) Traditional Saliency Detection models, 
(2) Deep-Learning Saliency Detection.

Traditional saliency detection
Saliency detection methods can be broadly categorized into bottom-up and top-down. They have different char-
acteristics and strengths, which can sometimes be complementary. Bottom-up approaches20,21 rely on low-level 
features such as intensity, color, and edges, making them robust and computationally efficient. On the other hand, 
top-down approaches22,23 utilize high-level features such as objectness, semantic information, and task-driven 
objectives, offering flexibility and adaptability. Some researchers24,25 aim to enhance saliency detection by devel-
oping integrated and hybrid approaches that combine the strengths of both bottom-up and top-down methods.

Local contrast methods estimate saliency values based on the nearest neighborhoods surrounding a region. 
Liu et al.26 use a conditional random field to combine local features, including multiscale contrasts and center-
surround histograms. The method27 calculates pixel-level contrasts as local color dissimilarities with Gaussian 
distance weight. While these methods often highlight salient object boundaries rather than the entire object, 
they may respond to small, prominent regions in the background28. Limitations related to image noise, scene 
complexity, and robustness have led to exploring techniques such as boundary cues, global contrast measures, 
and adaptive thresholding29.

Global contrast approaches consider the entire image to estimate the contrast of its regions, providing a more 
reliable outcome than local models. Fang et al.30 represent patch features using the quaternion Fourier transform’s 
amplitude spectrum. Despite their reliability, global contrast models may struggle with large salient objects or 

Figure 1.   Pipeline of the proposed Method. Images represent the output of each stage (Sections "Pixel-Level 
Image Segmentation", "Background dictionary refinement", "Saliency measurement estimation", "Saliency mask 
initialization", "Saliency mask refinement"). The input of the pipeline is RGB image.
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cluttered backgrounds. Various techniques, such as manifold ranking31 and deep learning approaches32, have 
been proposed to integrate local and global cues33 for refining salient regions.

Efforts to improve saliency detection involve incorporating local/global saliency detection with weighted-
color channels, wavelet transform, feature learning, or PCA is explored. In34, an analysis of eye-tracking data is 
used to propose the RNCw model, which employs a channel-weighted color distance metric and spatial weighting 
to enhance region contrast. In35, Hierarchical Principal Component Analysis is applied to image layers gener-
ated through bit surface stratification, selecting the optimal saliency map based on information entropy. This 
approach might encounter difficulty in capturing complete object information when background objects share 
similar brightness levels and resolution. Lad et al.36 introduce an approach integrating global and local saliency 
detection through wavelet transform and learning-based saliency detection with a guided filter, but it is sensitive 
to parameter configurations. Wang et al.37 formulate saliency detection as a mathematical programming problem 
to learn a nonlinear feature mapping for multi-view features.

Several techniques based on background prior38–40 have been developed to address the limitations of contrast-
based approaches, where using the background prior rather than the conventional local and global methods offers 
the incorporation of contextual background information. Background prior methods are built on the observation 
that the areas of an image closer to the image border are more probable to belong to the background. So, these 
methods use the image boundary areas as a template for the background and calculate the saliency value of the 
image regions as its feature contrast to the background template41. Wei et al.42 defined saliency as the feature 
distance to the image boundary along the shortest possible path. Meanwhile, Zhu et al.8 introduce a technique 
that measures saliency by analyzing the region’s connectivity with the image border and its spatial location. 
The approach proposed in43 involves using manifold ranking on a multi-layer graph, considering both feature 
similarity and spatial proximity of superpixels. The method43 employs a two-step manifold ranking algorithm 
to calculate the saliency of each superpixel, incorporating background and foreground priors. Background prior 
framework has been effectively applied in numerous existing works44,45. These background-prior-based methods 
can effectively enhance salient object detection and suppress the background regions, even in cluttered scenes. 
However, their effectiveness strongly depends on the selection of background regions (dictionary). Challenges 
may arise in accurately identifying salient objects near the image boundary due to assumptions associated with 
the background prior or when the boundary is too flat to represent a cluttered background.

Deep‑learning saliency detection
The introduction of Fully Convolutional Neural Networks (FCN) in saliency map detection46 and semantic 
segmentation47,48 was a significant advancement at the time. Local features provided by FCN are insufficient for 
pixel labeling tasks, so a wide field-of-view contextual information is essentially integrated with local features. 
Many saliency detection models exploiting contextual information include image pyramid methods as multiscale 
inputs49 or dilated convolutions with different rates50.

Saliency detection methods51–53 often utilize encoder-decoder models. These models reduce the spatial dimen-
sionality in the encoder stage to extract high-level information and then use a decoder to restore the spatial 
structure. Skip connections are also commonly used53 to obtain finer boundaries. Most Saliency detection models 
combine bilinearly up-sampled outputs at different strides (scales), leading to inaccurate labeling.

Song et al.54 introduced an innovative fusion framework incorporating a self-attention mechanism and a 
three-dimensional Gaussian convolution kernel to integrate background and multiscale frequency-domain fea-
tures in salient detection. The approach proposed by Zhang et al.55 involves training a Rank-SVM classifier using 
object-level proposals and features from a region-based convolutional neural network (R-CNN). The saliency 
map for each image is then generated through a weighted fusion of its top-ranked proposals. It’s important to 
note that the method’s effectiveness depends on the quality of object proposals and R-CNN features, which may 
not be optimal for particular images.

Wang et al.19 comprehensively analyzed the evolution of salient object detection methods in the deep learn-
ing era. They delve into various deep learning architectures, including a Bottom-up/top-down network that 
refines rough saliency maps in the feed-forward pass by progressively incorporating spatial-detail-rich features 
from lower layers. Wang et al.56 proposed a method for salient object detection that merges multi-level pyramid 
attention mechanisms with salient edges to capture hierarchical features at varying scales and improve object 
boundary localization. Concurrently57, presented a model that infers salient objects from human fixations. This 
method involves the integration of human gaze data with deep learning techniques to predict saliency maps 
that closely align with human visual perception. Furthermore, Wang et al.58 proposed an iterative top-down and 
bottom-up inference network, demonstrating enhanced performance.

While deep-based methods have shown promising results in segmentation tasks, they often do not generate 
high-quality segmentations. These models face many challenges. One of the primary issues in salient object 
detection is handling complex scenes. This can make it difficult for CNN-based methods to detect the salient 
object accurately. Also, Salient objects can vary significantly in appearance, size, and shape, making it challenging 
to develop a universal saliency model that works well across all images and scenarios. Moreover, many CNN-
based methods may not generalize well to new or unseen images, particularly if the images differ significantly 
from the training data.

On another side, some methods have complex network architectures with huge parameters, which require 
significant computational resources and memory. Several proposed methods require careful tuning of hyper-
parameters or may be sensitive to changes in the training data, which could impact their generalization perfor-
mance. Also, CNNs can be difficult to interpret, making it challenging to understand why certain portions of 
the image are recognized as salient.
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Therefore, researchers have explored several approaches to improve the segmentation quality and refine the 
results. Some approaches used graphical models such as Conditional Random Field12,13 or region growing14,15. 
These methods typically rely on low-level color features and do not adequately utilize high-level semantic con-
text. Computational cost and memory constrain propagation-based approaches59 to refine the results of high-
resolution images.

In an effort to enhance the performance of deep learning, Qin et al.60 introduced BASNet, a boundary-aware 
salient object detection method, integrating the refinement module into the prediction module to capture detailed 
boundary information. Similarly, Zhao et al.61 contributed EGNet, an edge guidance network that effectively 
integrates edge information into the saliency prediction process. Particular layers are trained explicitly to obtain 
the edge map, which is subsequently fused with the remaining layers to facilitate saliency detection. Moreover, 
Wu et al.62 proposed a partial decoder network with cascaded stages, each refining the saliency map progres-
sively. Finally, Qin et al.63 presented U2-Net, a network that employs a nested U-structure equipped with skip 
connections, thereby enabling deeper and more robust saliency predictions.

Recently, there has been an increasing focus on developing separate refinement modules64,65 that can be 
holistically trained, enabling an end-to-end learning approach. They are typically used as the enhancement step 
after obtaining an initial segmentation, and their goal is to refine segmented objects. One challenge associated 
with refinement modules is that larger networks64 are more susceptible to overfitting, leading to poor generaliza-
tion performance. On the other hand, shallow refinement networks65 have limited capacity for improving the 
accuracy of boundaries.

The structure of this paper is as follows. Section "Methods" describes the proposed method for detecting 
saliency maps using a refined background dictionary and the saliency mask refinement. Section "Experimental 
results and discussion" provides details on the experimental results and discussion obtained, while Section 
"Conclusions" presents the conclusions drawn from this study.

Methods
The flowchart for the proposed system is shown in Fig. 1. The first step involves segmenting the image into visu-
ally cohesive regions and extracting the regional features from each region. In the second step, a refined back-
ground dictionary is generated by utilizing a measure that identifies the probability of the boundary regions being 
part of the background or the salient object. The third step involves estimating the saliency value independently 
for each region by computing the reconstruction errors of sparse and dense representations of the image regions 
using the refined background dictionary, which generates a saliency map. The saliency map is thresholded in the 
fourth step to produce an initial mask. Finally, the initial saliency mask is refined using the CascadePSP network 
to achieve an accurate and robust saliency image.

Pixel‑level image segmentation
In order to enhance the accuracy of saliency detection and increase processing efficiency, this study employs the 
Simple Linear Iterative Clustering (SLIC) algorithm66 for image segmentation and abstraction. This algorithm 
decomposes images into visually uniform regions known as superpixels that preserve edges. This approach 
achieves more robust saliency detection outcomes than saliency detection at the pixel level.

This study uses color as a visual feature to describe superpixels, given their crucial role in determining sali-
ency. Specifically, the color descriptor of each superpixel is obtained as the mean value of its RGB and CIE-Lab 
color space. This feature effectively eliminates slight noise within homogeneous regions. Since SLIC generates 
superpixels with fairly regular shapes, the centroid (x, y) , which refers to the spatial location and average position 
of all pixels that belong to the superpixel, is used as an additional feature.

Therefore, the feature vector f = [R,G,B, L, a, b, x, y] describes each superpixel. Subsequently, the image can 
be expressed as F = [f1, f2, . . . , fk] , where k denotes the superpixels number. The initial background dictionary 
is denoted as B = [b1, b2, . . . , bk′ ] , where k′ << k signifies the number of superpixels present on the image 
boundary.

Background dictionary refinement
This process aims to remove superpixels that are part of the salient object and are in contact with the image 
border from the background dictionary. As a result, the refined background dictionary only includes superpix-
els located on the image border that are not a part of the salient object. Zhu et al.8 introduced the concept of 
"background conductivity (BC)" for superpixels as the degree to which a superpixel is related and belongs to the 
image boundary. Thus, if a superpixel is strongly linked to the image’s border (gives a significant BC value), it 
is more likely to be a portion of the background. In contrast, a salient object is typically less associated with the 
image border, even if it is near it.

The object’s boundary conductivity is the ratio of its perimeter along the boundary of the image to its area. The 
area’s square root is used to achieve scale invariance, ensuring that the boundary conductivity remains consistent 
over various image patch scales. As a result, the formula for an object’s boundary conductivity ( BC) is as follows:

As a result, estimating the boundary conductivity for a superpixel requires calculating the length along the 
image boundary and the area of the homogeneous region that the superpixel relates to. The area is defined by 
the contribution of other superpixels to a specific one. If two superpixels are highly similar (i.e., located in a 
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homogeneous area), one superpixel introduces a unit area to another. The formula for calculating the area associ-
ated with a superpixel p is as follows:

where dapp
(

p, q
)

 is a metric that quantifies the Euclidean distance between the pair feature vectors of superpixels 
(

p, q
)

. Eq. (3) formulates a method for calculating the geodesic distance, dgeo
(
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)

 between a pair of superpixels 
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)

 , computed as the total weight of edges along the shortest route connecting them, with minimum cost. 
According to Eq. (2), if two superpixels are located in a homogeneous region, dgeo

(

p, q
)

 will be very small and 
tends to be zero and consequently (A(p, q) ≈ 1) . As a result, two superpixels contribute an area unit to each 
other. Experimental results8 show that σ = 10 . Similarly, the length associated with a superpixel p is calculated 
using Eq. (4) that measures the contribution of image boundary’s superpixels to superpixel p , where δ = 1 for 
superpixels located on the image boundary and zero otherwise, and dot ’.’ represent multiplication operation.

Once the background conductivity has been normalized, a threshold is chosen to eliminate superpixels with 
low background conductivity from the background B , in order to achieve a more precise background B∗ . An 
adaptive threshold (τ ) is estimated based on the input image using Eq. (5).

where BCBmax refers to the maximum background conductivity, and var(B) refers to the variance of the unrefined 
(initial) background dictionary B . The value of parameter K is experimentally set to 4.

Saliency measurement estimation
This study approaches saliency detection in images by estimating the reconstruction error of the superpixels using 
the background dictionary. It is assumed that a significant difference exists between the reconstruction errors of 
background and foreground superpixels when utilizing the same dictionary for representation. The feasibility of 
this approach rests upon the use of the optimal background dictionary. This leads to accurately identifying the 
salient regions by comparing the reconstruction errors of the background and foreground superpixels.

Two representations of the superpixel, as represented by a D-dimensional feature vector, are utilized to 
determine the significance of each superpixel, including dense and sparse representations. Dense appearance 
models provide a more general and comprehensive representation of the background dictionary, while sparse 
models create distinct and concise representations. However, dense appearance models are known to be more 
susceptible to noise and may not be as effective in identifying salient objects in cluttered scenes through recon-
struction errors. Conversely, sparse representation solutions are less consistent; sparse coefficients may differ 
among similar regions, leading to inconsistent saliency detection outcomes. This study uses complementary dense 
and sparse representations to model superpixels and assess their significance through the reconstruction error.

The process of computing saliency measures using the reconstruction errors of dense and sparse represen-
tation is illustrated in Fig. 2. The first step involves reconstructing all image superpixels utilizing the refined 
background dictionary. Once the reconstruction errors obtained have been normalized to the range of [0, 1], a 
propagation method is introduced to leverage the advantage of local contexts and enhance the outcomes. Finally, 
pixel-level saliency is determined by considering the reconstruction errors at multiscale superpixels.

Dense reconstruction
A superpixel is more probable to be classified as a segment of the foreground if its reconstruction error is greater 
than that similar to the background dictionary atoms. To compute the reconstruction error of each superpixel, 
A dense appearance model is created by implementing Principal Component Analysis (PCA) on the refined 
background dictionary. The PCA bases are formed by using the eigenvectors (VB∗) associated with the largest 
eigenvalues that are extracted from the covariance matrix of the refined background dictionary (B∗) . This enables 
the computation of the reconstruction coefficient (γi) for superpixel i by:

where 
(

fi
)

 is the feature descriptor of superpixel i , f  is the mean feature descriptor of all superpixels F . Then, 
dense reconstruction error can be calculated as:

These normalized reconstruction errors, which typically fall within the range of [0, 1], are directly propor-
tional to the saliency measures.
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In dense representations, data points are modeled as a multivariate Gaussian distribution in feature space. 
This approach can pose a challenge when attempting to capture multiple scattered patterns. Figure 3a,b shows 
an instance where some background superpixels exhibit large reconstruction errors. This can lead to imprecise 
saliency measures. On the other side, this representation successfully highlights the salient object despite the 
background suppression problems.

Dense-Error 
Reconstruction

Post-processing

Sparse-Error 
Reconstruction

Post-processing

Bayesian 
Integration

Background Dictionary 
Refinement

Unrefined 
Background 
Dictionary 

Refined 
Background 
Dictionary 

Figure 2.   Flowchart of the proposed saliency detection method. Left: visualization for background dictionary 
refinement (section "Background dictionary refinement"), Right: Visualization for Saliency Measurement 
Estimation (section "Saliency measurement estimation").

Figure 3.   (a) RGB image, (b) Dense Representation-Saliency Map, (c) Sparse Representation-Saliency map, (d) 
Integrated saliency map.
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Sparse representation
Sparse reconstruction of each superpixel is achieved by utilizing all superpixels in the refined background dic-
tionary as the bases to encode the superpixel i and calculate the sparse reconstruction error (ǫSi) as:

where, the sparse representation coefficient αi is given by:

As all superpixels in the refined background dictionary are considered as bases functions, sparse reconstruc-
tion errors are highly effective in suppressing the background, particularly in cluttered images, as demonstrated in 
Fig. 3c. It is noteworthy that sparse reconstruction errors are more robust in dealing with complex backgrounds. 
Therefore, dense, and sparse representations complement each other in measuring saliency.

The choice of the bases of the background dictionary has a substantial great influence on the resulting saliency 
values as they affect the reconstruction errors. Figure 4c,d shows the impact of using the refined background 
dictionary over the initial background dictionary Fig. 4a,b. A more reliable background dictionary that excludes 
the salient object’s segments on the image boundary can enhance saliency outcomes.

Saliency maps post‑processing and integration
This study presents a method for enhancing the accuracy of dense and sparse appearance models by smoothing 
reconstruction errors using context-aware error propagation. The method involves clustering k image super-
pixels into N  clusters via the K-means clustering method based on their D-dimensional feature vectors. The 
superpixels are sorted according to their reconstruction errors and sequentially processed within each cluster. 
The propagated error of a superpixel in cluster N is adjusted by considering its context, which includes other 
superpixels in the same cluster.

Two factors are considered when estimating the propagated reconstruction error: the weighted average of 
the reconstruction errors of all members in the same cluster and the initial reconstruction error. Considering a 
superpixel’s appearance-based local context, its reconstruction error can be more accurately estimated. The weight 
assigned to each superpixel’s context is determined by a Gaussian distribution that normalizes the similarity 
between the superpixel and other members of its cluster.

The reconstruction errors at multiple scales are integrated and refined using an object-biased Gaussian func-
tion to create a full-resolution saliency map. This allows for assigning saliency values to individual pixels instead 
of individual superpixels. To address the scale issue, the pixel-level reconstruction error is computed through the 
weighted mean of the multiscale propagated reconstruction errors; this weight is determined by the similarity 
between the pixel and its corresponding superpixel9.

Previous research has indicated that certain saliency detection datasets exhibit a center bias17. To account 
for this, recent approaches have incorporated a center prior in the form of a 2D-Gaussian model with the mean 
set to the image center’s coordinates67. However, this approach is not always effective, as the center of an image 
may not necessarily include the salient objects. Instead, an object-biased 2D-Gaussian distribution that uses the 
object center derived from pixels error as the mean of the Gaussian distribution is employed9.

The saliency values obtained from dense and sparse reconstruction errors complement each other. Bayesian 
inference is used to integrate these two measures effectively by allowing the two maps to serve as priors to each 
other to highlight salient objects uniformly (Fig. 3d).

Saliency mask initialization
To transform the saliency map into a more unified salient object detection segmentation (Fig. 5a–d), the saliency 
map is thresholded to produce an image mask (Fig. 5b). Then, this Mask is processed to remove very small objects 
that are about of size less than 10% of the maximum object size. After that, simple morphological operations are 
used to fill in the small holes. Finally, the generated Mask is used as the initial Mask (Fig. 5c) for the segmenta-
tion refinement stage to produce the refined Mask (Fig. 5d).

(8)ǫSi = �fi − B∗αi�
2
2.

(9)
min
αi

�fi − B∗αi�
2
2 + ��αi�1

Figure 4.   (b) Saliency map obtained using (a) the initial background dictionary (Green). (d) The proposed 
saliency map using the refined background dictionary (c).
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Saliency mask refinement
The CascadePSP refinement network proposed in11 is used to refine the initial Mask generated from saliency 
map detection. The CascadePSP approach begins with the initial Mask, which roughly identifies the object’s loca-
tion. The structure of CascadePSP is designed to generate a series of progressively refined segmentation masks, 
starting from this initial, coarse Mask. The network first predicts the general structure of the object using the 
early levels’ coarse outputs. These outputs are then used as inputs to the network’s later levels, allowing further 
refinement of the object’s details.

This network is based on a single refinement module (RM) that can be used in cascade form to achieve global 
and local refinements. The single refinement module (RM)11 shown in Fig. 6 uses an image with several incom-
plete segmentation masks at various scales as input. Using multiscale inputs to refine the segmentation allows the 
network to fuse the mask features from various scales and collect boundary and structure details. Therefore, the 
lower-resolution masks are bilinearly upscaled and concatenated with the RGB image used as the network’s input.

Figure 5.   (a) Original Image. (b) Threshold-Saliency Map. (c) Initial Mask of refinement stage. (d) Refined 
Mask.

Figure 6.   Single Refinement module structure refines segmentation by taking inputs from three levels of 
segmentation with different output strides. Skip-connections are denoted by red lines11.
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The stride 8-output feature vector is extracted from the input by PSPNet16 with ResNet-5068 as the backbone. 
Many errors related to contextual relationships and global information for different receptive fields motivate the 
author to use a suitable global-scene-level-prior to improve performance. So, the pyramid pooling module of 
sizes of (1, 2, 3, and 6), as in16, is used to tackle this issue. The model generates stride 1, 4, and 8 outputs covering 
finer and coarser structures.

It would be necessary to pass information across the network to tackle the problem of losing image details 
at deeper layers. As a result, skip connections are used to connect the backbone and the up-sampling block. 
The skip-connected features and the bilinearly up-sampled main branch features are concatenated and then 
processed by two ResNet blocks. A two-layer 1 × 1 convolution followed by a sigmoid function is used to obtain 
the segmentation output11.

Multiple loss functions are used to obtain optimal outcomes11. Since the coarse refinement ignores local 
features and concentrates on the global structure, the cross-entropy loss is applied to the coarse output (stride 
8). L1 + L2 loss is used for the finer output (stride 1), where the finest refinement seeks to use local features to 
achieve pixel-wise quality. For intermediate output (stride 4), the average of L1 + L2 loss and cross-entropy loss 
is used. Furthermore, L1 loss on the gradient of the finest output (stride 1) is applied to achieve more accurate 
boundary refinement. The gradient is easily estimated by a 3-kernel average filter followed by a Sobel operator69.

Experimental results and discussion
Datasets and evaluation measures
Three datasets are used to evaluate the proposed saliency map detection. They include the ASD dataset70, which 
is relatively simple and contains 1000 images. The other two datasets are more challenging. MASR10K28 includes 
10,000 images of low contrast, single and multiple objects with a complex background that includes reflections, 
motions, and shadows. ECSSD71 is the most challenging dataset, which includes 1000 images of a complex scene 
with multiple (1–4) objects in a more complicated background.

Multiple metrics are used to assess the performance of the proposed framework17–19. Since the mean absolute 
error (MAE) score indicates the closeness of the saliency map to ground truth, it is a useful tool for evaluating 
object segmentation tasks. MAE is considered the average per-pixel error and is given by:

where W and H represent the width and height, respectively, of ground truth G and saliency map S.
Moreover, The ROC curve is a graph that displays how well a classification model performs across all classi-

fication thresholds. Therefore, the (AUC) area in two dimensions beneath the complete ROC curve is calculated 
to quantitative this measure.

In the same context, The Precision-Recall (PR) curve for the entire dataset is developed by averaging the 
PR curves over images containing the dataset. The PR curve was employed to assess the similarity between the 
binary masks generated from the saliency map (at various threshold levels within the range of T ∈ [0, 255]) and 
the ground truth. The F1-Measure was utilized as a harmonic mean of these two performance indicators to 
integrate precision and recall into a single metric. F1-Measure is given by:

Also, to emphasize precision over recall, Fβ-Measure72 is used as that is the weighted harmonic mean for 
precision and recall and given by:

where β2 = 0.3 , as recommended in28.
As the S-measure73 considers both the region-based similarity Sr and the object-aware structure similarity So 

between the saliency map and the ground truth, it is comprehensively used to assess the accuracy and consistency 
of saliency maps. S-measure calculates as follows:

where ∝ set to 0.5 as in73.
The E-measure74, also known as the Enhanced-alignment measure, is a metric that combines global image-

level statistics and local pixel-matching information. So, E-measure is used to evaluate saliency detection per-
formance comprehensively.

Comparison with traditional saliency detection methods
Proposed saliency detection (without mask refinement)
Quantitative comparison was conducted between the proposed Saliency map (without Mask Refinement) and 
the traditional seventeen state-of-the-art techniques, including FES75, GR76, MC77, SeR78, SIM79, SR20, SWD80, 
DSR9, SMD81, HLR82, Method83, SOD_TSWA84, RNCw34, Methods proposed in35,36, NFM37, and43. The visual 
results and some of the evaluation metrics are unavailable for some techniques. The performance of the proposed 
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saliency detection is compared with at least nine competing methods in terms of MAE, F1-measure, Fβ-measure, 
S-measure, E-measure, and AUC, as illustrated in Tables 1, 2, and 3.  

The proposed saliency detection method outperforms competing approaches in almost all measures, accord-
ing to Table 1 on the ASD dataset. It achieves excellent results, ranking first in measures such as MAE, F1-meas-
ure, S-measure, and AUC, and second in terms of Fβ-measure and E-measure.

When comparing with competing approaches on the complex scenes dataset (ECSSD), the proposed saliency 
detection performs the best in terms of F1-measure and third best in Fβ-measure, E-measure, S-measure, and 
AUC, as shown in Table 2.

On MSRA10K (Table 3), the largest dataset, the proposed saliency detection achieves the highest F1-measure 
and AUC score performance. The proposed method ranks second among the competing approaches in the 
Fβ-measure and S-measure while achieving comparable results for other measures. These findings indicate that 
the proposed saliency detection method is among the top three techniques across the three datasets.

Furthermore, the performance of the proposed saliency detection method was evaluated using the precision-
recall (PR) curve, as depicted in Fig. 7a–c; the results indicate that the proposed method performed favorably 
and ranked among the three leading techniques.

Figure 8a–k presents visual comparisons between the saliency maps produced by the proposed method 
(Fig. 8k) and those generated by traditional state-of-the-art techniques (Fig. 8c–j). The proposed method dem-
onstrates superior performance compared to the traditional techniques in detecting the near-boundary salient 
objects, where the increased ability to highlight the salient objects uniformly suppresses the background effec-
tively and produces favorable visual outcomes for multiple objects with low contrast. Also, Fig. 8c–j illustrates 
that some traditional methods exhibit markedly inferior performance compared to the proposed method. In 
contrast, others are primarily designed for object localization, not for accurate detection.

Mask refinement
Tables 1, 2, and 3 give a fair comparison between two binary (initial and refined) Masks. In addition to MAE, 
F1-Measure, Fβ-measure, S-measure, E-measure, and AUC; The intersection-over-union (IOU) (Table 4) is used 
to evaluate the two Masks and how these masks are close to the ground truth. All evaluation measures demon-
strate the preference for the refined Mask over the initial one and the original saliency map over the three datasets. 
As shown in Table 4, the refined Mask significantly improves IOU (at least 5%-IOU more than the initial Mask).

Comparing the refined Mask to the initial Mask, the improvement margin is between 1.43% for MAE and 
6.6% for IOU. On the other hand, the refined Mask improved the saliency map with a margin between 0.75% for 
the E-measure and 15.19% for the F1-measure. At the same time, the AUC of the refined Mask is less than that 
of the saliency map. This issue is because the saliency map has more gray levels than the refined Mask, which 
appears as a binary image. Compared to traditional methods (Tables 1, 2, and 3), these findings indicate that the 
refined Mask is among the top two techniques across the three datasets (The top one for the most challenging 
dataset, ECSSD, for almost measures). Tables 5 and 6 show the percentage of images in each dataset with MAE 
less than 10% and IOU greater than 90%, respectively.

Table 1.   Methods comparison on the ASD Dataset. The best performance among the traditional saliency 
detection by bold.

Method MAE F1-Measure Fβ-measure E-measure S-Measure AUC​

Traditional saliency detection

 FES75 0.165 0.411 0.684 0.833 0.633 0.928

 GR76 0.161 0.520 0.848 0.887 0.806 0.977

 MC77 0.093 0.648 0.895 0.937 0.858 0.980

 SeR78 0.312 0.330 0.430 0.652 0.565 0.819

 SIM79 0.402 0.263 0.199 0.421 0.483 0.790

 SR20 0.241 0.275 0.459 0.731 0.543 0.794

 SWD80 0.266 0.345 0.604 0.737 0.656 0.924

 DSR9 0.080 0.715 0.847 0.916 0.854 0.979
35 – – – – – 0.924

Proposed saliency method

 Without mask  refinement 0.074 0.763 0.851 0.916 0.861 0.981

 Initial mask 0.059 0.806 0.823 0.905 0.848 0.915

 Refined mask 0.045 0.851 0.866 0.924 0.885 0.936

Deep-learning saliency method

 BASNet60 0.033 0.902 0.903 0.951 0.924 –

 EGNet61 0.032 0.906 0.898 0.955 0.926 –

 CPD62 0.033 0.902 0.896 0.952 0.923 –

 U2NET63 0.030 0.909 0.909 0.955 0.931 –
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Figure 9 demonstrates a visual preference for the refined Mask (Fig. 9e) over the saliency map (Fig. 9c) and 
the initial Mask (Fig. 9d) to segment the multiple salient objects, low object-background contrast, and near 
boundary objects. Also, Fig. 9c shows the advantage of refining the background dictionary over DSR9 using the 
background dictionary directly without refining it (Fig. 9b).

Figure 10 shows two sources of error due to Ground truth deficiency. The first source of error is that the 
ground truth includes only a part of the object rather than the entire object. This appears in Fig. 10, first and 
second rows. The second source is reflections and shadows of objects, where some Ground truth images con-
sider reflections as salient objects, and others don’t consider reflections as salient objects. Figure 10, the third 
row shows the second error source. Figure 11 shows more results for different sizes and number of objects, and 
low-contrast images in RGB-refined saliency mask pairs.

Comparison with deep learning‑based methods
Furthermore, the effectiveness of the refined Mask (proposed method) is evaluated against recent deep-learning 
approaches such as54, KSR55, BASNet60, EGNet61, CPD62, U2Net63, Method in85, PerGAN86, and GSCINet87. 
Figure 8 visually compares the proposed refined Mask (Fig. 8l) and deep-learning techniques (Fig. 8m–p). The 
proposed refined Mask produces outcomes comparable to those of deep-learning techniques.

Table 2.   Methods Comparison on the ECSSD Dataset. The best performance among the traditional saliency 
detection by bold.

Method MAE F1-Measure Fβ-measure E-measure S-Measure AUC​

Traditional saliency detection

 FES75 0.212 0.333 0.598 0.740 0.560 0.873

 GR76 0.284 0.351 0.512 0.626 0.618 0.876

 MC77 0.202 0.455 0.699 0.788 0.693 0.926

 SeR78 0.404 0.274 0.246 0.482 0.458 0.690

 SIM79 0.433 0.266 0.134 0.350 0.453 0.729

 SR20 0.311 0.244 0.366 0.637 0.488 0.708

 SWD80 0.318 0.327 0.499 0..632 0.598 0.871

 DSR9 0.171 0.514 0.689 0.787 0.685 0.914

 SMD81 0.227 – 0.517 – – 0.775

 HLR82 0.176 – 0.545 – – 0.820
83 0.262 – 0.572 0.688 0.583 –

 SOD_TSWA84 0.313 – 0.307 – – –

 RNCw34 0.173 – – – 0.669 –

 35 – – – – – 0.799

 36 0.200 – – – 0.728 0.811

 NFM[ 37 0.157 – 0.514 – 0.705 0.842

 43 0.168 – – – 0.763 –

Proposed saliency method

 Without mask refinement 0.173 0.516 0.673 0.780 0.680 0.909

 Initial mask 0.155 0.614 0.660 0.769 0.688 0.786

 Refined mask 0.131 0.667 0.715 0.797 0.737 0.820

Deep-learning saliency method

 54 0.162 – – – 0.719 0.802

 KSR55 0.134 0.640 0.644 0.771 0.733 0.824

 BASNet60 0.037 0.879 0.904 0.921 0.916 –

 EGNet61 0.037 0.92 0.903 0.927 0.925 –

 CPD62 0.037 0.917 0.898 0.925 0.918 –

 U2NET63 0.033 0.892 0.91 0.924 0.928 –

 85 0.060 – 0.882 0.907 0.869 –

 PerGAN86 0.052 – 0.878 – – –

 GSCINet87 0.034 – 0.911 0.953 – –



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11076  | https://doi.org/10.1038/s41598-024-61105-3

www.nature.com/scientificreports/

As shown in Tables 1, 2, and 3, for ASD and MSRA10K datasets, the proposed refined Mask gives comparable 
and close results to deep learning methods. On the other hand, for the ECSSD dataset, the proposed refined 
Mask doesn’t achieve the good results of deep-learning methods. Despite this, the results demonstrate notably 
better outcomes for the proposed method over some deep learning methods, specifically54 and KSR55. On the 
ECSSD dataset, the proposed method yields MAE values that are 3.1% and 0.3% lower than those obtained by54 
and KSR55, respectively. For the MSRA10K dataset, the proposed method gives a 1.8% lower MAE value than 
the54 method.

Some deep-learning models for saliency detection may fail to preserve the object boundary and fine details 
due to network encoder-decoder architecture and the use of loss functions that don’t consider the object edges 
and boundary. Also, these models introduce some inaccuracies related to scene interpretation, as the same object 
may be salient in some scenes and not salient in others. Moreover, deep-learning training is a highly computa-
tional step, needs high resources, is training-data dependent, and is time-consuming.

Therefore, incorporating the pre-trained CascadePSP, primarily designed for refining segmentation, into the 
background-priors saliency detection proves advantageous. This integration enhances the saliency mask refine-
ment and preserves object boundaries by incorporating the Sobel operator into the loss function, eliminating the 
need to train complex networks. This encourages the adoption of hybrid models that leverage both pre-trained 
networks and background priors for the purpose of saliency detection.

Conclusions
This paper presents a robust and effective method for detecting saliency within images. The proposed approach 
involves first refining the background dictionary to exclude salient object regions from the dictionary. Secondly, 
the dense and sparse representation reconstruction errors based on this dictionary are utilized as saliency values. 
Then, the generated saliency maps are post-processed and integrated to obtain the final saliency map. Finally, the 
salient detection mask is refined using the CascadePSP network. The experimental results demonstrate the supe-
rior performance of the proposed system compared to other methods, particularly in detecting near-boundary 
salient objects. The salient objects are uniformly highlighted, and the background is effectively suppressed. The 
results show the significant contribution of the refinement step using the CascadePSP network towards the 
accuracy and robustness of the saliency detection. In future studies, we will investigate the recent deep learning 
network to extract salient objects directly.

Table 3.   Methods Comparison on the MSRA10K Dataset. The best performance among the traditional 
saliency detection by bold.

Method MAE F1-Measure Fβ-measure E-measure S-Measure AUC​

Traditional saliency detection

 FES75 0.185 0.388 0.687 0.805 0.600 0.908

 GR76 0.198 0.485 0.745 0.789 0.744 0.955

 MC77 0.145 0.576 0.836 0.879 0.785 0.955

 SeR78 0.310 0.352 0.429 0.630 0.571 0.809

 SIM79 0.388 0.293 0.229 0.431 0.507 0.800

 SR20 0.249 0.296 0.490 0.720 0.546 0.805

 SWD80 0.267 0.367 0.610 0.713 0.662 0.912

 DSR9 0.121 0.656 0.807 0.870 0.781 0.954

 SMD81 0.104 – 0.704 – – 0.847

 HLR82 0.104 – 0.705 – 0.847 0.854

 SOD_TSWA84 0.279 – 0.324 – – –

 36 0.098 – – – 0.841 0.879

 NFM37 0.106 – 0.765 – 0.848 0.937

 43 0.122 – – – 0.837 –

Proposed saliency method

 Without mask refinement 0.114 0.678 0.810 0.875 0.791 0.958

 Initial mask 0.090 0.760 0.791 0.871 0.801 0.868

 Refined mask 0.074 0.801 0.832 0.889 0.838 0.891

Deep-learning saliency method

 54 0.092 – – – 0.827 0.843

 BASNet60 0.041 0.901 0.892 0.938 0.916 –

 EGNet61 0.045 0.906 0.878 0.935 0.909 –

 CPD62 0.045 0.894 0.878 0.934 0.907 –

 U2NET63 0.041 0.901 0.892 0.938 0.916 –
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Figure 7.   Precision-Recall curves for (a) ASD, (b) ECSSD, and (c) MSRA10K datasets.
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Figure 8.   Visual comparison of the proposed Saliency maps against the state-of-the-art approaches. (a) 
Original image, (b) Ground truth, (c) FES75, (d) GR76, (e) MC77, (f) SeR78, (g) SIM79, (h) SR20, (i) SWD80, (j) 
DSR9, (k) The Proposed Saliency Method (Without Mask Refinement), (l) The Proposed Refined Mask, (m) 
BASNet60, (n) EGNet61, (o) CPD62, and (p) U2Net63.

Table 4.   Intersection-over-union (IOU) for Initial Mask versus Refined Mask.

ASD ECSSD MSRA10K

Initial mask 0.767 0.541 0.699

Refined mask 0.822 0.607 0.754

Table 5.   Percentage of images with IOU greater than a certain value.

IOU ASD ECSSD MSRA10K

 > 0.9 53.90% 14.51% 33.79%

 > MEAN IOU 69.10% 52.45% 59.71%

Table 6.   Percentage of images with MAE Smaller than a certain value.

MAE ASD ECSSD MSRA10K

 < 0.1 85.70% 50.05% 73.97%

 < MEAN MAE 73.30% 60.16% 65.89%
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Figure 9.   (a) Original image. (b) Saliency Map (using background dictionary directly without refining it). (c) 
Proposed Saliency Map (using refined background dictionary). (d) Initial Mask. (e) Refined Mask. (f) Ground 
truth.

Figure 10.   (a–d) Original Images. (b–e) highlighted salient object by Ground truth Mask. (c–f) highlighted 
salient object by refined Mask.
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Data availability
The data generated and analyzed during the current study are available from the corresponding author on rea-
sonable request. The ASD dataset is available online at https://​ivrlw​ww.​epfl.​ch/​suppl​ement​ary_​mater​ial/​RK_​
CVPR09/. The ECSSD dataset is available online at http://​www.​cse.​cuhk.​edu.​hk/​leojia/​proje​cts/​hsali​ency/​datas​
et.​html. The MASR10K dataset is available online at https://​mmche​ng.​net/​msra1​0k/.
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