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Enhancing cervical cancer 
detection and robust classification 
through a fusion of deep learning 
models
Sandeep Kumar Mathivanan 1, Divya Francis 2, Saravanan Srinivasan 3, Vaibhav Khatavkar 4, 
Karthikeyan P 5 & Mohd Asif Shah 6,7*

Cervical cancer, the second most prevalent cancer affecting women, arises from abnormal cell 
growth in the cervix, a crucial anatomical structure within the uterus. The significance of early 
detection cannot be overstated, prompting the use of various screening methods such as Pap smears, 
colposcopy, and Human Papillomavirus (HPV) testing to identify potential risks and initiate timely 
intervention. These screening procedures encompass visual inspections, Pap smears, colposcopies, 
biopsies, and HPV-DNA testing, each demanding the specialized knowledge and skills of experienced 
physicians and pathologists due to the inherently subjective nature of cancer diagnosis. In response 
to the imperative for efficient and intelligent screening, this article introduces a groundbreaking 
methodology that leverages pre-trained deep neural network models, including Alexnet, 
Resnet-101, Resnet-152, and InceptionV3, for feature extraction. The fine-tuning of these models is 
accompanied by the integration of diverse machine learning algorithms, with ResNet152 showcasing 
exceptional performance, achieving an impressive accuracy rate of 98.08%. It is noteworthy that the 
SIPaKMeD dataset, publicly accessible and utilized in this study, contributes to the transparency 
and reproducibility of our findings. The proposed hybrid methodology combines aspects of DL and 
ML for cervical cancer classification. Most intricate and complicated features from images can be 
extracted through DL. Further various ML algorithms can be implemented on extracted features. This 
innovative approach not only holds promise for significantly improving cervical cancer detection but 
also underscores the transformative potential of intelligent automation within the realm of medical 
diagnostics, paving the way for more accurate and timely interventions.
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Cervical cancer, a prevalent malignancy significantly affecting women, presents significant health challenges, 
particularly in underdeveloped nations with high morbidity and mortality  rates1. In countries like India, cervical 
cancer constitutes approximately 6–29% of all female cancer diagnoses, primarily focusing on squamous cells. 
The disease classifies into three stages: CIN1, CIN2, and CIN3, representing mild, moderate, and severe stages, 
 respectively2. Initiated by Human Papillomavirus (HPV), specifically high-risk strains, cervical cancer involves 
aberrant transformations in cervix cells, leading to the synthesis of E6 and E7  proteins3. These proteins, influenc-
ing tumor suppressor genes, play a pivotal role in cancer initiation. In the subjective field of cancer diagnosis, 
heavily reliant on pathologists and gynaecologists, artificial intelligence, particularly deep learning (DL), has 
streamlined the diagnostic  process4. DL automates intricate feature extraction, excelling at recognizing inher-
ent traits within images and enhancing  performance3. As a favoured approach for cancer categorization, DL 
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methodologies revolutionize image processing by eliminating the need for explicit feature  extraction5. In cervical 
cancer diagnosis, tests like HPV testing, PAP testing, colposcopy, and biopsy are crucial, with AI increasingly 
playing a prominent role in prognosis and  diagnostics6. DL’s ability to automatically classify images by learning 
high-level characteristics empowers pathologists in the challenging task of cancer diagnosis. Prevention and 
screening programs, encompassing various tests, are pivotal components in the ongoing fight against cervical 
 cancer7.

While PAP smear image screening remains a primary method for addressing cervical cancer, it presents 
challenges. It demands a higher volume of microscopic examinations for both cancer and noncancer cases, 
is time-intensive, and necessitates the expertise of trained  professionals8. Additionally, there exists a risk of 
overlooking positive cases when employing conventional screening techniques. Both PAP smears and HPV 
tests, despite their expense, offer limited sensitivity in cancer detection. Colposcopy screening serves as a vital 
complement to address the limitations of PAP smear images and HPV  tests9. Early detection of cervical and 
other cancers becomes more feasible, even in the absence of discernible signs and symptoms. Successful screen-
ing programs hold the potential to prevent cervical cancer fatalities, ultimately reducing disease burden and 
suffering. Colposcopy, a widely employed surgical technique, plays a crucial role in cervical cancer  screening10. 
Swift identification and categorization of this cancer type can significantly enhance the patient’s overall clinical 
management. Numerous research publications have explored diverse methodologies within digital colposcopy to 
extract valuable insights from  images11. The overarching aim of these studies is to equip healthcare practitioners 
with valuable resources during colposcopy examinations, catering to their varying levels of expertise. Previous 
research in diagnosis has harnessed computer-aided systems for a myriad of tasks, encompassing image qual-
ity enhancement and assessment, regional segmentation, image recognition, identification of unstable regions 
and patterns, classification of transition zone types (TZ), and cancer risk assessment. Computer-aided design 
(CAD) tools play a pivotal role in enhancing the quality of cervical colposcopy images, segmenting regions of 
concern, and pinpointing specific  anomalies12. These strategies prove invaluable to physicians in their diagnostic 
processes, although they require a solid foundation of experience and skill to establish precise diagnoses. Detect-
ing diseased areas, such as potential neoplasms, during a colposcopy examination assumes critical importance. 
Noteworthy examples of these abnormal regions include acetowhite areas, aberrant vascularization, mosaic 
patterns, and punctate  lesions13.

Our proposed approach skilfully combines the power of DL with traditional machine-learning (ML) methods. 
We extract features by carefully collecting activation values from deep neural networks. Then, we use a different 
type of classifiers, such as Simple Logistic, Principal Component Analysis, and Random Tree techniques, to make 
accurate classifications. In our work with the SIPaKMeD dataset, we take a comprehensive approach, as shown 
in Fig. 1, to provide a clear overview of our system. We use DL techniques for feature extraction and employ a 
wide range of ML methods for classification. We thoroughly tested our system on the SIPaKMeD dataset, using 
a range of pre-trained models like Alexnet, Resnet-101, Resnet-152, and InceptionV3 for feature extraction. Our 

Figure 1.  Sample normal and abnormal images from dataset.
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innovative approach consistently outperforms other models, achieving higher accuracy with the Simple Logistic 
model on the testing set. In this article, we introduce a hybrid methodology that combines DL and ML elements, 
presenting a comprehensive comparison of different pre-trained DL models. This research sheds light on their 
effectiveness in addressing cervical cancer classification challenges.

The paper is structured as follows: section “Introduction” provides a concise overview of key concepts. Sec-
tion “Related work” delves into existing research on ML and DL methods in cervical cancer. Section “Materials 
and methods” offers a detailed explanation of our novel approach. Section “Experimental results and discussion” 
outlines the datasets used. Section “Conclusion” discusses the outcomes of our experiments. Conclusion provides 
a summary of the paper’s key findings and insights.

Related work
The author introduced two deep learning convolutional neural network (CNN) architectures, namely the VGG19 
(TL) model and CYENET, for the purpose of cervical cancer detection using colposcopy images. The VGG19 
model is utilized as a transfer learning component within our CNN architecture. Our efforts in automatic cervi-
cal cancer classification through colposcopy images have culminated in the creation of a novel model known as 
the Colposcopy Ensemble Network, or CYENET. We have evaluated the predictive performance of this model, 
estimating its accuracy, specificity, and sensitivity. Specifically, the VGG19 (TL) model achieves a commendable 
73.3% success rate in classifying the data, yielding satisfactory results overall. Furthermore, the VGG19 model, in 
the transfer learning context, exhibits a moderate kappa score for classification tasks. Our experimental findings 
underscore the excellence of the proposed CYENET model, which demonstrates remarkable sensitivity, specific-
ity, and high kappa values, with percentages of 92.4%, 96.2%, and 88%, respectively. These results highlight the 
efficacy of our approach in cervical cancer detection using colposcopy  images14. The author conducted a cervical 
cell categorization study using the publicly available SIPaKMeD dataset, which contains five cell classifications: 
superficial-intermediate, parabasal, koilocytotic, metaplastic, and dyskeratotic. The study employed a CNN to 
distinguish between healthy cervical cells, cells with precancerous abnormalities, and benign cells. Following the 
segmentation of Pap smear images, cervical cells in the resulting enhanced images were analyzed using a deep 
CNN with four convolutional layers and obtained an accuracy rate of 91.13%15.

The aim of author research was to leverage deep learning techniques to establish an integrated framework for 
automated cervix type classification and cervical cancer detection. To achieve this, we collected a comprehensive 
dataset consisting of 4005 colposcopy photos and 915 histopathology images from diverse clinical sources and 
publicly available databases. To enhance our approach, we developed a streamlined MobileNetv2-YOLOv3 model, 
which was trained and validated to identify the transformation region within cervix images. This region served 
as the Region of Interest (ROI) for subsequent classification. The ROI extraction process exhibited exceptional 
performance, with a mean average accuracy (mAP) of 99.88%. Furthermore, cervix type and cervical cancer clas-
sification tests achieved high accuracy rates, with scores of 96.84% and 94.50%, respectively. These results demon-
strate the effectiveness of the approach in automating cervix type categorization and cervical cancer  detection16. 
When LBCs and biopsies were initially tested using a modified general primer for HPV PCR, any samples that 
were found to be HPV-negative underwent subsequent whole genome sequencing. Out of the 1052 pre-CIN3+ 
LBC samples, HPV was detected in an impressive 97.0% (1020 samples) using the Cobas 4800 assay. Additionally, 
nine samples revealed HPV strains that were not specifically covered by the Cobas 4800 test. Remarkably, only 4 
out of the 1052 samples (0.4%) showed no presence of HPV. In contrast, 91.6% of CIN3+ patients had previously 
tested positive for HPV using cytology. This underscores the high sensitivity of the standard HPV screening 
test within the context of the actual screening program, where it demonstrated an impressive sensitivity rate of 
97.0%17. Author conducted a comprehensive study to assess the effectiveness of concurrent visual inspection with 
dilute acetic acid (VIA) or mobile colposcopy when compared to standalone high-risk human papillomavirus 
(hr-HPV) DNA testing (utilizing platforms like careHPV, GeneXpert, AmpFire, or MA-6000) in a real-world, 
resource-constrained setting. Additionally, author investigated the rate at which participants were subsequently 
lost to follow-up. The ’positivity’ rates for EVA and VIA were 8.6% (95% CI, 6.7–10.6) and 2.1% (95% CI, 1.6–2.5), 
respectively, while the hr-HPV ‘positivity’ rate was 17.9% (95% CI, 16.7–19.0). It’s noteworthy that a substantial 
majority of women in the cohort tested negative for both hr-HPV DNA and visual inspection (3588 out of 4482, 
or 80.1%). A smaller percentage, 2.1% (95% CI, 1.7–2.6), tested hr-HPV-negative but positive on visual inspec-
tion. In total, 51 women in the group tested positive on both measures. Out of the 274 individuals who tested 
positive for hr-HPV in a standalone test, a significant proportion, 191 (69.5%), returned for at least one follow-
up  visit18. Author study explores four distinct subsets: breast vs. cervical cancer, internal vs. external validation, 
comparing mammography, ultrasound, cytology, and colposcopy, and assessing the performance of deep learning 
(DL) algorithms versus human doctors. Based on a comprehensive analysis of 35 studies that met the inclusion 
criteria for this systematic review, author found that the pooled sensitivity stands at 88% (95% CI 85–90%), the 
specificity at 84% (79–87%), and the Area Under the Curve (AUC) at an impressive 0.92 (0.90–0.94)19.

To diagnose cervical cancer effectively, this study explores a wide array of both online and offline machine 
learning algorithms using benchmarked datasets. Additionally, hybrid techniques are employed to address seg-
mentation challenges, and the feature count is optimized through the incorporation of tree classifiers. Remark-
ably, certain algorithms can attain accuracy, precision, recall, and F1 scores exceeding 100% as the training data 
percentage increases. While approaches such as logistic regression with L1 regularization can indeed achieve 
100% accuracy, it’s worth noting that they may come at a higher computational cost in terms of CPU time 
compared to other methods that can still deliver a commendable 99% accuracy with significantly lower com-
putational  demands20. The author used supervised machine learning to detect cervical cancer at an early stage. 
Author trained a machine learning model using a dataset from UCI that contains information related to cervi-
cal cancer. To assess how well our classifiers performed and how accurate they were, we trained them with and 
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without a feature selection process. The author employed various feature selection methods, including Relief 
rank, the wrapper approach, and LASSO regression. Impressively, when we used all the features, the XG Boost 
model achieved a high accuracy rate of 94.94%. Interestingly, in some cases, the feature selection techniques 
performed even  better21. Author proposed, deep learning plays a pivotal role in two distinct approaches. The 
first approach involves using pre-trained feature extractor models along with machine learning algorithms to 
classify cervical cancer images. In this case, ResNet-50 achieves the highest classification accuracy of 92.03%. 
The second approach employs transfer learning, where Google Net outperforms other models with a remarkable 
classification accuracy of 96.01%22. Author proposed a deep feature-fed MLP neural network and it incorporates 
four innovative ideas to adjust the number of neurons in its hidden layers. Additionally, the MLP is enhanced by 
inputting features extracted from ResNet-34, ResNet-50, and VGG-19 deep networks. The technique involves 
these two CNNs discarding their classification layers and passing their output through a flatten layer before 
inputting into the MLP. Both CNNs are trained with the Adam optimizer using relevant images to improve their 
performance. Remarkably, this proposed approach achieves outstanding results, with an accuracy of 99.23% for 
two classes and 97.65% for seven classes when evaluated on the Herlev benchmark  database23. Table 1, illustrates 
the detailed comparison information of various state-of-the-methods. In the realm of cervical cancer detection 
and classification, there exists a noticeable research gap that centers around the need for enhanced methodologies. 
Current approaches often face limitations in terms of accuracy and robustness. To address this gap, our proposed 
research aims to leverage the power of deep learning models and their fusion to create a more comprehensive 
and effective system. By amalgamating the strengths of different deep learning architectures, our research seeks 
to improve the precision and reliability of cervical cancer detection, ultimately contributing to early diagnosis 
and better patient outcomes. This exploration into the fusion of deep learning models represents a novel avenue 
in the pursuit of advancing cervical cancer detection and classification techniques.

Material and methods
Dataset description
The dataset we used for this study is accessible through this link: https:// www. cs. uoi. gr/ ~marina/ sipak med. html. 
It contains five different cell types, as detailed  in24. In our research, we’ve transformed this dataset into a two-class 
system with two categories: normal and abnormal. Specifically, the normal category includes superficial interme-
diate cells and parabasal cells, while the aberrant category covers koilocytotic, dyskeratotic, and metaplastic cell 
 types25. Within the normal category, we’ve further divided cells into two subcategories: superficial intermediate 
cells and parabasal cells. The essential dataset characteristics are summarized in Table 2. The SIPaKMeD dataset 
comprises a total of 4068 images, with 3254 allocated for training (making up 80% of the total), and 813 set 
aside for testing (accounting for 20% of the total). This dataset consists of two distinct classes: normal photos, 
totalling 1618, and aberrant images, amounting to 2450. Figure 2 provides visual examples of photographs from 
these two different categories. The existing literature extensively covers different screening methods for cervi-
cal cancer, such as Pap smear, colposcopy, and HPV testing, emphasizing the importance of early detection. 
However, a significant gap exists in automated screening systems using pap smear images. Traditional methods 
rely on expert interpretation, but integrating deep learning (DL) and machine learning (ML) offers potential 
for intelligent automation. Despite this potential, few studies focus on developing and evaluating such systems 
specifically for cervical cancer prediction using pap smear images. This research addresses this gap by proposing a 
methodology that utilizes pre-trained deep neural network models for feature extraction and applies various ML 

Table 1.  Detailed information of state-of-the-art methods.

Author Year Dataset Method Outcome
14 2021 Intel and Smartphone ODT VGG19, CYENET 92.4% of Se, 96.2% of Sp, and 88% of kappa
15 2023 SIPaKMeD CNN Obtained an accuracy of 91.13%
16 2022 Tercha General Hospital MobileNetv2-YOLOv3 Acc of 96.84%
17 2021 NCBI CNN Acc of 97.04%
18 2023 CHB-ERC CNN Acc of 95.0%
19 2022 SIPaKMeD Deep learning Se of 88%, Sp of 84%, AUC of 0.92
20 2023 DTU/Herlev Pap smear Stochastic average gradient Acc of 99%
21 2023 UCI repository Artificial neural network with XG Boost Acc of 94.94%
22 2023 Pap smear Google Net Acc of 96.01%
23 2023 ImageNet multi-layer perceptron Acc of 97.65%

Table 2.  SIPaKMeD dataset description.

Total images Training Testing Normal image Abnormal image

4068 3254 813 1618 2450

https://www.cs.uoi.gr/~marina/sipakmed.html
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algorithms for prediction. The study aims to contribute to advancing automated screening systems for cervical 
cancer, aiming to improve early detection and patient outcomes.

Methods
The schematic representation of our proposed system can be observed in Fig. 2. To facilitate the classification 
task for cervical cancer, we employ the SIPaKMeD dataset, which comprises images of pap smears. This dataset 
is categorized into two groups: abnormal and normal, with a distribution of 60% for training and 40% for testing. 
To extract relevant feature sets from well-established CNN architectures such as Alexnet, Resnet-101, Resnet-152, 
and InceptionV3, we initiate feature extraction from these pretrained CNN models. This step allows us to gather 
valuable information from the final layer activation values. For the task of classifying images into normal and 
abnormal categories, we leverage a variety of machine learning techniques, including Simple Logistic, Decision 
Tree, Random Forest, Naive Bayes, and Principal Component Analysis. Our approach is designed as a hybrid 
strategy, merging both DL and ML methodologies. The utilization of DL enables our model to capture intricate 
and complex features inherent in the data, while ML provides the necessary flexibility to handle diverse scenarios. 
By harnessing the last layer of pretrained models for feature extraction, we enable different machine learning 
algorithms to classify data based on these extracted attributes. This combination of DL and ML enhances our 
system’s ability to effectively categorize cervical cancer cases.

Pre‑trained neural networks
The pre-trained model has undergone training on a larger dataset, acquiring specific weights and biases that 
encapsulate the dataset’s distinctive characteristics. This model has been effectively employed for making pre-
dictions based on data. The transferability of learned features to other datasets is possible because certain fun-
damental abstract properties remain consistent across various types of images. By utilizing pre-trained models, 
significant time and effort savings are achieved, as a substantial portion of the feature extraction process has 
already been completed. Noteworthy examples of pre-trained models include Resnet152, ResNet101, Inceptionv3, 
and Alexnet, which are summarized in Table 3 for reference.

ResNet101. The image classification framework based on ResNet-101 consists of two main parts: feature 
extraction and feature classification. In Fig. 3, you can see how the feature extractor is built, comprising five 
main convolution modules with a total of one hundred convolution layers, an average pooling layer, and a fully 
connected  layer26. Once the features are extracted, they are used to train a classifier with a Softmax structure. 
Table 4 lists the convolution layers and their configurations in the ResNet-101 backbone. Using shortcut connec-
tions to increase data dimensions, the ResNet-101 model significantly improves performance by increasing con-
volutional depth. These shortcut connections also address the problem of network depth causing degradation 

Figure 2.  Proposed model cervical cancer classification.

Table 3.  Details of pre-trained models.

Year Architecture Input size Layer size No. of convolution No. of parameters

2016 ResNet101 224 × 224 101 72 60 million

2016 ResNet152 224 × 224 152 106 60 million

2015 InceptionV3 229 × 229 48 48 25 million

2012 AlexNet 256 × 256 7 5 62.3 million
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by enabling identity mapping. For most binary classification tasks, the loss function is applied using the logical 
cross-entropy function, as shown in Eq. (1).

where the ground truth value, %fl , and the predicted value, %ql , are respectively indicated as the lth training 
dataset’s ground truth and predicted values. The value of the loss, kb

(hl , ql)
 , is then backpropagated through the 

CNN model. At the same time, the CNN model parameters (weights and biases) are gradually optimised dur-
ing each epoch. This process continues until the loss is minimised and the CNN model converges to a solution.

ResNet152. The ResNet architecture is efficient, promoting the training of very deep neural networks (DNN) 
and enhancing accuracy. It addresses the challenge of accuracy degradation associated with increasing network 
depth. When depth is increased, accuracy often drops, which is a drawback. However, deeper networks can 
improve accuracy by avoiding the saturation of shallow networks, where errors remain  minimal27. The key idea 
here is that information from one layer should easily flow to the next with the help of identity mapping. ResNet 
tackles the degradation problem, along with the gradient vanishing issue, using residual blocks. These blocks 
handle the remaining computation while considering the input and output of the block. Figure 4, illustrates 
architecture of ResNet152. Table 5, illustrates the configuration of ResNet152.

InceptionV3. This advanced model has undergone training by one of the industry’s most renowned hardware 
specialists, leveraging an impressive repertoire of over 20 million distinct parameters. The model’s architecture 
is a harmonious blend of symmetrical and asymmetrical construction blocks, each meticulously crafted with 
its own unique set of convolutional, average, and maximum pooling layers, concatenation operations, and fully 
connected layers configurations. Furthermore, the model’s design incorporates an activation layer that takes 
advantage of batch normalization, a widely adopted technique in the field. This technique helps stabilize and 
accelerate the training process, making the model more robust and  efficient28. For the critical task of classifica-
tion, the model employs the Softmax method, a popular and well-established approach in machine learning. 
Softmax is instrumental in producing probability distributions over multiple classes, which enables the model to 
make informed and precise predictions. To provide a visual understanding of the Inception-V3 model’s intricate 
design, Fig. 5 serves as a diagrammatic representation, offering insights into the model’s underlying architec-
ture and the various components that make it a powerhouse in the realm of machine learning and artificial 
intelligence.

AlexNet. The field of machine learning, particularly in the domain of image processing, has witnessed a pro-
found impact thanks to the advent of Alexnet. As suggested in Ref.29, this influential model boasts a preconfig-
ured Convolutional Neural Network (CNN) with a total of eight distinct  layers29. Its remarkable performance in 
the 2012 ImageNet Large Scale Visual Recognition Challenge (LSVRC-2012) competition marked a watershed 
moment, as it clinched victory with a substantial lead over its competitors. The architectural blueprint of Alexnet 
bears some resemblance to Yann Lecun’s pioneering LeNet, highlighting its historical lineage and the evolution-
ary progress of convolutional neural networks.

(1)kb(hl , ql) = −fl log
(

ql
)

−
(

1− fl
)

log
(

1− ql
)

Figure 3.  ResNet101 architecture.

Table 4.  ResNet-101 configurations.

No. of layers Size of output Convolution2_x Convolution3_x Convolution4_x Convolution5_x Pooling layer

Size of output 112 × 112 × 64 56 × 56 × 56 28 × 28 × 128 14 × 14 × 256 7 × 7 × 512 1 × 1 × 512

No of filters 7 × 7, 64, /2 3 × 3, 64, /2 3 × 3, 128, /2 3 × 3, 256, /2 3 × 3, 512, /2 Avg
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Figure 6 provides an insightful visual representation of the holistic design of the Alexnet system. In the 
journey of data processing within Alexnet, input data traverse through an intricate sequence, comprising five 
convolution layers and three max-pooling layers, as vividly illustrated in Fig. 5. These layers play a pivotal role in 
feature extraction and hierarchical representation, which are vital aspects of image analysis and understanding. 
The culmination of AlexNet’s network journey is marked by the application of the SoftMax activation function 
in the final layer, enabling it to produce probabilistic class predictions. Along the way, the Rectified Linear Unit 
(ReLU) activation function is systematically employed across all the network’s convolution layers, providing a 
nonlinear transformation that enhances the network’s capacity to learn and extract features effectively. This com-
bination of architectural elements and activation functions has played a significant role in solidifying AlexNet’s 
position as a groundbreaking model in the domain of image processing and machine learning.

Simple logistic regression. Logistic regression serves as a powerful method for modelling the probability of a 
discrete outcome based on input variables, making the choice of input variables a pivotal aspect of this modelling 

Figure 4.  ResNet152 architecture.

Table 5.  ResNet-152 configurations.

No. of Layers Size of output Convolution2_x Convolution3_x Convolution4_x Convolution5_x Pooling layer

Size of output 112 × 112 × 64 56 × 56 × 128 28 × 28 × 256 14 × 14 × 512 7 × 7 × 1024 1 × 1 × 2048

No of filters 7 × 7, 64, /2 3 × 3, 128, /2 3 × 3, 256, /2 3 × 3, 512, /2 3 × 3, 1024, /2 Avg

Figure 5.  InceptionV3 architecture.
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process. The most common application of logistic regression involves modelling a binary outcome, which per-
tains to scenarios where the result can exclusively assume one of two possible values, such as true or false, yes 
or no, and the like. However, in situations where there are more than two discrete potential outcomes, multino-
mial logistic regression proves invaluable in capturing the complexity of the scenario. Logistic regression finds 
its primary utility in the realm of classification  problems30. It becomes particularly valuable when the task at 
hand involves determining which category a new sample best aligns with. This becomes especially pertinent 
when dealing with substantial datasets, where the need to classify or categorize data efficiently and accurately is 
paramount. One noteworthy domain where logistic regression finds widespread application is in cybersecurity, 
where classification challenges are ubiquitous. A pertinent example is the detection of cyberattacks. Here, logis-
tic regression plays a crucial role in identifying and categorizing potential threats, contributing significantly to 
bolstering the security of digital systems and networks.

Decision tree. In the realm of supervised learning algorithms, decision trees emerge as a highly versatile and 
powerful tool for both classification and regression tasks. They operate by constructing a tree-like structure, 
wherein internal nodes serve as decision points, branches represent the outcomes of attribute tests, and ter-
minal nodes store class labels. The construction of a decision tree is an iterative process, continually dividing 
the training data into subsets based on attribute values until certain stopping conditions, such as reaching the 
maximum tree depth or the minimum sample size required for further division, are met. To guide this division 
process, the Decision Tree algorithm relies on metrics like entropy or Gini impurity, which gauge the level of 
impurity or unpredictability within the data  subsets31. These metrics inform the algorithm’s choice of the most 
suitable attribute for data splitting during training, aiming to maximize information gain or minimize impurity. 
In essence, the central nodes of a decision tree represent the features, the branches encapsulate the decision 
rules, and the leaf nodes encapsulate the algorithm’s outcomes. This design accommodates both classification 
and regression challenges, making decision trees a flexible tool in supervised machine learning. One notable 
advantage of decision trees is their effectiveness in handling a wide range of problems. Moreover, their ability to 
be leveraged in ensembles, such as the Random Forest algorithm, enables the simultaneous training on multiple 
subsets of data, elevating their efficacy and robustness in real-world applications.

Random forest. A Random Forest is a powerful machine learning tool that handles both regression and clas-
sification tasks effectively. It works by combining the predictions of multiple decision trees to solve complex 
problems. Here’s how it works: The Random Forest algorithm builds a “forest” of decision trees using a tech-
nique called bagging. Bagging improves the precision and reliability of machine learning  ensembles32. The algo-
rithm then makes predictions by averaging the results from these trees, determining the final outcome. What 
makes the Random Forest special is its scalability. Unlike single decision trees, it can adapt to complex data and 
improves its accuracy as you add more trees to the “forest.” The Random Forest also helps prevent overfitting, 
making it a valuable tool for real-world applications with noisy and complex datasets. Moreover, it reduces the 
need for extensive fine-tuning, making it an appealing choice for practitioners seeking effective and dependable 
machine learning models.

Naïve Bayes. Naïve Bayes theorem forms the fundamental principle underlying the Naive Bayes algorithm. In 
this method, a key assumption is that there’s no interdependence among the feature pairs, resulting in two piv-
otal presumptions: feature independence and attribute equality. Naive Bayes classifiers are versatile, existing in 
three primary variants: Gaussian Naive Bayes, Bernoulli Naive Bayes, and Multinomial Naive  Bayes33. The choice 
of variant depends on the nature of the data being analyzed. For binary data, Bernoulli Naïve Bayes is employed, 

Figure 6.  AlexNet architecture.
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while count data finds its match in Multinomial Naïve Bayes, and continuous data is aptly handled by Gaussian 
Naïve Bayes. Equation (2) serves as a proof of Bayes theorem, underpinning the mathematical foundations of 
this approach.

Principal component analysis. Principal Component Analysis (PCA) serves as a powerful technique designed 
to mitigate the impact of correlations among variables through an orthogonal transformation. PCA finds wide-
spread use in both exploratory data analysis and machine learning for predictive modelling. In addition, PCA 
stands out as an unsupervised learning algorithm that offers a valuable approach for delving into the intricate 
relationships between variables. This method, also referred to as generic factor analysis, enables the discovery of 
the optimal line of fit through regression  analysis34. What sets PCA apart is its ability to reduce the dimensional-
ity of a dataset without prior knowledge of the target variables while preserving the most critical patterns and 
interdependencies among the variables. By doing so, PCA simplifies complex data, making it more amenable 
for various tasks, such as regression and classification. The result is a more streamlined subset of variables that 
encapsulates the essential essence of the data.

Experimental results and discussion
Feature extraction in this process relies on pre-trained models. Some notable examples of these models include 
ResNet101, ResNet152, InceptionV3, and AlexNet. For classification purposes, machine learning techniques 
like Simple Logistic, Decision Tree, Random Forest, Naive Bayes, and Principal Component Analysis (PCA) 
come into play. Among these models, the ResNet152 feature extraction method stands out for its exceptional 
performance, achieving the highest testing accuracy at 99.08%. When it comes to machine learning, the Simple 
Logistic model outperforms all the pre-trained models in terms of accuracy. It’s worth noting that there’s a slight 
but noticeable gap between training accuracy and testing accuracy for all the pre-trained models, with training 
accuracy consistently higher. This discrepancy underscores the complexities of classifying cells associated with 
cervical cancer.

Leveraging a variety of machine learning approaches proves significant, as it not only provides flexibility 
but also improves accuracy in tackling this challenging classification task. The subsequent sections will delve 
into the findings obtained using the suggested method, offering a comprehensive comparison of the employed 
pre-trained models in Table 6. While ResNet152 achieved the highest accuracy, it’s essential to highlight that the 
Simple Logistic Classifier, with the highest accuracy among all the pre-trained models, will be the focal point of 
this discussion. Additionally, Fig. 7 provides a visual comparative analysis of all the pre-trained models, revealing 
the performance of the Simple Logistic Classifier as the benchmark for reference.

The ResNet-101 model plays a pivotal role in feature extraction. It’s worth noting that a range of machine 
learning techniques, including Simple Logistic, Decision Tree, Random Forest, Naive Bayes, and Principal Com-
ponent Analysis, were applied to both the test and training datasets. For a comprehensive view of the results, 
Table 7 present the outcomes for the training and testing sets, respectively. When compared to other classifiers, 
the Random Forest stood out, achieving the highest accuracy (Acc) (98.62%), precision (Pr) (98.64%), recall 
(98.64%), and the lowest mean absolute error (0.062%) for the training dataset. On the other hand, the test 
dataset yielded the best results with simple logistic regression, which delivered an accuracy of 95.81%, precision 
of 94.41%, recall of 94.32%, and a root mean square of 0.225.

The ResNet-152 model helps extract features. Various machine learning techniques, like Simple Logistic, 
Decision Tree, Random Forest, Naive Bayes, and Principal Component Analysis, were used on both the test and 
training data. Table 8 show the results for the training and testing sets. Among the classifiers, Random Forest 
performed the best, with the highest accuracy (98.98%), precision (99.64%), recall (99.42%), and the lowest mean 
absolute error (0.053%) for the training data. In contrast, for the test data, simple logistic regression delivered the 
best results with an accuracy of 98.08%, precision of 95.41%, recall of 94.21%, and a root mean square of 0.22.

The Inceptionv3 model handles feature extraction, and we used several machine learning techniques like 
Simple Logistic, Decision Tree, Random Forest, Naive Bayes, and Principal Component Analysis on both the 
training and test datasets. Table 9 show the results for both training and testing. Among these methods, the 
Random Forest performed the best for training, with the highest accuracy (97.74%), precision (97.75%), recall 
(97.73%), and the lowest mean absolute error (0.068%). On the other hand, for the test data, simple logistic 

(2)Z(b|a) =
Z(b)Z(b)

Z(a)

Table 6.  Classification accuracy comparison of pre-trained models.

No. of classifiers ResNet101 ResNet152 InceptionV3 AlexNet

SLR 95.81 98.08 95.01 96.31

NB 90.09 94.29 89.29 90.59

RF 91.73 95.93 90.93 92.23

DT 86.65 90.85 85.85 87.15

PCA 92.02 95.22 91.22 92.52
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Figure 7.  Pretrained models accuracy (%) comparison.

Table 7.  Pre-trained ResNet101 training and testing phases. Significant values are in bold.

No. of classifiers

ResNet101—Training phase ResNet101—Testing phase

Precision (%) Recall (%) MAE RMSE Accuracy (%) Precision (%) Recall (%) MAE RMSE Accuracy (%)

SLR 95.81 95.92 0.1 0.206 95.74 94.41 94.32 0.113 0.225 95.81

NB 90.22 89.33 0.122 0.342 89.32 89.92 88.97 0.125 0.358 90.09

RF 98.64 98.62 0.062 0.14 98.62 90.54 90.53 0.198 0.298 91.73

DT 89.52 89.57 0.232 0.322 89.49 85.55 85.54 0.259 0.359 86.65

PCA 90.01 89.74 0.07 0.162 97.39 90.82 90.81 0.125 0.309 92.02

Table 8.  Pre-trained ResNet152 training and testing phases. Significant values are in bold.

No. of classifiers

ResNet152—Training phase ResNet152—Testing phase

Precision (%) Recall (%) MAE RMSE Accuracy (%) Precision (%) Recall (%) MAE RMSE Accuracy (%)

SLR 96.61 96.72 0.091 0.202 98.81 95.21 95.12 0.11 0.22 98.08

NB 91.02 90.13 0.113 0.338 90.13 90.72 89.77 0.122 0.353 94.29

RF 99.44 99.42 0.053 0.136 98.98 91.34 91.33 0.195 0.293 95.93

DT 90.32 90.37 0.223 0.318 90.3 86.35 86.34 0.256 0.354 90.85

PCA 90.81 90.54 0.061 0.158 98.2 91.62 91.61 0.122 0.304 95.22

Table 9.  Pre-trained InceptionV3 training and testing phases. Significant values are in bold.

No. of classifiers

InceptionV3—Training phase InceptionV3—Testing phase

Precision (%) Recall (%) MAE RMSE Accuracy (%) Precision (%) Recall (%) MAE RMSE Accuracy (%)

SLR 94.92 95.03 0.106 0.294 94.86 93.51 93.42 0.117 0.2349 95.01

NB 89.33 88.44 0.128 0.43 88.44 89.02 88.07 0.129 0.3679 89.29

RF 97.75 97.73 0.068 0.228 97.74 89.64 89.63 0.202 0.3079 90.93

DT 88.63 88.68 0.238 0.41 88.61 84.65 84.64 0.263 0.3689 85.85

PCA 89.12 88.85 0.076 0.25 96.51 89.92 89.91 0.129 0.3189 91.22
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regression delivered outstanding results with an accuracy of 98.08%, precision of 95.01%, recall of 93.42%, and 
a root mean square of 0.2349.

The task of feature extraction is managed by the AlexNet model, and we employed a range of machine learn-
ing techniques, such as Simple Logistic, Decision Tree, Random Forest, Naive Bayes, and Principal Component 
Analysis, on both the training and test datasets. Table 10 present the findings for both training and testing 
phases. Among these methodologies, the Random Forest excelled during training, achieving the highest levels 
of accuracy (99.12%), precision (98.83%), recall (98.81%), and the lowest mean absolute error (0.061%). Con-
versely, for the test data, simple logistic regression yielded remarkable results, attaining an accuracy of 96.31%, 
precision of 94.81%, recall of 94.72%, and a root mean square of 0.234. Figure 8, illustrates the confusion matrix 
of all four pre-trained models.

Table 11 illustrates a comprehensive comparison of classification accuracy between the proposed ResNet152 
model with SLR and several state-of-the-art models. The table presents a detailed breakdown of the perfor-
mance metrics, emphasizing the accuracy of these models in solving the specific task. The accuracy values are 
expressed as percentages, showcasing how effectively each model can correctly classify data points. The proposed 
ResNet152 with SLR stands out by achieving the highest classification accuracy of 98.08%. This remarkable result 

Table 10.  Pre-trained AlexNet training and testing phases.

No. of classifiers

AlexNet—Training phase AlexNet—Testing phase

Precision (%) Recall (%) MAE RMSE Accuracy (%) Precision (%) Recall (%) MAE RMSE Accuracy (%)

SLR 96 96.11 0.0998 0.204 96.24 94.81 94.72 0.1128 0.234 96.31

NB 90.41 89.52 0.1218 0.34 89.82 90.32 89.37 0.1248 0.357 90.59

RF 98.83 98.81 0.0618 0.138 99.12 90.94 90.93 0.1978 0.297 92.23

DT 89.71 89.76 0.2318 0.32 89.99 85.95 85.94 0.2588 0.358 87.15

PCA 90.2 89.93 0.0698 0.16 97.89 91.22 91.21 0.1248 0.308 92.52

Figure 8.  Confusion matrix for (a) ResNet101; (b) ResNet152; (c) InceptionV3; (d) AlexNet.
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demonstrates the effectiveness of this model in comparison to other state-of-the-art models. Figure 9 comple-
ments the insights from Table 11 by offering a visual representation of the accuracy comparison. This bar chart 
clearly illustrates how the proposed ResNet152 with SLR outperforms other existing models in terms of accuracy. 
Each bar in the chart represents a different model, with its height corresponding to its accuracy percentage. The 
striking difference in the height of the bar for the proposed model highlights its superior performance, with an 
accuracy of 98.08%. This figure serves as a powerful visualization of the comparison, making it easy for readers 
to grasp the extent of the proposed model’s excellence. Together, Table 11 and Fig. 9 provide a robust and eas-
ily interpretable analysis of the model comparison, emphasizing the outstanding performance of the proposed 
ResNet152 with SLR in the context of accuracy. These visual aids are essential in conveying the significance of 
the research findings to your readers and stakeholders.

Conclusion
Cervical cancer classification is a challenging task within the medical field. Interpreting and diagnosing cervical 
cancer have historically been a complex process for pathologists. However, advancements in technology have 
led to a shift in how this task is approached. Specifically, the integration of Deep Learning (DL) and Machine 
Learning (ML) algorithms has emerged as a powerful tool, enhancing the precision of cervical cancer classifica-
tion. Central to this progress is the use of pretrained models such as ResNet101, ResNet152, InceptionV3, and 
AlexNet. These models have been carefully fine-tuned through training on pap smear images, allowing them to 
effectively extract key features from the intricate world of Pap smear images. Our innovative approach, applied 
to the SIPaKMeD dataset, represents a pioneering method that combines the strengths of DL and ML in the field 
of cervical cancer classification. DL excels at extracting intricate features from images, providing a foundation 
for various ML algorithms to work with. This hybrid methodology holds promise for improving cervical cancer 
classification. The results obtained from our approach are indeed promising. For instance, ResNet101 achieved 
an accuracy of 95.81%. However, ResNet152 stands out as the leading model, achieving an impressive accuracy 
of 98.08%. Notably, these exceptional results were achieved using Simple Logistic classifiers, which outperformed 
other classification techniques. Furthermore, when Simple Logistic is combined with pretrained DL models, it 

Table 11.  Classification accuracy comparison of proposed and state-of-the-art models.

Author Model Accuracy (%)

Manal Darwish et al.35 Enhanced with shifted patch tokenization 91.20

Peng et al.36 VGG16 86.30

Shervan Fekri-Ershad et al.24 MLP + CNN 97.65

Gaurav  Kumawat22 ANN + 6 classifiers 94.94

Madhura et al.23 ResNet50 96.01

Shtwai Alsubai et al.15 Hybrid CNN 91.30

Bryar Shareef et al.37 ESTAN 97.0

Bryar Shareef et al.38 Hybrid-MT-ESTAN 82.7

Proposed model Pre-trained CNN models 98.08

Figure 9.  Graphical illustration of accuracy comparison of proposed and other models.
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reaffirms its effectiveness as the top-performing ML approach, highlighting the strength and efficiency of this 
combination in the context of cervical cancer classification. This not only confirms the potential of this model but 
also underscores the promising prospects of our hybrid DL-ML approach for advancing the field of cervical can-
cer diagnosis. In conclusion, these findings emphasize the transformative potential of our hybrid methodology. 
By skilfully combining DL and ML, we aim to contribute to the ongoing evolution of cervical cancer diagnosis, 
ultimately improving patient outcomes. Our results point toward a future where cervical cancer classification is 
more accurate, efficient, and accessible.

Data availability
The datasets used during the current study https:// www. cs. uoi. gr/ ~marina/ sipak med. html.
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