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Stellae‑123 gene expression 
signature improved risk 
stratification in taiwanese acute 
myeloid leukemia patients
Yu‑Hung Wang 1,10, Adrián Mosquera Orgueira 2,3,10, Chien‑Chin Lin 1,4*, Chi‑Yuan Yao 1,4,5, 
Min‑Yen Lo 1,5,6, Cheng‑Hong Tsai 1,7, Adolfo de la Fuente Burguera 8, Hsin‑An Hou 1, 
Wen‑Chien Chou 1,4 & Hwei‑Fang Tien 1,9*

The European Leukemia Net recommendations provide valuable guidance in treatment decisions of 
patients with acute myeloid leukemia (AML). However, the genetic complexity and heterogeneity 
of AML are not fully covered, notwithstanding that gene expression analysis is crucial in the risk 
stratification of AML. The Stellae‑123 score, an AI‑based model that captures gene expression 
patterns, has demonstrated robust survival predictions in AML patients across four western‑
population cohorts. This study aims to evaluate the applicability of Stellae‑123 in a Taiwanese cohort. 
The Stellae‑123 model was applied to 304 de novo AML patients diagnosed and treated at the 
National Taiwan University Hospital. We find that the pretrained (BeatAML‑based) model achieved 
c‑indexes of 0.631 and 0.632 for the prediction of overall survival (OS) and relapse‑free survival (RFS), 
respectively. Model retraining within our cohort further improve the cross‑validated c‑indexes to 0.667 
and 0.667 for OS and RFS prediction, respectively. Multivariable analysis identify both pretrained 
and retrained models as independent prognostic biomarkers. We further show that incorporating 
age, Stellae‑123, and ELN classification remarkably improves risk stratification, revealing c‑indices of 
0.73 and 0.728 for OS and RFS, respectively. In summary, the Stellae‑123 gene expression signature 
is a valuable prognostic tool for AML patients and model retraining can improve the accuracy and 
applicability of the model in different populations.

The European Leukemia Net (ELN)-2022 risk stratification system for acute myeloid leukemia (AML) provides 
valuable guidance in the management of adult AML  patients1. Nonetheless, by stratifying patients into three 
risk categories, the genetic complexity and heterogeneity of the disease are not fully covered by the ELN  system2. 
Rare or newly discovered mutations that could impact prognosis are not taken into account, and there is an 
unmet need for a dynamic assessment of changing disease status and treatment response within the  system3. 
Additionally, the system’s predictive accuracy may vary for individual patients due to its limited integration of 
clinical factors, such as those reported in a recent  research4, underscoring the necessity for further research and 
personalized approaches to optimize patient care in  AML5,6. Addressing these gaps requires ongoing research, 
real-world validation, and the integration of a more comprehensive understanding of AML.

Gene expression data provides an invaluable resource for risk stratifying AML patients. Transcriptomic 
changes are associated with mutations, cytogenetic abnormalities, and signaling pathway  alterations7. Gene 
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expression analysis has unveiled distinct gene expression patterns and their associations with prognostic factors, 
including biological age and molecular subtypes, allowing for improved risk stratification in AML  patients8–12.

Stellae-123, a machine learning model based on gene expression patterns, initially demonstrated precise 
and accurate personalized survival predictions in adult AML  patients13. This model originally included 123 
variables, encompassing the expression of 121 genes. Afterwards, a reduced version of Stellae-123 based on 69 
genes consistently demonstrated robust predictive power across various  cohorts14, achieving c-indexes of 0.64, 
0.65, and 0.60 for overall survival (OS) prediction in the BeatAML, AMLCG-2008, and TARGET AML cohorts, 
 respectively15–17. Stellae-123 effectively stratified patients with high-risk mutations, such as ASXL1, RUNX1, 
TP53 and U2AF1 mutations, into distinct prognostic groups. Essentially, these findings supported the utility of 
Stellae-123 as an additional prognostic tool in AML, complementing cytogenetic and mutational parameters by 
capturing transcriptomic changes arising from complex somatic events.

The primary objective of this study was to comprehensively validate and rigorously assess the prognostic value 
of the Stellae-123 gene expression signature in predicting OS and relapse-free survival (RFS) outcomes among 
a cohort of patients with de novo AML diagnosed and treated in a Medical Center in Taiwan. Furthermore, the 
study sought to investigate the potential advantages of recalibrating and retraining the predictive model utilizing 
the specific Taiwanese dataset, thereby accounting for inherent heterogeneity and aiming to enhance the accuracy 
and reliability of prognostic predictions in this distinct population.

Methods
Patients and treatment modalities
A total of 304 de novo AML patients diagnosed and treated at the National Taiwan University Hospital (NTUH) 
who had ever received standard induction with 7 + 3 chemotherapy (or 5 + 2 for elder fit patients)18,19 and had 
adequate bone marrow samples for DNA and RNA sequencing at diagnosis were included. AML was diagnosed 
according to the 2022 World Health Organization (WHO)  classification20 and The International Consensus 
Classification of Myeloid Neoplasms and Acute  Leukemias21. Patients with acute promyelocytic leukemia, 
AML with other precedent myeloid neoplasms, and therapy-related myeloid neoplasms were not included. In 
NTUH, patients who achieve first complete remission (CR) usually undergo consolidation therapy with two to 
four courses of high-dose cytarabine (2000 mg/m2 q12h, total eight doses) with or without an anthracycline 
(Idarubicin or Mitoxantrone)22, or bridged to allogeneic hematopoietic stem cell transplantation (allo-HSCT) if 
indicated and eligible. Clinical data including age at diagnosis, sex, hemogram, biochemistry, treatment regimen 
and response, allo-HSCT status, and survival were collected. The NTUH Research Ethics Committee approved 
the study (#201709072RINC). Informed consents were obtained in accordance with the Helsinki Declaration.

Cytogenetic study and molecular mutation analysis by targeted next‑generation sequencing 
(NGS)
Cytogenetic analysis was performed using bone marrow cells harvested within 3 days of unstimulated culture 
and metaphase chromosomes were banded via the trypsin-Giemsa banding technique. Results were categorized 
using the International System for Human Cytogenetic Nomenclature. Detailed methods have been previously 
 described23. Gene mutations were examined via targeted NGS, using the TruSight myeloid sequencing panel 
(Illumina, San Diego, CA, USA), which included 15 full exon genes and 39 oncogenic hotspot genes. HiSeq 
platform (Illumina, San Diego, CA, USA) was used for sequencing with a median reading depth of 12000x. 
Owing to suboptimal sequencing sensitivity, FLT3-ITD and CEBPA mutations were confirmed by polymerase 
chain reaction followed by Sanger  sequencing24,25.

Library preparation and RNA sequencing
In total, BM samples of 304 patients were submitted for RNA sequencing. The TruSeq Stranded mRNA Library 
Prep Kit (Illumina, San Diego, CA, USA) was used for library preparation as previously  described26. For more 
detailed information, please see the Supplemental Method.

Validation of the pretrained Steallae‑123 risk score in Taiwanese patients
Gene expression values were normalized to fragments per kilobase of transcript per million mapped reads 
(FPKM) values. Then, random survival forests were built to predict survival in the BeatAML cohort, as described 
 previously14,27. Random forests are a machine learning algorithm that builds an ensemble of decision trees by 
randomly sampling the data and features, and combining the results of the individual trees to make predictions. 
The main objective of random forests is to increase the accuracy and robustness of predictions by reducing 
overfitting and variance. Random survival forests extend the random forests algorithm to handle survival data, 
where the outcome of interest is the time until an event of interest occurs, such as death or failure. In a random 
survival forest, each decision tree represents a survival model, where the outcome is the time to event and the 
predictors are the input features. The final prediction is then made by aggregating the results of all decision trees 
in the random survival forest. The algorithm was tuned with 1,000 trees and standard predefined parameters. 
The resulting model was used to obtain cumulative hazard risk predictions from the Taiwanese cohort based 
on the previous training in the BeatAML cohort. The discriminative capacity of this model was evaluated using 
Harrel’s c-indexes.

Evaluation of model retraining within the Taiwanese cohort
We then explored if the same transcripts used to construct Stellae-123 could further improve prognostication in 
the Taiwanese cohort using model retraining. Machine learning model retraining refers to the process of updating 
and improving an existing machine learning model by incorporating new data. When a model is initially trained, 
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it learns patterns and relationships in the training data to make predictions or classifications. However, as new 
data becomes available over time, the model may become less accurate or fail to adapt to changing patterns in the 
data. In the particular case, differences in population structure, diagnostic procedures and treatment protocols 
might have an impact on patient outcomes. Retraining of the model can adapt the performance of the model to 
the particular characteristics of a different health system. Random survival forest retraining was performed with 
default hyperparameters and 1,000 trees.

Statistical analysis
The Fisher’s exact test or the Chi-square test were used to compare categorical or nominal variables. To compare 
continuous variables, Mann–Whitney or Kruskal–Wallis tests were used. Response criteria and definition of clini-
cal outcome, including complete remission (CR), relapse or refractory disease, OS, and RFS follow the ELN-2022 
 recommendation1. The Kaplan–Meier method was used to calculate the chance of survival, and the log-rank test 
was used to assess differences. Landmark analysis was conducted to exclude the impact of early mortality. For 
univariate and multivariable analysis, the Cox proportional hazard model was employed.

Results
Patient characteristics
Baseline demographics and mutation profiles of patients are summarized in Table 1 and Table S1–S3. The median 
age of the 304 AML patients was 46 years. Overall, 137 (45%), 82 (27%), and 85 (28%) patients were classified 
into ELN-2022 favorable, intermediate, and adverse risk groups, respectively. A total of 208 (68.4%) patients 
achieved CR after induction chemotherapy while 110 (36.2%) patients received allo-HSCT. With a median follow 
up of 23 months, 136 (44.7%) patients experienced relapse of the disease and 196 (64.4%) patients succumbed 
to the disease.

Application of Stellae‑123 to the Taiwanese cohort
The original variables of the Stellae-123 gene expression signature were FPMK counts from RNA-seq data. We 
identified these variables and selected them in the Taiwanese RNA-seq data set. This ended up in the construction 
of a 69-gene expression matrix per patient. The original model was trained in the BeatAML cohort (USA), where 
it achieved a c-index of 0.635. We applied the original model to the Taiwanese cohort. Patients were stratified into 

Table 1.  Comparison of clinical and laboratory features between 304 AML patients stratified by Stellae-123 
model derived from the BeatAML cohort.

Variable [median (range) or n (%)] Total

Stellae-123 Risk Group

P valueFavorable (n = 101) Intermediate (n = 101) Adverse (n = 102)

Age (years) 46 (18–86) 44 (18–78) 46 (18–86) 47 (18–84) NS

Sex, Male 164 (53.9) 50 (49.5) 55 (54.5) 59 (57.8) NS

Laboratory data

 White Blood Cell (×  109/L) 34.2 (1.1–406) 38.5 (1.5–324) 35.8 (1.1–406) 30.1 (1.2–341) NS

 Hemoglobin (g/dL) 8.0 (2.7–13.6) 8.3 (2.7–13.6) 8.1 (4.2–13.6) 7.5 (3.7–13.2) NS

 Platelet (×  109/L) 45 (3–751) 41 (5–203) 45 (3–712) 51 (3–751) NS

 Peripheral Blood Blasts (%) 54 (0–99) 50 (0–99) 49 (0–99) 64 (0–99) NS

 Lactate Dehydrogenase (U/L)* 1042 (194–8693) 997 (291–6711) 1119 (194–8280) 1010 (250–8693) NS

FAB Category 0.039

 M0 3 (1) 0 0 3 (29)

 M1 83 (27.3) 33 (32.7) 18 (17.8) 32 (31.4)

 M2 110 (36.2) 33 (32.7) 42 (41.6) 35 (34.3)

 M4 84 (27.6) 29 (28.7) 34 (33.7) 21 (20.6)

 M5 16 (5.3) 4 (4) 6 (5.9) 6 (5.9)

 M6 8 (2.6) 2 (2.0) 1 (1.0) 5 (4.9)

ELN-2022 risk category < 0.001

 Favorable 137 (45.0) 76 (75.2) 44 (43.6) 17 (16.7)

 Intermediate 82 (27.0) 20 (19.8) 38 (37.6) 24 (23.5)

 Adverse 85 (28.0) 5 (5.0) 19 (18.8) 61 (59.8)

Response of induction < 0.001

 Complete remission 208 (68.4) 85 (84.2) 75 (74.3) 48 (47.1)

 No response 96 (31.6) 16 (15.8) 26 (25.7) 54 (52.9)

Relapse 136 (44.7) 45 (44.6) 47 (46.5) 44 (43.1) NS

Death during/after induction 25 (8.2) 5 (5.0) 9 (8.9) 11 (10.8) NS

Allogeneic hematopoietic stem cell 
transplantation 110 (36.2) 42 (41.6) 31 (30.7) 37 (36.2) NS
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favorable-, intermediate-, and adverse-risk groups, each representing a tertile of the cohort. Overall, there was no 
difference in clinical variables including age, sex, and laboratory parameters among groups (Table 1). Intersecting 
with the ELN risk stratification, Stellae-123 risk groups partly aligned with ELN-2022 risk groups (Table 1 and 
Fig. 1A). Overall, 42.4% of the patients in the total cohort were regrouped into different risk categories from the 
ELN-2022 to the Stellae-123 system (favorable: 44.5%; intermediate: 53.7%; and adverse: 28.2%).

Validation of the Stellae‑123 for OS and RFS prediction
We initially assessed the effectiveness of ELN-2022 in risk stratification. The patient outcomes stratified by 
ELN-2022 risk categories (Fig. S1) revealed c-indices of 0.644 and 0.654 for OS and RFS, respectively. However, 
the observed survival disparity between the intermediate- and adverse-risk groups was only modest (log-rank 
p-values of 0.057 and 0.215 for OS and RFS, respectively, Fig. S1).

We next extracted the cumulative hazards predicted by Stellae-123 for OS from each patient. Univariate 
analysis demonstrated the prognostic significance of Stellae-123 score, with a hazard ratio (HR) of 1.023 (95% 
confidence interval [CI]: 1.015–1.031, P < 0.001). The c-index of this score was 0.631 for OS prediction, and the 
division of the cohort in 3 equal groups evidenced the divergent outcomes of each group (Fig. 1B). Similar to 
what was observed  previously14, the molecular predictor was especially effective for risk-stratification after the 
initial months post-diagnosis, which might be explained by the fact that most early deaths are related to events 
not related to genomic aberrations (e.g., treatment toxicity and infections).

Since Stellae-123 is based on molecular features from the leukemic cells, we expected that it could also be a 
useful predictor of RFS. To test this hypothesis, we calculated the accuracy of the cumulative hazards calculated 
by Stellae-123 to predict RFS, yielding a c-index of 0.632 and a HR of 1.02 (95%CI: 1.012–1.028, P < 0.001). In this 
case, the division of the cohort in 3 equal groups (each representing 33% of the cohort) evidenced the divergent 
risk of relapse of each group of patients (Fig. 1C). While the c-indices of Stellae-123 were slightly lower than 
those of ELN-2022 stratification, the discriminatory ability between the Stellae-123 intermediate- and adverse-
risk groups proved superior (OS, P = 0.01; and RFS, P = 0.001, respectively, Fig. 1B&C).

Retraining of the algorithm in the Taiwanese population
We hypothesized that there might be substantial variation between the original training cohort of the model 
and the Taiwanese population, including both at the molecular level (e.g., differences in population genetics) 
and in the healthcare system that could affect the outcomes of AML patients. In light of this, we wondered how 
much model retraining would improve the cross-validated results in the Taiwanese population. The distribution 
of patients in the retrained model risk groups is displayed in Fig. 2A. Compared to the pretrained model 
(Stellae-123 BeatAML), nine more patients in the retrained model (Stellae-123 Taiwan) shared the same risk 
category in the ELN system. In total, the risk categories of 120 (39.5%) patients were changed: favorable, 38.7%, 
intermediate, 52.4%, and adverse, 28.2%. Regarding prognostication, univariate analysis reaffirmed the prognostic 
discriminative ability of the retrained Stellae-123 model for both OS and RFS (OS: HR 1.015 [1.011–1.019], 
P < 0.001; and RFS: HR 1.014 [1.011–1.018, P < 0.001], respectively). The cross-validated c-indexes for OS and 
RFS prediction were 0.667 each (Fig. 2B&C), indicating the potential applicability of the locally retrained model 
across diverse regions.

To exclude the impact of early mortalities, we conducted a landmark analysis, setting the time points at 
1, 2, 3, and 6 months post-diagnosis, resulting in the exclusion of 15, 24, 34, and 49 patients, respectively 
(Table S4). This refined approach further enhanced the prognostic capabilities of the retrained model (Stellae-123 
Taiwan), yielding c-indexes up to 0.681 for OS prediction (Table S4). Notably, patients’ OS and RFS were more 

Figure 1.  Regrouping of patients and survival outcomes according to Stellae-123 risk groups in the pretrained 
model (BeatAML). (A) Sankey diagram showing re-distribution of patients from European LeukemiaNet 
(ELN)-2022 risk groups into Stellae-123 risk groups (pretrained model). Kaplan–Meier survival curves of 
overall survival (B) and relapse-free survival (C) of Taiwanese patients according to their risk predictions by the 
pretrained Stellae-123 model (BeatAML). Patients were assigned to tertiles of risk for graphical representation. 
Fav: favorable, Int: intermediate, Adv: adverse; and ST-BeatAML, Stellae-123 pretrained model base on the 
BeatAML study.
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Figure 2.  Regrouping of patients and survival outcomes according to Stellae-123 risk groups in the retrained 
model (Taiwan). (A) Sankey diagram showing re-distribution of patients from European LeukemiaNet (ELN)-
2022 risk groups into Stellae-123 risk groups (retrained model). Kaplan–Meier survival curves of overall 
survival (B) and relapse-free survival (C) of Taiwanese patients according to their risk predictions by the 
retrained Stellae-123 model (Taiwan). Patients were assigned to tertiles of risk for graphical representation. Fav: 
favorable, Int: intermediate, Adv: adverse; and ST-TWN, Stellae-123 retrained model base on the Taiwanese 
transcriptomic data.

Figure 3.  Landmark analysis demonstrating overall survival in the retrained Stellae-123 model (Taiwan). 
Landmark time was set at 1 (A), 2 (B), 3 (C), and 6 (D) months after diagnosis, respectively.
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effectively stratified by tertiles (Fig. 3A-D and Fig. S2), primarily enhancing the distinction between favorable 
and intermediate groups, thereby affirming the robustness of the retrained model.

Multivariable analysis
Given the partially overlapped grouping with ELN-2022 in both the pretrained and retrained models (favora-
ble: > 55%; intermediate: > 45%; and adverse: > 70%, respectively), we wondered whether Stellae-123 models could 
stratify patients in an ELN-risk-independent manner. Adjusted with age and ELN-2022 in the multivariable 
analysis, both the pretrained and retrained Stellae-123 models, either calculated as continuous values (Table 2) 
or divided by 3 groups (Table S5), consistently showed discriminative power in OS and RFS prognostication.

Incorporating age as a covariate for risk stratification
In light of recent data showing that incorporating age helped improve the performance of prognostication of 
ELN-202228 and the fact that age was shown to be an independent risk factor for inferior outcome in our cohort, 
we next examined how age could complement current risk stratification. A serial of model testing revealed that, 
on the basis of ELN-2022, taking the transcriptomic data into consideration, particularly the locally retrained 
model, could robustly improve the prognostic models (Table S6) with significant declines of delta Akaike 
Information Criterion (AIC) values. Furthermore, in both pretrained and retrained models, incorporating age 
similarly further refined these models for OS and RFS prognostication. Time-dependent ROC curve analysis 
also indicated the potential of incorporating Stellae-123 (both pretrained and retrained) and age to complement 
prognostic performance of ELN-2022 (Fig. 4A&B).

Indeed, the c-indices for OS and RFS, assessed using the prognostic system that incorporates ELN-2022, 
age, and the retrained Stellae-123 model (ELN/Age/AI), were further elevated to 0.73 and 0.728, respectively. 
Moreover, as depicted in Fig. 5, patients’ OS and RFS were robustly stratified by this ELN/Age/AI system, with 
log-rank p-values less than 0.001 in each comparison. Similarly, a landmark analysis was executed to evaluate the 
influence of early deaths within the ELN/Age/AI system. This analysis resulted in bolstered c-indexes of 0.734, 
0.739, and 0.733 when assessing landmark times at 1, 2, and 3 months post-diagnosis, respectively (Table S7), 
accompanied by distinct separation of patients’ OS and RFS curves (Fig. S3), suggesting its potential utility in 
refining prognostic assessments and guiding clinical decision-making.

Subsequently, we compared the outcomes of patients who were reclassified between the ELN and the ELN/
Age/AI system with those who remained in the same risk categories. As illustrated in Fig. 6A, ELN favorable-risk 
patients reclassified to intermediate or adverse risk groups experienced significantly shorter OS and RFS than 
those who remained in the favorable-risk group. For the ELN intermediate- and adverse-risk groups, patients 
reclassified to better-risk groups had longer survival than those remaining in the same risk group, while the 
opposite was true for those reclassified to poorer-risk groups (Fig. 6B&C).

To gain a deeper insight into the extent of additional information that the ELN/Age/AI system contributed 
to, we analyzed the mutation distribution within this system (Table S8). The enrichment of certain genes mirrors 
the influence of ELN classification, such as the prevalence of CEBPA and KIT mutations in the favorable-risk 
group and ASXL and TP53 mutations in the adverse-risk group. Meanwhile, the higher frequencies of DNMT3A 
and IDH2 mutations in the adverse-risk group might suggest biological implications not fully captured by the 
current system, although more evidence is required to justify their assignment to an ELN prognostic  group1.

Table 2.  Multivariable analysis for overall survival (OS) and relapse-free survival (RFS) in the 304 AML 
patients, using the pretrained model (Stellae-123 BeatAML) (upper panel) and the retrained model 
(Stellae-123 Taiwan) (lower panel). Statistically significant if P < 0.05. *As continuous variable. HR, hazard 
ratios; CI, confidence interval.

RFS OS

HR 95%CI P HR 95%CI P

Pretrained model (Stellae-123 BeatAML)

 Age 1.025 1.017 1.034 < 0.001 1.030 1.020 1.039 < 0.001

ELN-2022

 Fav (vs Adv) 0.518 0.351 0.765 0.001 0.476 0.316 0.717 < 0.001

 Int (vs Adv) 1.080 0.756 1.542 0.672 0.998 0.693 1.437 0.990

 Stellae-123 (Pretrained)* 1.011 1.002 1.021 0.016 1.012 1.003 1.022 0.011

RFS OS

HR 95%CI P HR 95%CI P

Retrained model (Stellae-123 Taiwan)

 Age* 1.025 1.016 1.034 < 0.001 1.029 1.019 1.038 < 0.001

ELN-2022

 Fav (vs Adv) 0.651 0.440 0.963 0.032 0.586 0.387 0.887 0.011

 Int (vs Adv) 1.069 0.763 1.497 0.699 0.972 0.685 1.379 0.873

 Stellae-123 (Retrained)* 1.011 1.006 1.015 < 0.001 1.010 1.006 1.015 < 0.001
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Discussion
In this study, the prognostic implication of Stellae-123 gene expression signature was validated in an AML cohort 
from Taiwan. The original model was trained in an US cohort (BeatAML) and achieved a c-index of 0.635 for 
OS prediction. When applied to the Taiwanese cohort, the model exhibited a c-index of 0.631 and effectively 
stratified patients into three distinct risk groups. The Stellae-123 signature showed better performance in risk 
stratification after the initial months post-diagnosis, which is likely due to the fact that early deaths were pri-
marily related to other factors such as toxicity and infections. Additionally, the study investigated the predictive 
capability of Stellae-123 for RFS and obtained a c-index of 0.632, further demonstrating its value in assessing 
biological risk and relapse probability. To account for potential heterogeneity between training cohorts and 
the Taiwanese population, the model was retrained specifically for the Taiwanese cohort. The retrained model 
achieved improved cross-validated c-indexes of 0.667 for OS prediction and 0.667 for RFS prediction. These 
findings highlight the robustness and potential clinical applicability of the Stellae-123 signature in various AML 
populations. Significantly, our study also demonstrates that the inclusion of age can enhance risk stratification 
in AML patients.

In recent years, there has been a growing recognition of the need to incorporate multiple layers of biological 
complexity in AML prognostication. Traditionally, prognostication in AML has relied on clinical parameters, 
cytogenetic abnormalities, and specific genetic mutations. While these markers provide valuable insights into 
patient outcomes, the complexity of AML biology cannot be fully captured by these  factors2,3. To pursue more 
accurate prognostication and personalized treatment strategies, the integration of additional layers of biological 
information is being explored, including transcriptomic data. Transcriptomic profiling, which involves the 
expression levels of specific genes or gene sets was reported to provide a more comprehensive view of the 

Figure 4.  Time-dependent ROC curve analyses demonstrate that Stellae-123 and age can be complementary to 
current risk stratification. Both pretrained (BeatAML) (A) and retrained (Taiwan) (B) Stellae-123 models could 
be complementary to ELN-2022 risk stratification when incorporated. Taking age into consideration further 
improved the power of prognostication.
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functional state of leukemia  cells7,29–31. However, the successful implementation of these approaches requires 
robust and standardized methodologies, large-scale data integration, and validation across diverse patient 
cohorts. Leveraging the AI model enables us to achieve this in a more comprehensive and unbiased way.

Combining RNA profiling with DNA mutation detection in the risk stratification of AML patients holds 
great promise in enhancing our understanding of the disease at a molecular level. This integration allows for a 
comprehensive depiction of AML’s molecular landscape. DNA mutations serve as crucial biomarkers for iden-
tifying specific genetic alterations that drive the initiation and progression of AML, providing insights into the 

Figure 5.  Improved prognostic systems incorporating European LeukemiaNet (ELN)-2022 risk stratification, 
retrained Stellae-123 model (Taiwan), and age. Kaplan–Meier survival curves of overall survival (OS) (A) and 
relapse-free survival (RFS) (B) of Taiwanese patients according to the risk groups incorporating ELN risk 
groups, retrained Stellae-123 model (Taiwan), and age.

Figure 6.  Outcome evaluation of patients who were reclassified from European LeukemiaNet (ELN)-2022 
to the ELN/Age/AI (Stellae-123 retrained model) system. Kaplan–Meier survival curves depict outcomes of 
patients remaining in ELN favorable- (A), intermediate- (B), and adverse-risk (C) groups, along with those 
reclassified.
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underlying genomic  aberrations15. On the other hand, RNA profiling enables the examination of gene expression 
patterns, reflecting the dynamic functional state of cells and shedding light on dysregulated biological pathways. 
The combination of DNA mutation detection and RNA profiling offers a synergistic approach that yields a deeper 
understanding of the heterogeneity and underlying biology of  AML32.

Moreover, with the routine inclusion of RNA fusion genes in diagnostic NGS solutions for AML, expanding 
RNA profiling is  feasible33. Leveraging existing infrastructure and expertise in RNA fusion gene detection allows 
for additional layers of information regarding gene expression signatures. This expanded RNA analysis can 
further refine risk stratification models and optimize treatment selection. Ultimately, integrating RNA profiling 
and DNA mutation detection in risk stratification will empower clinicians to make better-informed decisions. By 
comprehensively characterizing the genomic and transcriptomic features of AML, clinicians will tailor treatment 
approaches to individual patients, improving therapeutic outcomes and advancing precision medicine in  AML34.

One vital consideration in implementing machine learning models in medicine is the potential bias intro-
duced when training on specific patient populations. These models are often trained on data from particular 
geographic or socioeconomic origins, limiting their generalizability and performance in diverse  cohorts35,36. 
This limitation stems from variations in population characteristics, disease prevalence, genetic diversity, and 
healthcare practices across regions or socioeconomic  backgrounds37,38.

To ensure the optimal performance and clinical applicability of machine learning models in diverse healthcare 
settings, it is critical to retrain these models with data from varied  cohorts39. Our study exemplifies this through 
the retraining of the Stellae-123 model using data from a Taiwanese population. This retraining tailored the 
model to reflect the unique genetic and clinical nuances of this cohort, enhancing the precision and accuracy 
of its prognostic predictions. Such an approach is crucial for population-specific patterns, risk factors, and 
biomarkers pertinent to the population in question, which might not be evident in the original training dataset. 
Moreover, this process contributes to the equitable application of healthcare technologies, ensuring that the 
benefits of such models are accessible across diverse patient demographics, thereby mitigating the risk of bias 
towards any particular group.

Nevertheless, the process of retraining models with data from different cohorts necessitates meticulous atten-
tion to ensure its success. This involves a careful assessment of the differences in data collection methods, the 
quality of the data, and the potential confounding factors that might exist among various cohorts. In our study, 
the retraining of Stellae-123 on the Taiwanese cohort was undertaken with these considerations in mind, ensur-
ing that the adapted model not only retained its robustness but also gained enhanced relevance and applicability 
to the specific population. This process underscores the importance of adapting AI models to local contexts, 
thereby maximizing their utility and reliability in a global healthcare landscape.

While there are some potential advantages to incorporating AI models, certain areas still require improve-
ment. For instance, although transcriptome data offers a wealth of information, the timely and comprehensive 
inclusion of newly discovered transcripts may be a challenge. Additionally, the broader applicability and dynamic 
assessment of AI models that utilize transcriptomic profiles await further exploration and implementation.

Some limitations of the current study include the relatively limited sample size, particularly within the field of 
AML research, and our inability to include patients with a history of preceding myeloid neoplasia, primarily due 
to resource constraints such as limited biobanking and RNA sequencing availability. Nevertheless, it is notewor-
thy that one-fifth of the patients in our cohort exhibited myelodysplasia-related gene mutations or cytogenetic 
abnormalities (Table S1), thereby partially representing the currently defined "myelodysplasia-related" AML 
population. Additionally, our cohort is characterized by a higher proportion of ELN favorable-risk patients, 
resembling a miniature version of our previously published  cohort40, yet distinct from  others41,42, which could 
partially lead to a relatively lower HSCT rate. Thus, while the incorporation of age and the Stellae-123 models 
can complement ELN-risk assessment in our cohort, the broader applicability of our findings necessitates further 
validation. Moreover, although it is intriguing and crucial to assess the influence of novel agents, especially given 
the recent approvals in AML treatment, the timeframe of our study cohort spans from 1995 to 2011. Accord-
ingly, our focus was directed toward this homogeneous population, all of whom received traditional induction 
chemotherapy. Lastly, it is important to acknowledge the retrospective nature of our study, which may introduce 
additional confounding factors, for instance, the heterogeneity in reinduction protocols and the diversity of 
responses among patients who fail to achieve complete remission after standard induction treatment.

Despite the aforementioned limitations, our study confirms the predictive value of Stellae-123 for both overall 
survival and relapse risk within a homogeneous Taiwanese AML cohort. Importantly, our findings highlight the 
potential benefits of model retraining to optimize prognostic accuracy by tailoring Stellae-123 to the unique 
characteristics of the Taiwanese patient population. Furthermore, the integration of age contributes to refine the 
current risk stratification. Given the remarkable extrapolation of the signature, it should be contemplated for 
incorporation in the risk stratification of AML patients eligible for intensive therapy.

Data availability
The datasets generated during and/or analyzed in the present study are accessible through Gene Expression 
Omnibus database (accession number GSE253086) or on reasonable request from the corresponding authors.
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