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Some convergently three‑term 
trust region conjugate gradient 
algorithms under gradient function 
non‑Lipschitz continuity
Wujie Hu 1, Jinzhao Wu 1 & Gonglin Yuan 2*

This paper introduces two three‑term trust region conjugate gradient algorithms, TT‑TR‑WP and 
TT‑TR‑CG, which are capable of converging under non‑Lipschitz continuous gradient functions without 
any additional conditions. These algorithms possess sufficient descent and trust region properties, and 
demonstrate global convergence. In order to assess their numerical performance, we compare them 
with two classical algorithms in terms of restoring noisy gray‑scale and color images as well as solving 
large‑scale unconstrained problems. In restoring noisy gray‑scale images, we set the performance 
of TT‑TR‑WP as the standard, then TT‑TR‑CG takes around 2.33 times longer. The other algorithms 
around 2.46 and 2.41 times longer, respectively. In solving the same color images, the proposed 
algorithms exhibit relative good performance over other algorithms. Additionally, TT‑TR‑WP and 
TT‑TR‑CG are competitive in unconstrained problems, and the former has wide applicability while the 
latter has strong robustness. Moreover, the proposed algorithms are both more outstanding than the 
baseline algorithms in terms of applicability and robustness.

Keywords Conjugate gradient, Descent property, Trust region property, Gradient function non-Lipschitz 
continuity, Global convergence

This paper considers following model

where the objective function h : Rn −→ R is continuously differentiable. The conjugate gradient (CG) algorithm 
is widely used to solve (1), in which the iteration formula is written as:

where xk+1, αk and dk are next iteration point, step size and search direction respectively, where dk is generally 
defined by formula

where gk is called the gradient of objective function h(x) at iteration point xk , and βk ∈ R is a scalar. Some CG 
algorithms are proposed to solve large-scale optimization problems and engineer problems. In Ref.4, general 
conjugate gradient method using the Wolfe line search is proposed, with a condition on the scalar βk , which 
is sufficient for the global convergence. In Ref.16, a projection-based method is proposed to solve large-scale 
nonlinear pseudo-monotone equations, without Lipschitz continuity. In Refs.19–21, Sheng et al. proposed some 
trust region algorithms to solve nonsmooth minimization, large-residual nonsmooth least squares problems and 
optimization problems. Yuan et al proposed some nonlinear conjugate gradient methods to restore nonlinear 
equations and image restorations in Ref.24,25. In Ref.5, Dai summarized some analysis of conjugate gradient 
method. In Ref.9, authors adopted conjugate gradient solvers on graphic processing units. In Ref.12, authors 
proposed a new conjugate gradient method with guaranteed descent and an efficient line search for optimization. 

(1)min{h(x)| x ∈ Rn},

(2)xk+1 = xk + αkdk , k = 0, 1, 2, . . . ,

(3)dk =

{

−gk + βkdk−1, if k ≥ 1,
−gk , if k = 0,
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In Ref.18, authors proposed a hybrid conjugate gradient algorithm combining PRP and FR algorithms. In Ref.23, 
Wei et al proposed a conjugate gradient algorithm which designs a negative coefficient in the formula of the 
search direction. In fact, an important work is the design of βk , and some classical expressions are widely used, 
including the Hestenes-Stiefel (HS)8,14,27, Liu-Storey (LS)22, Polak-Ribière-Polyak (PRP)11,25,26,28, Dai-Yuan (DY)6,29 
and conjugate descent method (CD)10,13, Fletcher-Reeves (FR)15, where the first three algorithms have relatively 
good numerical performance but fewer theoretical results, while the others are inverse. The definitions are listed 
in Table 1, where ‖.‖ is the Euclidean norm.

The primary components of conjugate gradient algorithms encompass the search direction, step size (when 
applicable), and global convergence. The ultimate objective is to achieve a satisfactory balance between numerical 
efficiency and theoretical scrutiny.

In fact, the adequate descent property is a prerequisite for theoretical analysis and is governed by the following 
equation

where t > 0. Moreover, the trust region technique illustrates that the search radius plays a crucial role in 
determining the numerical efficacy. The search direction is obtained by solving the subsequent quadratic 
function, where �k denotes the trust region radius.

The search direction in CG algorithms is also called satisfying the trust region property if following formula 
holds.

where t1 > 0 . Equations (4) and (5) are intimately connected with the global convergence. Furthermore, an 
inexact linear search approach is frequently utilized to determine a suitable step size αk . This paper adopts weak 
Wolfe-Powell (WWP) inexact linear search, which is formulated as follows:

and

where δ ∈ (0, 12 ) and τ ∈ (δ, 1).
The aforementioned discussions are intricately linked to global convergence, which necessitates certain 

fundamental assumptions. These include: (i) the objective function must be continuously differentiable; (ii) the 
level set S = {x ∈ Rn : h(x) ≤ h(x0)} must be bounded; and (iii) the gradient function g(x) must be Lipschitz 
continuous, where x0 denotes an initial point. The FR  method1, modified HS  method7, modified LS  method17, 
and modified DY  method29 achieve global convergence through the formula

In other words, the Lipschitz continuity of the gradient function is a prerequisite for existing works, prompting 
us to consider whether global convergence can be attained in the absence of Lipschitz continuity. This paper 
proposes some three-term trust region conjugate gradient methods that converge under non-Lipschitz continuity 
condition, with the main properties summarized as follows:

• Objective algorithms possess both the sufficient descent and trust region properties, without any additional 
conditions. The trust region property is derived from the trust region algorithm, while the algorithm design 
is based on classical approaches such as Hestenes-Stiefel (HS) and Polak-Ribière-Polyak (PRP).

• These algorithms achieve global convergence even under conditions of non-Lipschitz continuity of the 
gradient function and weak Wolfe-Powell linear search techniques.

• The applications of these algorithms include image restoration of noisy gray scale and color images, as well 
as solving large-scale unconstrained problems. The case studies illustrate that TT-TR-WP and TT-TR-CG 
possess superior numerical performance.

(4)gTk dk ≤ −t�gk�
2,

min
x∈ℜn

gTk dk +
1

2
dTQkd.

s.t. �dk� ≤ �k .

(5)�dk� ≤ t1�gk�,

(6)h(xk + αkdk) ≤ h(xk)+ δαkg
T
k dk

(7)g(xk + αkdk)
Tdk ≥ τgTk dk ,

lim inf
k→∞

�gk� = 0.

Table 1.  Six classical CG scalars.

HS LS PRP DY CD FR

βk
gTk (gk−gk−1)

(gk−gk−1)
T dk−1

gTk (gk−gk−1)

−dTk−1
gk−1

gTk (gk−gk−1)

�gk�2
�gk�

2

(gk−gk−1)
T dk−1

�gk�
2

−dTk−1
gk−1

�gk�
2

�gk−1�
2



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10851  | https://doi.org/10.1038/s41598-024-60969-9

www.nature.com/scientificreports/

The remainder of the paper is organized as follows: “Motivation and TT-TR-WP” provides an overview of the 
motivation behind TT-TR-WP; “The global convergence of TT-TR-WP” presents the convergence analysis; 
“TT-TR-CG and theoretical analysis” describes the TT-TR-WP algorithm and its convergence analysis; “Case 
studies” presents the case studies, including image restoration and large-scale unconstrained problem-solving; 
and finally, the last section offers concluding remarks.

Motivation and TT‑TR‑WP
The first three-term conjugate gradient formula is proposed by Zhang et al.30, in which the search direction is 
defined by

Formula (8) satisfies the sufficient descent property without any additional conditions, while the trust region 
property is closely related to the objective function, Lipschitz continuity, and level set.

Formula (9) was introduced by Yuan et al.28 under the weak Wolfe-Powell linear search technique, where the 
search direction is given by the following expression:

The step size αk−1 is included in the search direction (9). This formula not only satisfies the sufficient descent 
property without other conditions, but also guarantees global convergence under non-Lipschitz continuity condi-
tions, while the trust region property is closely linked to the formula αk−1dk−1 = xk − xk−1 , objective function, 
and level set.

To summarize, while formulas (8) and (9) do possess the sufficient descent property without additional 
conditions, there are several limitations. The trust region property, vital for both theoretical analysis and numeri-
cal performance, unfortunately depends on the objective function, basic assumptions, and complex analysis. 
Additionally, there exist simpler and more cost-effective algorithms that simultaneously achieve better numerical 
performance and theoretical results.

Aforementioned discussions inspire us to propose following formula.

Remark 1 

 (i) Formula (10) possesses the sufficient descent and trust region properties that are independent of any 
additional conditions.

 (ii) Global convergence is guaranteed even under conditions of non-Lipschitz continuity of the gradient 
function.

 (iii) The classical HS algorithm’s excellent numerical performance is incorporated into TT-TR-WP through 
a specified denominator.

This section presents Algorithm 1, while the subsequent section provides the theoretical analysis.
TT-TR-WP: A convergently three-term trust region algorithm with the weak Wolfe-Powell linear search

Step 0: Initialize x0 ∈ Rn , d0 = −g0 , constants ǫ ∈ (0, 1) , δ ∈ (0, 12 ) , τ ∈ (δ, 1) , σ > 0 , and set k = 0.
Step 1: Stop rule �gk� ≤ ǫ.
Step 2: Choose step size αk under formulas (6) and (7).
Step 3: Update iteration point xk+1 = xk + αkdk.
Step 4: Stop rule �gk+1� ≤ ǫ.
Step 5: Update search direction under formula (10).
Step 6: Set k = k + 1 , and go to Step 2.

The global convergence of TT‑TR‑WP
This section analyzes the global convergence of TT-TR-WP, in which the properties of sufficient descent and 
trust region are firstly given.

Lemma 3.1 The search direction (10) simultaneously has the sufficient descent (4) and trust region (5) properties, 
i.e.,

and

(8)dk =

{

−gk , if k = 0,

−gk +
gTk yk−1dk−1−gTk dk−1yk−1

�gk−1�
2 , if k ≥ 1.

(9)dk =

{

−gk , if k = 0,

−gk + αk−1
gTk yk−1dk−1−gTk dk−1yk−1

�gk−1�
2 , if k ≥ 1,

(10)dk =

{

−gk , if k = 0,

−gk +
gTk yk−1dk−1−gTk dk−1yk−1

σ�dk−1��yk−1�+|dk−1yk−1|
, if k ≥ 1,

(11)gTk dk = −�gk�
2,
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Proof If k = 0 , d0 = −g0, and �d0� ≤ �g0� ≤ (1+ 2
σ
)�g0�,

If k ≥ 1 , following formulas can be obtained from the formula (10):

and

then completes the proof.   �

Remark 2 

 (i) The Lemma 3.1 proves the sufficient descent and trust region properties of search direction (10), which 
are independent of any assumptions and linear search techniques.

 (ii) From formula (11), we can obtain 

 this means that 

 thus following formula holds from formula (12) 

To achieve global convergence, certain basic assumptions are proposed.

Assumption 

 (i) The level set S = {x|h(x) ≤ h(x0)} is well-defined and bounded, where x0 is the initial point.
 (ii) The function h(x) is continuously differentiable and bounded below.

Under these assumptions, the following significant properties hold:
Property 1: The iteration sequence {xk} is bounded.
Property 2: The gradient function g(x) is continuous on the level set.
Now pay attention to the global convergence of TT-TR-WP.

Theorem 3.1 If sequences {xk , dk ,αk , gk} are generated by TT-TR-WP, then, following formula holds

Proof We adopt proof by contradiction, and firstly make an assumption

where εC is a positive constant.
Additionally, there exists a convergent subsequence {xki } since iteration point {xk} is bounded, it means that

Similarly, the gradient function is continuous, thus there exists ǫ1 > 0 and an integer N1 > 0 such that

(12)�dk� ≤ (1+
2

σ
)�gk�,

gTk dk =gTk

(

−gk +
gTk yk−1dk−1 − gTk dk−1yk−1

σ�dk−1��yk−1� + |dk−1yk−1|

)

=− �gk�
2 + gTk

gTk yk−1dk−1 − gTk dk−1yk−1

σ�dk−1��yk−1� + |dk−1yk−1|

= − �gk�
2.

�dk� =� − gk +
gTk yk−1dk−1 − gTk dk−1yk−1

σ�dk−1��yk−1� + |dk−1yk−1|
�

≤�gk� +
2�gk��yk−1��dk−1�

σ�dk−1��yk−1� + |dk−1yk−1|

≤(1+
2

σ
)�gk�,

−�dk��gk� ≤ gTk dk = −�gk�
2,

�gk� ≤ �dk�,

(13)�gk� ≤ �dk� ≤ (1+
2

σ
)�gk�,∀ k.

(14)lim inf
k→∞

�gk� = 0.

(15)�gk� ≥ εC ,

xki → x∗, i → ∞,
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From formula (13), there exists ǫ2 > 0, and an integer N2 > 0 satisfying

From (16), (17) and (11), following formula holds

On the other hand, following formula will be obtained from (7)

thus

then taking the limit on both sides and set N = max{N1,N2}, with the subsequence {xki }, we can deduce that

It means that there exists a subsequence {xki }, such that

while this contradicts the relation (11), i.e. the original formula holds and the proof is completed.   �

Remark 3 

 (i) Non-Lipschitz continuous gradient functions are prevalent. For instance, g(x) = sin( 1x ) and 
g(x) = x

3
2 sin( 1x ) for x ∈ (0, 1].

 (ii) The global convergence of TR-TR-WP is established under the weak Wolfe-Powell linear search technique 
and gradient function non-Lipschitz continuity.

 (iii) The sufficient descent and trust region properties, (11) and (12), simplify the convergence analysis.

TT‑TR‑CG and theoretical analysis
This section will propose the other modified three-term trust region CG algorithm, TT-TR-CG, and prove some 
properties.

In TT-TR-CG, the search direction has following form:

where µ > 0.
This subsection will firstly describe contents of objective algorithm.
TT-TR-CG: A convergently three-term trust region CG with the weak Wolfe-Powell

Step 0: Initialize x0 ∈ Rn , d0 = −g0 , constants ǫ ∈ (0, 1) , δ ∈ (0, 12 ) , τ ∈ (δ, 1) , µ > 0 , and set k = 0.
Step 1: Stop rule �gk� ≤ ǫ.
Step 2: Choose step size αk under formulas (6) and (7).
Step 3: Update iteration point xk+1 = xk + αkdk.
Step 4: Stop rule �gk+1� ≤ ǫ.
Step 5: Update search direction under formula (19).
Step 6: Set k = k + 1 , and go to Step 2.

Remark 4 

 (i) The search direction (19) satisfies both the sufficient descent and trust region properties simultaneously.
 (ii) Global convergence analysis is established under the gradient function non-Lipschitz continuity and 

weak Wolfe-Powell linear search technique.
 (iii) The good numerical performance of the classical PRP algorithm is partly incorporated into TT-TR-CG 

through the specified denominator.

Lemma 4.1 The search direction (19) has the sufficient descent (4) and trust region (5) properties simultaneously 
without any conditions, i.e.,

(16)�g(xki )− g(x∗)� < ǫ1, ∀ i > N1.

(17)�d(xki )− d(x∗)� < ǫ2, ∀ i > N2.

(18)g(x∗)Td(x∗) ≤ −�g(x∗)�2 ≤ −ε2C < 0.

g(xk + αkdk)
Tdk ≥ τgTk dk ,

gTki+1
dki − τgTki dki ≥ 0,

lim
i→∞

(gTki+1
dki − τgTki dki ) = (1− τ)g(x∗)Td(x∗) ≥ 0.

g(x∗)Td(x∗) ≥ 0,

(19)dk =

{

−gk , if k = 0,

−gk +
gTk yk−1dk−1−gTk dk−1yk−1

max{µ�dk−1��yk−1�,�gk−1�
2}
, if k ≥ 1,

(20)gTk dk = −�gk�
2,
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and

Proof The proof is similar with the TT-TR-WP, thus omits it.   �

To obtain the global convergence, some basic assumptions are proposed.

Assumption 

 (i) the level set S = {x|h(x) ≤ h(x0)} is defined and bounded, where x0 is an initial point;
 (ii) the objective function h(x) is continuously differentiable and bounded below.

Theorem 4.1 If sequences {xk , dk ,αk , gk} are generated by TT-TR-CG, then, following formula holds

Proof The proof is similar with the “The global convergence of TT-TR-WP”, then completes the proof.  �

Case studies
This section utilises objective algorithms to restore noisy images and solve large-scale unconstrained optimisa-
tion problems to test their numerical performance.

To further test the numerical performance, this paper introduces two baseline algorithms in Ref.26,28, namely 
MPRP and A-TPRP-A, and the formulas are (8), (9), respectively. The former is the first three-term conjugate 
gradient algorithm and is widely cited. The latter is the latest algorithm which updates the search direction with 
the step size and possesses global convergence without Lipschitz continuity. The baseline algorithms possess 
both good numerical performance and theoretical properties in the existing works.

The experimental environment consists of an Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz with 
16 GB RAM running on the Windows 11 operating system.

Image restoration
The restoration of noisy images is of great practical importance and is widely used. This subsection uses the 
TT-TR-WP, TT-TR-CG and baseline algorithms to restore noisy images to test their numerical performance, in 
which three figures are chosen because they are widely used and classical test figures, see Refs.24,25.

The objective function and experimental settings are described as follows: The candidate noise index set is 
denoted as N, the objective function as ω(u) , and the edge-preserving function as χ . The true image containing 
K × L pixels is denoted as x. For a more detailed explanation of image restoration, please refer to Refs.3,24,25,28.

where I = {1, 2, . . . ,K} × {1, 2, . . . , L, }, ζi,j is the observed noisy image and ζ̄i,j is the verified image, smin and smax 
are the minimum and maximum noisy pixel. Consider following optimization function

and

φi,j = {(i, j − 1), (i, j + 1), (i − 1, j), (i + 1, j)}.

where ν > 0.

where MSE is the mean square error between the original image and processed image and num is the number 
of bits.

T h e  s t o p  r u l e  o f  a l g o r i t h m  i s  �hk+1−hk�
�hk�

< ε  ,  a n d  t h e  p a r a m e t e r s  a r e 
δ = 0.2, τ = 0.895, σ = 0.1,µ = 0.1, ε = 10−6.

In restoring noisy gray-scale images, from Table 2, we can conclude that TT-TR-WP exhibits the best 
numerical performance in terms of running time, TT-TR-CG is the second best, MPRP is third, and A-T-
PRP-A is the slowest. Furthermore, if we set the performance of TT-TR-WP as the standard, then TT-TR-CG 

(21)�dk� ≤ (1+
2

µ
)�gk�.

(22)lim inf
k→∞

�gk� = 0.

N :=
{

(i, j) ∈ I | ζ̄i,j �= ζi,j , ζi,j = smin or smax

}

,

min
u

ω(u)

ω(u) =
�

(i,j)∈N







�

(m,n)∈φi,j\N

χ
�

ui,j − ζm,n

�

+
1

2

�

(m,n)∈φi,j
�

N

χ
�

ui,j − um,n

�







,

χ =

{

t2/ν, if |t| ≤ ν

|t| − 2ν, if |t| > ν,

PSNR = 10× log10

(

(2num − 1)2

MSE

)

,
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takes around 2.34 times longer. The other algorithms take around 2.46 and 2.42 times longer, respectively. 
In Table 3, the time proportion among all algorithms in each figure and all figures is proposed, in which the 
biggest gap is 1.68, TT-TR-WP is far ahead than the others, and TT-TR-CG is pretty good in most situations. 
Additionally, results in Table 4 further demonstrate that all algorithms obtain highly similar SSIM and PSNR 
values. Combining the above discussion, we can make a conclusion: to obtain highly similar results, TT-TR-WP 
and TT-TR-CG perform relatively well and the proposed algorithms are competitive.

In summary, TT-TR-WP exhibits impressive numerical performance, and TT-TR-CG is highly competitive 
with the others. To save space, this paper only records numerical results but abandons the display of figures 
obtained by diverse algorithms with noise ratios of 70%, and 90%, see Fig. 1. In each row, the first column is 
obtained by TT-TR-WP, the second column by TT-TR-CG, the third column by A-T-PRP-A, and the last column 
by MPRP.

Color image restoration
To further evaluate the performance of the objective algorithms, this section applies various algorithms to restore 
color images with different levels of noise. Peak signal-to-noise ratio (PSNR) and structural similarity index 
measure (SSIM) and Mean Squared Error (MSE) are widely used measurements for image quality assessment 
and are used in this section. To save space, this paper only records numerical results but abandons the display 
of figures obtained by diverse algorithms with noise ratios of 20%, 60% and 80%. The stop rule of algorithm is 
�hk+1−hk�

�hk�
< ε , and the parameters are δ = 0.0885, τ = 0.885, σ = 0.0015,µ = 1.1555, ε = 10−4.

In Table 5, the total running time of four algorithms is 73.83, 74.88, 80.02, 74.52 s, respectively. Additionally, 
from Tables 6, 7, 8, the PSNR, MSE, and SSIM of algorithms are highly similar, but object algorithms are relatively 
competitive. The images restored by various algorithms under different noise ratios are presented in Fig. 2 that 
corresponds to noise ratio 40%. In each row, the first column is obtained by TT-TR-WP, the second column by 
TT-TR-CG, the third column by A-T-PRP-A, and the last column by MPRP.

Table 2.  The running time under different noise ratios with diverse algorithms.

Figure Noise ratio TT-TR-WP TT-TR-CG A-T-PRP-A MPRP

Baboon

0.2 8.52 13.48 12.45 13.66

0.5 12.09 31.23 28.97 29.97

0.7 28.11 44.77 41.94 45.77

0.9 25.64 65.33 64.88 75.34

Barbara

0.2 7.11 9.77 10.31 9.33

0.5 15.00 26.44 28.16 28.78

0.7 15.00 38.56 44.66 42.17

0.9 38.81 66.09 89.39 77.28

Man

0.2 27.25 47.22 39.98 52.19

0.5 47.45 96.67 116.52 104.69

0.7 76.38 168.45 171.92 190.13

0.9 97.83 332.23 339.77 306.75

Cameraman

0.2 1.86 1.98 3.30 3.53

0.5 2.27 6.03 6.77 6.94

0.7 4.36 8.61 10.42 8.61

0.9 6.16 13.59 14.66 15.36

Boat

0.2 1.52 3.38 4.91 1.67

0.5 2.83 4.83 5.73 4.52

0.7 3.08 8.30 6.95 5.58

0.9 5.70 10.89 10.45 10.44

Table 3.  The ratio of total running time comparing with TT-TR-WP.

Figure TT-TR-WP TT-TR-CG A-T-PRP-A MPRP

Baboon 1.00 2.08 1.99 2.22

Barbara 1.00 1.86 2.27 2.08

Man 1.00 2.59 2.68 2.63

Cameraman 1.00 2.06 2.40 2.35

Boat 1.00 2.09 2.14 1.69

All figures 1.00 2.34 2.46 2.42
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General unconstrained optimization
To further test the numerical performance, this subsection applies the algorithms to solve large-scale uncon-
strained optimization problems. Sixty-five classical functions are randomly selected  from2, as shown in 
Table 9, with dimensions of 3000, 6000, and 12,000. The stopping criterion is ‖g(xk)‖ < ε or NI > 8000 , 
where NI is the iteration number, and g(xk) is the gradient value at the point xk . The parameters used are 
δ = 0.2, τ = 0.9, σ = 0.001,µ = 0.1, ε = 10−6.

The running time in seconds is used as the reference standard for evaluating numerical performance, as 
shown in Table 10. The relative numerical performance of solving large-scale problems is illustrated in Fig. 3, 
in which the red line denotes TT-TR-WP, black line denotes TT-TR-CG, blue line denotes A-T-PRP-A, and the 
other denotes MPRP. TT-TR-WP has a high initial value, which means that possesses relatively good robustness. 
TT-TR-CG exhibits gradually increase trend all time which means that possesses relatively good applicability. 
TT-TR-WP and TT-TR-CG both possess relatively good robustness and applicability than the others.

In summary, TT-TR-WP and TT-TR-CG possess relatively good numerical performance than baseline algo-
rithms, in terms of applicability and robustness, in which TT-TR-WP has the best robustness and relatively good 
applicability and TT-TR-CG is the opposite.

Conclusion
This paper introduces two three-term trust region conjugate gradient algorithms, TT-TR-WP and TT-TR-CG, 
which are capable of converging under non-Lipschitz continuous gradient functions without any additional 
conditions. These algorithms possess sufficient descent and trust region properties, and demonstrate global 
convergence. In order to assess their numerical performance, we compare them with two classical algorithms in 
terms of restoring noisy gray-scale and color images as well as solving large-scale unconstrained problems. To 
obtain highly similar SSIM and PSNR values in noisy gray-scale images, TT-TR-WP exhibits the best numerical 
performance in terms of running time, TT-TR-CG is the second best, MPRP is third, and A-T-PRP-A is the 
slowest. Furthermore, if we set the performance of TT-TR-WP as the standard, then TT-TR-CG takes around 
2.34 times longer. The other algorithms take around 2.46 and 2.42 times longer, respectively. In solving the same 
color images, the proposed algorithms exhibit relative good performance over other algorithms. Additionally, 
in comparative experiments of algorithm performance, the curve of TT-TR-CG has the maximum initial value, 
while the curve of TT-TR-WP is the second-best, indicating that TT-TR-CG and TT-TR-WP are relatively more 
robustness and have high stability when facing diverse situations. In summary, TT-TR-WP and TT-TR-CG 
exhibit relatively better performance in terms of applicability and robustness.

Table 4.  The SSIM and PSNR under different noise ratios with diverse algorithms.

Figure Noise ratio

SSIM PSNR

TT-TR-WP TT-TR-CG A-T-PRP-A MPRP TT-TR-WP TT-TR-CG A-T-PRP-A MPRP

Baboon

0.2 0.93 0.93 0.93 0.93 29.44 29.45 29.39 29.35

0.5 0.78 0.78 0.78 0.78 24.57 24.57 24.54 24.51

0.7 0.61 0.61 0.61 0.61 22.35 22.34 22.31 22.34

0.9 0.31 0.31 0.31 0.31 20.31 20.25 20.29 20.28

Barbara

0.2 0.94 0.94 0.94 0.94 31.13 31.12 31.13 31.01

0.5 0.81 0.81 0.81 0.81 26.33 26.36 26.34 26.39

0.7 0.68 0.68 0.68 0.68 24.50 24.55 24.52 24.52

0.9 0.44 0.44 0.44 0.44 22.54 22.50 22.46 22.51

Man

0.2 0.93 0.93 0.93 0.93 38.02 38.00 37.96 37.90

0.5 0.81 0.81 0.81 0.81 32.51 32.49 32.54 32.50

0.7 0.68 0.68 0.68 0.68 29.42 29.40 29.49 29.44

0.9 0.41 0.41 0.41 0.41 25.28 25.21 25.28 25.30

Cameraman

0.2 0.93 0.93 0.93 0.93 32.26 32.60 32.59 32.21

0.5 0.78 0.78 0.78 0.78 27.13 27.28 27.55 27.45

0.7 0.63 0.62 0.62 0.62 24.76 24.69 24.57 24.68

0.9 0.32 0.32 0.33 0.32 21.10 20.88 21.09 20.95

Boat

0.2 0.94 0.94 0.94 0.94 32.51 32.15 32.31 32.40

0.5 0.80 0.80 0.80 0.80 27.16 27.29 27.13 27.00

0.7 0.64 0.64 0.65 0.64 24.57 24.52 24.65 24.48

0.9 0.36 0.36 0.36 0.37 21.59 21.61 21.46 21.74
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Figure 1.  From left to right, the images disturbed by 50% salt-and-pepper noise, the images restored by 
TT-TR-WP (first column), TT-TR-CG (second column), A-T-PRP-A (third column) and MPRP (last column), 
respectively.
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Table 5.  The running time with different noise ratios across various algorithms.

Figure Ratio TT-TR-WP TT-TR-CG A-T-PRP-A MPRP

car1

0.2 1.09 1.13 1.16 1.36

0.4 1.39 1.34 1.55 1.36

0.6 1.94 2.03 2.13 1.86

0.8 4.91 4.59 4.72 4.72

l1ama

0.2 6.84 7.28 8.58 7.41

0.4 9.70 10.17 10.78 9.80

0.6 11.80 12.42 13.00 12.36

0.8 19.58 19.63 22.47 19.48

fabricu

0.2 1.53 1.22 1.58 1.14

0.4 1.64 1.56 1.50 1.56

0.6 2.08 1.83 1.91 1.97

0.8 3.25 3.81 2.95 2.98

car2

0.2 1.11 1.13 1.06 1.02

0.4 1.47 1.42 1.28 1.39

0.6 1.75 1.56 1.80 2.03

0.8 3.75 3.75 3.56 4.08

All figures Total sum 73.83 74.88 80.02 74.52

Table 6.  The PSNR with different noise ratios across various algorithms.

Figure Ratio TT-TR-WP TT-TR-CG A-T-PRP-A MPRP

car1

0.2 29.36 29.32 29.27 29.24

0.4 25.25 25.16 25.12 25.14

0.6 22.32 22.31 22.32 22.31

0.8 19.58 19.59 19.57 19.58

l1ama

0.2 39.49 39.40 39.44 39.49

0.4 35.00 35.02 35.00 35.01

0.6 31.71 31.71 31.69 31.72

0.8 28.27 28.23 28.25 28.22

fabricu

0.2 31.01 30.95 30.93 30.90

0.4 26.00 26.01 26.02 25.98

0.6 22.35 22.35 22.31 22.30

0.8 18.67 18.65 18.62 18.64

car2

0.2 29.77 29.82 29.84 29.72

0.4 25.35 25.31 25.34 25.38

0.6 22.26 22.19 22.14 22.28

0.8 19.15 19.16 19.21 19.15

All figures Total sum 425.53 425.15 425.05 425.07
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Table 7.  The MSE with different noise ratios across various algorithms.

Figure Ratio TT-TR-WP TT-TR-CG A-T-PRP-A MPRP

car1

0.2 75.32 75.98 76.97 77.38

0.4 194.34 198.09 200.18 198.95

0.6 381.36 381.88 381.10 382.07

0.8 716.74 714.57 717.15 716.70

l1ama

0.2 7.31 7.47 7.40 7.32

0.4 20.56 20.48 20.57 20.52

0.6 43.87 43.87 44.11 43.78

0.8 96.93 97.82 97.37 98.00

fabricu

0.2 51.53 52.30 52.53 52.80

0.4 163.23 163.11 162.48 163.95

0.6 378.65 378.81 382.11 382.49

0.8 882.58 888.25 894.08 890.33

car2

0.2 68.57 67.75 67.52 69.33

0.4 189.73 191.64 190.02 188.32

0.6 386.18 393.05 397.19 384.83

0.8 790.57 789.40 780.23 790.19

All figures Total sum 4447.48 4464.48 4471.02 4466.96

Table 8.  The SSIM with different noise ratios across various algorithms (s).

Figure Ratio TT-TR-WP TT-TR-CG A-T-PRP-A MPRP

car1

0.2 0.963 0.963 0.962 0.962

0.4 0.904 0.903 0.902 0.902

0.6 0.816 0.816 0.816 0.814

0.8 0.679 0.677 0.679 0.679

l1ama

0.2 0.996 0.996 0.996 0.996

0.4 0.988 0.988 0.988 0.988

0.6 0.974 0.974 0.974 0.975

0.8 0.946 0.946 0.946 0.946

fabricu

0.2 0.984 0.984 0.984 0.984

0.4 0.950 0.950 0.950 0.950

0.6 0.886 0.886 0.885 0.885

0.8 0.746 0.747 0.745 0.747

car2

0.2 0.961 0.962 0.961 0.961

0.4 0.898 0.898 0.899 0.898

0.6 0.807 0.806 0.805 0.807

0.8 0.661 0.659 0.662 0.662

All figures Total sum 14.158 14.153 14.152 14.153
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Figure 2.  From left to right, the images disturbed by 40% salt-and-pepper noise, the images restored by 
TT-TR-WP (first column), TT-TR-CG (second column), A-T-PRP-A (third column) and MPRP (last column), 
respectively.

Table 9.  Test functions.

Function Function Function Function Function

EG2 LIARWHD Extended PSC1 Extended Himmelblau ENGVAL1

Hager EDENSCH Quadratic QF1 Extended tridiagonal-1 FLETCHCR

TRIDIA DIXMAANE Extended wood Generalized tridiagonal-1 DIXMAANI

VARDIM ARWHEAD Extended Hiebert Generalized Tridiagonal-2 DIXON3DQ

Raydan 1 Diagonal 1 Extended Powell Partial perturbed quadratic DIXMAANK

Raydan 2 Diagonal 3 Generalized PSC1 Almost perturbed quadratic DIXMAANL

NONDIA DIXMAANA Extended penalty Extended block diagonal BD1 DIXMAAND

BDQRTIC DIXMAANB Extended maratos Quadratic diagonal perturbed DIXMAANF

DQDRTIC DIXMAANC Perturbed quadratic Tridiagonal perturbed quadratic DIXMAANG

Diagonal 4 Extended Cliff Extended Rosenbrock Extended Freudenstein and Roth DIXMAANH

Diagonal 5 NONDQUAR Extended tridiagonal-2 Extended three exponential terms DIAGONAL 6

Extended Trigonometric Extended EP1 Extended DENSCHNB Extended quadratic penalty QP1 STAIRCASE S1

Extended White and Holst Extended Beale Extended DENSCHNF Extended quadratic penalty QP2 Broyden tridiagonal
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No

TT-TR-WP TT-TR-CG A-T-PRP-A MPRP

3000 6000 12,000 3000 6000 12,000 3000 6000 12,000 3000 6000 12,000

1 0.06 1.61 2.06 0.77 1.55 9.44 0.63 44.86 45.39 0.17 17.28 1.78

2 0.03 0.14 0.31 0.11 0.95 0.09 0.03 0.25 2.80 0.05 0.31 2.08

3 0.42 8.25 37.94 0.05 0.00 0.00 0.59 9.89 41.25 0.56 8.69 41.80

4 0.02 1.48 1.66 0.06 0.33 1.03 0.06 1.91 7.30 0.02 0.17 1.05

5 0.13 2.56 13.31 0.39 9.23 37.78 0.23 4.81 35.63 0.23 5.06 26.75

6 0.00 0.00 0.27 0.00 0.00 0.17 0.02 0.05 0.19 0.00 0.05 0.27

7 0.00 0.05 0.88 0.00 0.09 0.00 0.55 7.95 41.03 0.00 0.00 0.34

8 3.64 57.22 188.64 2.30 25.13 54.69 15.33 90.16 312.77 4.69 79.83 750.31

9 0.00 0.05 0.47 0.00 0.13 0.13 0.02 0.28 0.95 0.02 0.09 1.14

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00

11 0.00 0.05 0.09 0.00 0.00 0.02 0.02 0.00 0.19 0.02 0.00 0.19

12 0.11 0.64 2.95 0.05 0.52 2.56 0.09 0.50 2.80 0.08 0.70 2.72

13 0.17 0.84 2.80 0.17 0.66 2.34 11.25 74.19 265.77 0.27 1.19 4.06

14 0.00 0.00 0.34 0.05 0.17 0.64 0.58 9.05 47.61 0.00 0.11 0.45

15 0.16 0.80 2.72 0.14 0.38 1.52 0.11 0.58 1.53 0.13 0.86 2.50

16 1.56 14.61 51.83 12.28 71.00 230.58 1.45 12.89 45.08 3.47 27.59 136.97

17 0.00 0.02 0.17 0.06 0.27 1.03 0.09 0.30 16.95 0.00 0.61 5.17

18 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.17

19 0.22 2.52 16.66 2.55 21.97 105.25 0.98 10.56 85.84 0.66 6.11 46.13

20 0.09 0.42 1.64 0.14 0.16 0.31 0.06 0.52 1.64 0.13 0.56 1.48

21 0.11 0.64 1.92 0.30 0.66 1.75 0.19 0.64 2.28 0.11 0.67 1.89

22 0.22 1.47 3.81 0.44 1.20 3.70 0.23 1.27 3.97 0.28 1.33 3.64

23 0.05 0.34 0.94 0.14 0.17 0.70 1.33 12.14 73.94 0.06 0.33 1.45

24 26.86 129.34 315.89 23.67 99.48 247.72 25.25 126.94 310.22 27.91 134.39 345.58

25 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.06 0.34 0.06 0.00 0.42

26 0.03 0.16 0.28 0.02 0.05 0.27 0.05 0.23 0.98 0.03 0.28 0.63

27 0.00 0.19 0.44 0.02 0.39 0.88 0.06 0.27 3.73 0.11 0.13 2.92

28 0.05 1.86 8.08 0.00 0.00 0.09 0.33 6.38 33.81 0.13 5.50 30.44

29 0.02 0.09 1.45 0.16 6.80 30.59 0.28 6.39 30.58 0.13 2.89 12.78

30 0.00 0.00 0.17 0.05 0.00 0.17 0.64 8.77 40.30 0.00 0.28 0.86

31 0.33 1.30 5.80 4.30 32.52 84.59 8.52 58.55 227.69 8.08 54.38 213.69

32 0.34 3.52 12.83 0.63 2.97 34.56 0.73 2.11 35.41 0.59 10.23 53.84

33 0.02 0.13 0.64 0.02 0.13 0.72 0.00 0.16 0.83 0.02 0.13 0.63

34 0.02 0.09 1.30 0.08 0.44 0.75 0.03 1.02 11.41 0.06 0.06 2.19

35 0.13 1.61 11.13 0.00 0.00 0.00 0.28 7.19 34.50 0.14 5.27 33.09

36 0.00 0.06 0.33 0.00 0.06 0.27 0.11 1.34 10.00 0.00 0.05 0.50

37 0.05 0.13 0.61 0.08 0.09 0.61 0.00 0.06 0.69 0.00 0.13 0.61

38 0.00 0.00 0.34 0.05 0.00 0.14 0.02 0.00 0.31 0.00 0.00 0.23

39 0.00 0.05 0.16 0.08 0.13 0.27 0.00 0.05 0.27 0.02 0.13 0.33

40 0.02 6.64 0.09 0.00 0.16 0.16 0.00 0.16 0.00 0.03 0.06 0.09

41 0.19 1.00 1.95 0.08 0.41 1.23 0.09 10.83 42.00 0.23 1.02 2.70

42 0.16 0.83 1.31 0.16 0.77 1.50 0.19 1.11 2.16 0.27 0.94 1.61

43 0.16 0.95 3.86 0.48 2.06 6.53 0.17 0.91 2.48 0.22 1.47 3.70

44 13.08 28.11 39.45 0.13 0.14 0.47 199.86 236.06 69.61 36.25 78.47 63.83

45 0.06 1.39 7.63 0.00 0.00 0.00 0.33 8.77 32.97 0.16 5.25 27.61

46 0.00 0.13 0.53 0.08 0.22 1.30 0.02 0.38 1.08 0.00 0.08 0.52

47 0.09 3.30 26.39 0.00 2.45 11.27 0.53 9.06 44.53 0.17 4.64 41.38

48 1.92 16.78 81.48 0.05 0.08 0.06 9.17 81.80 268.95 4.28 71.53 232.80

49 0.09 0.20 0.80 0.06 0.16 0.75 1.08 5.86 4.06 0.11 0.50 2.61

50 0.03 0.22 0.63 0.05 0.45 1.14 0.02 0.09 0.66 0.02 0.02 0.17

51 0.00 0.17 0.66 0.05 0.13 0.89 0.00 0.11 0.78 0.00 0.05 0.69

52 0.02 0.25 1.09 0.17 0.09 0.53 0.08 1.11 5.66 0.02 0.17 1.48

53 0.34 3.36 11.47 0.31 1.08 4.77 0.34 1.53 4.75 0.22 1.39 5.97

54 11.86 74.11 215.81 11.44 63.31 217.22 12.66 75.08 246.59 12.98 79.83 261.73

55 1.45 12.20 49.23 11.80 70.80 229.56 1.53 12.45 45.34 4.03 32.88 113.27

Continued
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