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Multisensory‑inspired modeling 
and neural correlates for two key 
binocular interactions
Vincent A. Billock 1*, Kacie Dougherty 2, Micah J. Kinney 3, Adam M. Preston 4 & 
Marc D. Winterbottom 5

Most binocular vision models assume that the two eyes sum incompletely. However, some facilitatory 
cortical neurons fire for only one eye, but amplify their firing rates if both eyes are stimulated. These 
‘binocular gate’ neurons closely resemble subthreshold multisensory neurons. Binocular amplification 
for binocular gate neurons follows a power law, with a compressive exponent. Unexpectedly, this 
rule also applies to facilitatory true binocular neurons; although driven by either eye, binocular 
neurons are well modeled as gated amplifiers of their strongest monocular response, if both eyes 
are stimulated. Psychophysical data follows the same power law as the neural data, with a similar 
exponent; binocular contrast sensitivity can be modeled as a gated amplification of the more sensitive 
eye. These results resemble gated amplification phenomena in multisensory integration, and other 
non‑driving modulatory interactions that affect sensory processing. Models of incomplete summation 
seem unnecessary for V1 facilitatory neurons or contrast sensitivity. However, binocular combination 
of clearly visible monocular stimuli follows Schrödinger’s nonlinear magnitude‑weighted average. 
We find that putatively suppressive binocular neurons closely follow Schrödinger’s equation. Similar 
suppressive multisensory neurons are well documented but seldom studied. Facilitatory binocular 
neurons and mildly suppressive binocular neurons are likely neural correlates of binocular sensitivity 
and binocular appearance respectively.

For eyes, as for many things, two are usually better than  one1–5. Additive and super-additive binocular enhance-
ments are rare and enhancement usually exceeds that expected for probability summation. For weak stimuli, 
at the visual threshold, the binocular sensitivity enhancement is usually in the 30–70% range, with 40–50% 
enhancement most often  found4,6. For clearly visible stimuli these moderate enhancements are lost and binocular 
perception behaves more like a nonlinear weighted average of the monocular  responses7. This study seeks the 
simplest mathematical rules that closely govern these two behaviors and identifies specific neural mechanisms in 
macaque visual cortex that behave in accordance with these simple rules; analogous processing in multisensory 
neurons inspires some of this modeling.

If we begin with the long-standing (circa 1908) universal assumption that binocular enhancement involves 
summation of monocular  responses8, then the magnitude of reported enhancements suggest a compressive 
nonlinearity in the summation (e.g., Eqs. 1–2). In the literature, moderate but significant enhancements in bin-
ocular performance are usually referred to as incomplete or partial binocular summation and the term binocular 
facilitation is used for larger and less common  enhancements8. However, because our results suggest that the 
‘summation’ part of binocular summation might be a misleading misnomer, we will refer – as a theory-neutral 
term—to ‘binocular enhancement’. In vision  research9,10 and in multisensory  integration11–13 subadditive com-
binations of two sensory channels are often studied using the versatile Minkowski equation,

In binocular vision it takes the form of Eq. (2).

(1)Combined Response = (Channelm1 + Channelm2 + . . . . . . + Channeln)
1/m

.
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At the turn of the twentieth century, Minkowski was a leading authority in geometric theory, and he intended 
for a slight variation of Eq. (1) to model distances in non-Euclidean  spaces14. Of course, if m = 2, the Euclidean 
metric applies and Eqs. (1–2) model vector summation. If m = 1, the well-known city-block metric applies and 
summation is additive. As m grows, the system becomes more subadditive and for fairly large values can model 
probability summation.9 If inputs are equal the enhancement is just  21/m. In the limit as m grows, the subaddi-
tive effect of the smaller input becomes negligible compared to the larger input, and Eqs. (1–2) acts like a MAX 
operator, selecting the largest input. Although not derived from sensory considerations, the Minkowski function’s 
ease of use has made it the most widespread model for exploring partial summation in general and binocular 
summation in particular.

Attempts to fit binocular enhancement data to Eq. (2) produced m values that vary. An early and influential 
effort by Campbell and Green found an average (of two observers) contrast sensitivity enhancement near 41%,15 
which was intellectually satisfying because it corresponded closely to arguments from signal detection theory 
that signal-to-noise ratios for combinations of noisy inputs should grow as the square root of the number of 
independent channels combined. Likewise, the Minkowski equation would produce an enhancement of 41% 
for a Minkowski exponent m of 2, if the two eyes are equal in sensitivity (they are not quite equal − our direct 
fit of Campbell and Green’s one published observer’s data to Eq. (2) yields an exponent m of 1.85 ± 0.12, which 
predicts an enhancement factor of 1.45, very close to the true value of 1.44 for this observer). Several subsequent 
studies used m values near 2 to model binocular enhancement under some viewing  conditions16–20. Related bin-
ocular ‘energy’ models, with squaring nonlinearities have also been  employed21. Other psychophysical studies 
have found other m values, which vary by  task22. In general, binocular enhancement of brightness in uniform 
fields is consistent with less summation (larger m)23, while binocular enhancement of sensitivities for spatial 
frequency gratings is consistent with more summation (smaller m)4. The value of m often varies with the spatial 
and temporal frequency content of the  stimuli4,20,23–26. Some  datasets4,27 in Fig. 1b illustrate the general finding—
moderate-to-high spatial frequencies are more enhanced (have lower m values) than lower spatial frequencies.

One original purpose of this study was to understand this spatial frequency dependence. However, because 
of work in multisensory integration and color  vision28, we were aware of an alternative model of sensory facilita-
tion which behaves like a gated amplification and has a neural correlate in visual  cortex29–31. It turns out that this 
simple multisensory  rule28—binocularly-gated monocular power law amplification—models binocular contrast 
sensitivity without taking spatial frequency into account. Indeed, counter-intuitively, there is no need to take 
the weaker eye into account. Here we show that very similar power laws apply both to psychophysical data and 
to two classes of neural data in macaque V1, suggesting that neurons as early as V1 could provide the neural 
correlate of binocular enhancement.

A different rule applies for clearly visible stimuli and a different neural locus must be sought. For suprath-
reshold stimuli, the binocular response looks more like a nonlinear weighted average of the two eyes, an idea 
introduced by Erwin Schrödinger in  192632. Let L be the left eye response and R be the right eye response.

or equivalently,

The weights are driven by the magnitude of the monocular responses relative to the total response. Schrödinger 
used this model to understand Fechner’s paradox—the paradoxical increase in binocular brightness that occurs 
when an observer shuts an artificially impaired eye—and to address binocular color combination. This averag-
ing also reduces brightness differences between binocular-overlap and monocular-only fields-of-view. Very 
similar equations can be derived from reciprocal monocular suppressive gain-control33,34. MacLeod found that 
Schrödinger’s model—with minor physiologically-inspired modifications—explains much of suprathreshold bin-
ocular brightness psychophysics.7 Here we identify a class of ‘suppressive’ binocular V1 macaque neurons whose 
firing rates behave almost exactly like Schrodinger’s binocular equation and thus have the potential to underlie 
suprathreshold binocular brightness perception. This model may also be applicable to multisensory suppressive 
neurons. These results are in accord with growing evidence that both driving and modulatory (non-driving) neu-
ral interactions are important in sensory  processing35–40. Here modulatory interactions can account for binocular 
response at threshold, while driving interactions underlie binocular combination of suprathreshold stimuli.

Results
Modeling of neural and psychophysical data on facilitatory binocular interactions
Background for modeling binocular gate neurons
Most neurons in V1 are binocularly driven but even putatively monocular V1 neurons show indications that 
they receive some kind of modulation by the other  eye41–47. For example Kato et al. studied 112 cortical cells with 
orientation sensitivity and found that 16 of these neurons (14%) were monocularly-driven42. Remarkably 15 out 
of these 16 putatively monocular neurons showed “clear-cut binocular effects from the silent eye”. These putatively 
monocular V1 cells are located in Layer 4, but are not LGN afferents; many such cells have oriented receptive 
fields, including complex and hypercomplex receptive fields and/or motion-direction  sensitivity42,43. These cells 
are sometimes called ‘binocular gate neurons’ because the presence of stimulation in the non-driving eye gates the 
amplification or suppression of the monocular-driving firing  rate42,44–47. Most studies probed modulatory effects 
at zero disparity, but several studies also found evidence that an entirely non-driving eye could still produce 

(2)Binocular Combination = (Eyem1 + Eyem2 )
1/m

(3)Binocular Response = L ∗ (L/(L+ R)) + R ∗ (R/(L+ R)),

(4)Binocular Response = (L2 + R2) / (L+ R).
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disparity  tuning48–51. A recent study in monkey found evidence that the modulatory effects were produced in 
cortex, likely by feedback from neighboring neurons.43 This is consistent with studies that find modulation of 
Layer 4 neurons from other  layers52,53. The neural firing rate enhancements resemble the magnitude of enhance-
ment often found for psychophysical binocular contrast sensitivity.

Modeling of binocular gate neurons resemble subthresold multisensory neurons and follow the same gated power 
law monocular amplification
There is a close multisensory analog to the binocular gate neurons. Many multisensory neurons fire for only one 
kind of stimulation but are strongly modulated by the simultaneous presence of a different sensory stimulation. 
First discovered in visual–infrared neurons of rattlesnake optic  tectum54, these cells are now well documented 
for visual-driven cortical neurons whose firing is modulated (but not driven) by auditory  stimulation29–31. In 
the literature these are known as subthreshold multisensory cells or modulated unisensory cells. Billock and 
Tsou modeled their enhanced neural firing rates with a small neuronal network;55 a power law well describes 
the amplification of the visual  signal28, with an exponent of 0.87 for Allman et al.’s data.31 There are 10 analogous 
facilitatory binocularly modulated monocular cells in Dougherty et al.’s study of Macaca Radiata.43 These bin-
ocular gate neurons are driven by only one eye; but if both eyes are simultaneously stimulated, their firing rate 
increases. Dougherty et al. used the same high contrast spatial frequency gratings as stimuli for both monocular 
and binocular conditions, with near-optimal predetermined spatial frequencies and a variety of grating orienta-
tions for each neuron. We fit the resulting neural firing rates to a power law,

Figure 1.  Binocular sensitivity enhancement. (a) Psychophysical  data4 on binocular sensitivity enhancement 
(average of 45 observers). Most studies show averaged contrast sensitivity as a function of left eye, right eye 
and binocular contrast sensitivity. Differences in the individual left and right eyes tends to average out, leaving 
a misleading impression that the left eye and right eye are comparable, but that is not the situation that the 
binocular brain confronts on a subject-by-subject basis. A truer picture of the binocular task can be obtained by 
averaging the better eye and worse eye for each subject. (b) Applying Minkowski’s formula (Eq. 2) to averaged 
best monocular/worst monocular/ binocular data, the nonlinearity m required to model binocular sensitivity 
is a function of spatial frequency; high spatial frequencies show more sensitivity enhancement (lower m) for 
binocular stimulation. Similar patterns of spatial frequency dependency are found for three studies (Refs.4,27 and 
the present study).
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Figure 2a shows the result. The best fit power law has an exponent n of 0.84 ± 0.08 (r2 = 0.93), quite similar 
to the analogous multisensory (visual modulated by audio) neurons (exponent of 0.87 ± 0.02), with an r2 value 
of 0.99 (Fig. 2B). The value of a (2.2) is greater than 1—the system is an amplifier; the amplification is reduced 
nonlinearly by the compressive exponent. Equation 5 amplifies responses to weak/ineffective stimuli relatively 
better than strong/more-effective stimuli, a result familiar from the sensory integration literature as the Princi-
ple of Inverse  Effectiveness56. This compressive nonlinearity is consistent with the perceptual enhancement of 
threshold stimuli and the reduced enhancement of stronger stimuli.

Modeling true binocular neurons and comparison to the seemingly analogous case of the bimodal multisensory 
neurons
Just as true binocular neurons can fire to either eye, there are well-studied multisensory ‘bimodal’ neurons, that 
fire when either sense (say visual and auditory) are stimulated. These multisensory neurons’ spike rates are well 
fit by the Minkowski  model13, but are generally less well fit by the power  law28. This makes sense if neurons are 
combining responses, however nonlinearly. We would not expect a function of one neural variable to substitute 
well in what seem like an intrinsically two-variable system—like the two eyes in binocular interactions. So far 
as we know, this is the first study to fit either power laws or Minkowski functions to the enhanced firing rates of 
binocular neurons, and consequently the first study to be able to compare a neural parameterization to psycho-
physical data. For the 55 macaque true facilitatory binocular cells in Dougherty et al.’s’s data, we fit the Minkowski 
exponent m by computing the roots of Eq. (2) (see “Methods”, Eq. 10) and obtained a mean of m = 1.77 (an aver-
age enhancement of 47%) and a range of 0.38—9.26. Similarly, if we least-squares-fit the whole population of 

(5)BinocularFiringRate = a ∗MonocularFiringRaten.

Figure 2.  Modeling facilitatory binocular gate neurons with a simple power law model, like the one that 
models modulatory multisensory cells. (a) Dougherty et al.’s 10 facilitatory macaque V1 binocular gate neurons 
fire for only one eye’s stimulation, but their binocular firing rates are enhanced if the non-driving eye is also 
 stimulated43. These neurons are well modeled  (r2 = 0.93) by a power law with an exponent of 0.84 ± 0.08. (b) 
Comparison to (a) of a power law  fit28 to Allman et al.’s31 37 ‘subthreshold’ multisensory neurons (cat extrastriate 
visual cortex) that fire for visual stimulation, do not fire for auditory stimulation, but fire harder when both 
senses are stimulated (n = 0.87 ± 0.02;  r2 = 0.99).
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facilitatory binocular neurons to Eq. (2) using a single Minkowski exponent, we obtain an m of 1.71 (an average 
enhancement of 50%) and an r2 value for the fit of 0.93. These neural values are roughly consistent with typi-
cal psychophysical values of the Minkowski exponent (e.g., Fig. 1b) and of the typical reported psychophysical 
 facilitations4,25. However, we tried test-fitting the same data to a one-variable power law,

Surprisingly, this simple one-variable model yields an r2 value of 0.94 and an exponent of 0.89 (Fig. 3a), 
similar to the exponent found for the binocular gate neurons (Fig. 2a). Binocular response, which we think of 
as a function of two variables, can be described at least as well by a function of one variable. When we combine 
the two neural populations (true binocular and binocular gate neurons) we find a compromise model that does 
very well for all cortical V1 facilitatory neurons with either kind of binocular input. This fit to all of the facilita-
tory cells yields a power law exponent of 0.90 and an r2 value of 0.93 (see Fig. 3b). The Minkowski exponent, for 
comparison, is not computable for the binocular gate neurons, which lack a second reliable monocular response.

Modeling of psychophysical binocular enhancement is consistent with neural modeling
The unexpected success of power law amplification for the binocular neurons led us to try the same model in 
psychophysical binocular enhancement, even though it has always been assumed that binocular enhancement 
should be a function of both eyes. We modeled two studies that examined binocular enhancement of contrast 
 sensitivity4,27 and our own normal control data from an unpublished study of binocular vision with acquired 
defects in one eye (see “Methods”). Each study used similar spatial frequency ranges, with 5–6 spatial frequencies 
varying from 1–18.5 c/deg or 1.5–18 c/deg. All three studies were well fit by both Minkowski functions and power 
laws (see Table 1). In the physical and biological sciences, there is a rule-of-thumb that power law fits should have 
(at least) about two orders of magnitude range in the dependent and independent variables. By themselves, no 

(6)BinocularFiringRate = a ∗ BestMonocularFiringRaten.

Figure 3.  Comparison of power laws for binocular and modulated monocular neurons. (a) Modeling of 
Dougherty et al.’s43 V1 macaque binocular neurons, which fire for stimulation from either eye but fire harder 
for binocular stimulation. Surprisingly, a very similar power law model used for the binocular gate neurons 
applies equally well here  (r2 = 0.94), with an exponent (n) of 0.89 ± 0.03. A Minkowski model does as well 
(m = 1.71 ± 0.13;  r2 = 0.93). (b) The results from the gated binocular and true binocular cells are similar enough 
that their combined data can be well fit by a power law, with an exponent n of 0.90 ± 0.03 and an  r2 value of 0.93. 
This combined data cannot be fit with Eq. (2) (because 10 of the neurons lack one of the monocular responses). 
See Table 1 for model parameterizations.
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one of these psychophysical studies satisfies that criteria. However, there are fairly large differences in monocular 
and binocular contrast sensitivity in the three studies that are likely driven by stimulus nuances and by differences 
in the average ages of the subjects in the studies. By combining studies with high and low contrast sensitivities, 
we can obtain a composite data set that has more range to fit. (This is commonly done in power law studies of 
physiological size (allometric) scaling relationships, where the individual data points can be different species, 
ranging say from mice to elephants, or ferns to sequoias.) The psychophysical analog to the neural Eq. (6) is

Figure 4 shows that binocular enhancement behaves like a power law amplification of the more sensitive 
eye’s contrast sensitivity; the model accounts for 99% of the variance. The exponent is 0.93 ± 0.03, similar to the 
exponent found for the combined binocular neurons (0.90 ± 0.03). For direct comparison we fit the same data to 
the Minkowski model for a single value of the Minkowski exponent m and got a best fit for m = 2.65. The quality 
of both fits are very good (Table 1), but the residuals for the power law are random while the Minkowski model 
shows systematic deviations from the data that are most noticeable for low sensitivity conditions (see Fig. 4B), 
which correspond to the highest spatial frequencies. Since Fig. 1b shows that the best m varies with spatial fre-
quency, we could have reduced this discrepancy by using different values of the exponent Minkoswki exponent m 
for different spatial frequencies (and for different studies), but at a cost of adding several more fitting constants. 
The power law model does not have this problem, in part because of the way that the multiplicative constant 
and the compressive exponent interact: the combination amplifies weak responses relatively more than strong 
ones (the famous Principle of Inverse Effectiveness from sensory integration). Because psychophysical contrast 
sensitivity is weakest at high spatial frequencies, the relative enhancement is stronger at the high frequencies, 
just as it is in psychophysical data. Another interesting aspect in the modeling is that the Minkowski exponent 
for binocular neurons (1.71 ± 0.13) does not line up well with the Minkowski exponent for the psychophysical 
data (2.65 ± 0.20), while the power law exponents for the combined neural (0.90 ± 0.03) and psychophysical data 
(0.93 ± 0.03) coincide. The power law gated amplification model may be the better model for perceptual and 
neural data. When comparing psychophysical and neural data by neural subtype, the true binocular neurons 
are a closer match to the psychophysical data than the gated binocular neurons. However, because the power 
law exponent for the combined binocular gate neurons and true binocular neurons is so similar to the power 
law exponent for psychophysical binocular contrast sensitivity, this raises the intriguing prospect that binocular 
contrast sensitivity draws on the entire pool of enhancing binocular neurons, regardless of subtype.

Modeling of suppressive binocular neural interactions and relation to suprathreshold binocu‑
lar vision
Background for modeling: suppressive binocular V1 neurons and analogous suppressive multisensory neurons
It has long been known that there are large numbers of binocular neurons whose firing rates lie below their 
best monocular responses. Most of these neurons are mildly suppressive, with firing rates that lie between the 
best and worst monocular responses. It has long been unclear what role suppressive binocular neurons play in 
binocular perception, but their large numbers force us to take them seriously. Similar suppressive neurons are 
found in many multisensory systems (audiovisual, visual-tactile, audio-tactile and visual–infrared)54,57, in many 
species (cats, ferrets, macaques, rattlesnakes) and their perceptual roles also mostly obscure. Recently here has 
been suggestions that visual-vestibular neurons, many of which are mildly suppressive, might be mimicking a 
Bayesian weighted  average58; and one analysis suggests a particular nonlinear weighted average—invented by 

(7)BinocularSensitivity = a ∗ BestMonocularSensitivityn.

Table 1.  Power law and Minkowski enhancement model fits to Eqs. (5–7) (a,n) or Eq. (2) (m)* *Number’ 
is number of neurons for the first four entries, or number of subjects x number of spatial frequencies for the 
remaining entries. The Minkowski model is not fit to gated binocular neurons (because the data lack a second 
input variable). For the Combined Contrast Sensitivity, the number of spatial frequencies (5 or 6) depends on 
the study.

Dataset/condition Number a ± 1se n ± 1se m ± 1se r2

Gated Bin  Neurons43 10 2.20 ± 0.73 0.84 ± 0.08 – 0.931

True Bin  Neurons43 55 2.14 ± 0.30 0.89 ± 0.03 – 0.935

True Bin  Neurons43 55 – – 1.71 ± 0.13 0.929

Combined Bin  Neurons43 65 2.04 ± 0.26 0.90 ± 0.03 – 0.934

Contrast Sensitivity (new) 9 × 6 1.96 ± 0.40 0.91 ± 0.06 – 0.996

Contrast Sensitivity (new) 9 × 6 – – 1.60 ± 0.10 0.985

Contrast  sensitivity27 25 × 6 1.70 ± 0.54 0.90 ± 0.09 – 0.993

Contrast  Sensitivity27 25 × 6 – – 2.41 ± 0.20 0.992

Contrast  Sensitivity4 45 × 5 1.10 ± 0.49 1.02 ± 0.09 0.983

Contrast  Sensitivity4 45 × 5 – – 2.86 ± 0.32 0.978

Combined Contrast Sens. 79 × 5/6 1.63 ± 0.23 0.93 ± 0.03 0.990

Combined Contrast Sens. 79 × 5/6 – – 2.65 ± 0.20 0.986
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Erwin Schrödinger to account for binocular appearance—also models mildly suppressive multisensory  neurons59. 
Here we apply Schrödinger’s model and other theoretically interesting models to suppressive binocular neurons.

Suppressive binocular V1 neurons seem to implement a specific theoretically meaningful nonlinear weighted bin-
ocular average
Schrödinger’s 1926 equation (Eqs. 3–4), a magnitude-weighted nonlinear average of monocular  responses32, was 
motivated by Fechner’s 1861 observations on binocular brightness perception.60 Very similar equations were 
later derived from reciprocal suppressive monocular gain control  considerations33,34. The differences in the new 
models involve the addition of adjustable parameters that fine-tune the gain control, but we preferred to use 
the original fully constrained model instead.  MacLeod7 showed that Schrödinger’s equation could model two 
studies’  measurements61,62 of suprathreshold brightness matching, if the monocular responses were nonlinear 
functions of luminance differences (contrast). MacLeod used a logarithmic nonlinearity, but the logarithm 
can closely approximate the Naka-Rushton response functions that are used today. As MacLeod notes, visual 
neurons with center/surround receptive fields transmit nonlinearly transformed luminance differences to the 
 brain7. This suggests that no mathematical extension of Schrodinger’s equation should be necessary to model 

Figure 4.  Data from three studies of binocular contrast enhancement. Each data point is the average contrast 
sensitivity for all observers from one study at one spatial frequency. (a) Binocular contrast sensitivity can be 
well modeled  (r2 = 0.990) as a simple power law of the more sensitive eye’s contrast sensitivity. The exponent 
n is 0.93 ± 0.03, which resembles the neural data (0.90 ± 0.03, Fig. 3). (b) Same data, using both the better and 
worse monocular responses in the Minkowski equation, to model the binocular response. The special graphing 
approach, developed for modeling multisensory  data13 plots monocular and binocular neural responses and 
modeled binocular response as a function of the binocular neural response. Actual binocular neural data plot 
(by design) on the 45° axis, monocular inputs plot relative to binocular outputs (illustrating relative monocular 
contributions to outputs), and model deviations from data stand out. This approach has some advantages for 
displaying multidimensional data in a readable two-dimensional framework (see “Methods”). The best fit is for 
a Minkowski exponent m of 2.65 ± 0.20, which does not resemble the m of 1.71 ± 0.13 found for neural data. The 
fit is very good  (r2 = 0.986), with an obvious systematic discrepancy for low-to-moderate contrast sensitivities 
and a less obvious systematic discrepancy (in the other direction) at higher contrast sensitivities. The use of 
logarithmic coordinates compresses the positive-going discrepancies at higher contrast sensitivities, relative to 
low sensitivities.
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neural firing rates, because the required transforms to approximate the psychophysical data would already be 
built into the monocular firing rates. All that remains is to find if there is a class of binocular neurons that fol-
low Schrödinger’s equation in combining the two monocular neural firing rates. MacLeod suggested looking 
at ‘suppressive’ binocular neurons that fire less for binocular stimulation than for monocular stimulation of the 
dominant eye. We call this MacLeod’s Criterion.

To be specific, for neurons to be candidates to fit Schrödinger’s equation—or any other weighted average, 
nonlinear or not—they would have to be only mildly suppressive, in that their binocular firing rate would have to 
lie between the stronger and weaker monocular firing rates. This is a necessary condition to be a simple weighted 
average, but it is not a sufficient condition for Schrödinger’s model, since another rule (or none) might govern the 
weights. For example, a prominent variation on Bayesian sensory reasoning—Maximum Likelihood Estimation 
(MLE), widely used in sensory integration modeling—would suggest that the weights be inversely proportional 
to the variances of the monocular firing rates (reliability weighting), rather than the magnitude-based weights 
of the Schrödinger  model63,64. For consistency with Dougherty et al.’s data, let Eye1 and Eye2 be the firing rate of 
the stronger and weaker responding eyes and σ1

2 and σ2
2 be the associated variances of those firing rates.

where

Because of the theoretical importance of the Bayesian approach for other neural systems, we test both the 
Bayesian MLE and Schrödinger models against neural data. Because firing rate variance is strongly correlated 
to firing rate magnitude, it is obvious that the two models will show somewhat different trends: the Schrödinger 
model will weight the strongest channel the most (similar to the Minkowski model) while the MLE model will 
tend to weight the weaker channel more, because it equates reliability with inverse relative variance and variance 
tends to be correlated with mean firing rate. In addition to their theoretical relevance, both models have the 
advantage of being perfectly constrained (having no fitting parameters); parameterization is completely deter-
mined by firing rate data. Dougherty et al.’s data  set43 contains 48 suppressive binocular neurons, 35 of which 
meet MacLeod’s Criterion: these neurons have reliable responses from both eyes and have binocular firing rates 
that lie between the dominant and non-dominant eye’s responses. We will call these “Between” neurons. Fig-
ure 5a shows the ‘Between’ suppressive neurons in Dougherty et al.’s sample, with neural responses to identical 
high-contrast near-optimal spatial frequency gratings of various orientations, presented parafoveally in a mir-
ror stereoscope. Figure 5b shows the modeling of the ‘Between’ neurons using Bayesian Maximum Likelihood 
Estimation (Eqs. 8–9) and Schrödinger’s equation (Eq. 3). The MLE model drastically underestimates binocular 
combination, but with near strict proportionality (a correlation of 0.87), which could allow ‘suppressive’ binocu-
lar neurons to serve as substrates for Bayesian-inspired models, if the underestimation is compensated for with 
a multiplicative constant (in this case 1.61). However, the Schrödinger equation’s performance is much better 
(overestimating the data by 8%), with strict proportionality (a correlation of 0.98).

Discussion
Synopsis
(1) Macaque V1 binocular-facilitatory monocular neurons fire for stimulation in one eye, but not the other, and 
have enhanced responses when both eyes are stimulated. The activity in the non-driving eye gates the power 
law amplification of the response to stimulation in the eye that drives the neuron’s firing rate. This result has a 
sensory precedent—visual cortical neurons amplified by auditory  inputs31; these modulated unisensory neurons 
have very similar power law exponents to the modulated monocular  neurons28. (2) For true binocular neurons, 
which fire for stimulation of either eye, binocular facilitation can be predicted as a power law amplification of 
the stronger monocular response. The variance accounted for (94%) suggests that there is little need for a more 
complicated model that would take the weaker eye into account. This is surprising because power law models 
do not fully account for facilitation in multisensory bimodal cells (a multisensory analog of binocular neu-
rons), necessitating taking the second variable into account for bimodal  neurons28. The Minkowski model does 
almost as well for the true binocular neurons, but can’t be extended to cover binocular gate neurons, while the 
power law can. (3) The slightly compressive power law exponents means that weakly stimulated neurons will be 
relatively more binocularly amplified than strong ones. This predicts less binocular enhancement for stronger 
(clearly visible) stimuli. In sensory integration this behavior is known as the Principle of Inverse Effectiveness. (4) 
Psychophysical data follows the neural trend: binocular sensitivity is well modeled as a power law of the greater 
monocular sensitivity. The exponent for psychophysical data is similar to the exponent for binocular neurons and 
the r2 value of 0.99 suggests that more complicated models—taking the weaker eye into account—would be of 
limited utility. The similarity of power law exponents for V1 excitatory neurons and for psychophysics suggests 
that these cortical neurons could be the correlates of psychophysical binocular enhancement at threshold. (5) 
The exponent for the combined neural populations (0.90 ± 0.03) closely resembles the exponent for the psycho-
physical data (0.93 ± 0.03). This result suggests that both gated binocular neurons and true binocular neurons 
could be contributing to psychophysical binocular facilitation. (6) These results are consistent with Sherman 
and Guillery’s driver/modulator  framework35, since both neural data sets and the three psychophysical studies 
are all consistent with input from the weaker (or non-driving) eye gating the amplification of the stronger (or 
driving eye); the actual strength of the weaker eye’s signal is not noticeably a factor in the resulting amplifica-
tion. It is possible to build simple similar-behaving neuronal  networks55, whose firing rates closely approximate 
power law  amplification28. (7) So far as we know, these are the first models of binocular enhancement that do not 
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involve nonlinear summation of the two eyes and this is the first quantitative study to directly compare binocular 
enhancement interactions in neurons and perception. (8) MacLeod found that Schrödinger’s binocular equa-
tion, with extensions for neural attributes, models suprathreshold binocular  brightness7. Here we showed that 
Schrödinger’s equation is a tight match to the spike rate behavior of mildly suppressive (‘Between’) binocular 
neurons which suppress binocular firing rate relative to dominant eye stimulation firing rate: both are simple 
nonlinear-weighted averages of monocular spike rates. (9) It follows that facilitatory modulated (“gated”) bin-
ocular neurons and facilitatory binocular-driven neurons are both potential neural correlates of psychophysical 
threshold binocular enhancements, and that mildly suppressive binocular “Between” neurons are a potential 
neural correlate of supratheshold binocular brightness perception.

An experimental prediction for binocular enhancement of contrast sensitivity
The data for both binocular-driven and binocular-modulated neurons, and for binocular contrast sensitivity, is 
consistent with gated power law amplification of the more sensitive eye’s responses. The activity driven by the 
less responsive eye gates the amplification of the monocular signal but does not otherwise participate in the 
calculation, so the actual magnitude of the weaker eye’s response is not required to model the data. It seems 
likely that there is a threshold level of activation by the weaker eye’s response that triggers the gated amplifica-
tion, but the threshold can’t be high in binocular gate neurons, since the binocular amplification obtains even 
for these neurons that don’t reliably generate spikes for the weaker eye’s stimulation (e.g., Fig. 2a). Similarly, we 
have preliminary unpublished psychophysical evidence that applying a moderate amount of blur to either eye 
does not abolish binocular amplification of the unfiltered eye. Although some studies show little-to-no binocular 
enhancement in amblyopes, Baker et al. found that they could get normal binocular summation in amblyopes 
by compensating for the weaker monocular response with a stronger  stimulus65. Similarly Schneck et al. found 
little-to-no binocular enhancement in elderly subjects when there was a strong difference in stimulation of the 
two  eyes66. It would be interesting to measure the amount of blur or the reduction of contrast applied to one eye 
that suffices to abolish the enhancement, and determine whether this threshold is fixed or labile.

Figure 5.  Modeling suppressive binocular neurons. (a) Monocular and binocular firing rates for 35 binocular 
 neurons43 that meet MacLeod’s criterion for being potential weighted averages of the two eyes. (b) Two fully 
constrained models are plotted with this data using a similar scheme to Fig. 4b; actual neural data plot (by 
design) on the 45° axis, and model deviations from data stand out. The Schrödinger model works well and has a 
better fit than the Bayesian MLE model, even if we compensate for the gross underestimation of the MLE model.
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An experimental prediction for mildly suppressive “between” neurons
The evidence above suggests that mildly suppressive “Between” cells are a likely locus of weighted averaging in 
suprathreshold binocular perception and are the locus of the calculations embodied in the Schrödinger model. 
For this to be true the between-status of ‘Between’ cells has to be reliable—the binocular response should almost 
always lie between the monocular responses. This needs to be tested experimentally with a range of stimuli to 
verify that cells that test as weighted averagers for one stimulus pair also test as weighted averagers for other 
stimuli. An alternative would be for the visual system to pool all of the suppressive cells to compute averages, 
but this result would not be as clean as using a stable reliable ‘Between’ cell population.

The modulator/driver distinction
Sherman and Guillery’s35 modulator/driver distinction is an influential framework for understanding neural 
 interactions36–40. Although it has long been apparent that some neurons do not cause their postsynaptic neurons 
to spike, they can still modulate the target neuron’s output when it is already firing. Here we have discussed both 
modulated unisensory neurons 28–31,54,55 and modulated monocular  neurons42–47 as examples where one of the 
neural inputs is driving and the other is modulatory. Modulator neurons / gated psychophysical amplifications 
are also found in several other sensory contexts, including color vision, attention and especially in thalamic 
 processing28,35–40. This modulation can modify sensitivity tuning of cortical neurons. Amplification with an 
expansive exponent results in sharper tuning, while a compressive exponent (found both here and in Ref.28) 
broadens tuning by amplifying weak responses more than strong ones.

Occam’s Razor and binocular integration at threshold
Some aspects of binocular integration definitely combine information from both eyes—stereopsis (and bin-
ocular luster) would not be possible otherwise. However, the present results show an interesting disconnect 
between binocular enhancement and stereopsis: binocular enhancement is consistent with binocularly gated 
amplification of monocular signals. Of course this had to be the case for the binocularly-modulated monocular 
(gated binocular) neurons, since they fire for only one eye and are modulated by activation of the other eye. But 
this did not have to be true for explicitly binocular neurons or for psychophysical data. Indeed we would have 
predicted otherwise. However, all three classes of data are well modeled by a simple power law amplification 
of monocular signals, with similar exponents. Conversely, it is never surprising that a Minkowski function can 
fit two monocular responses to a binocular response because if the binocular response is greater than either 
monocular response, there exists a Minkowski exponent that satisfies the equation, no matter how arbitrary the 
monocular values are. Although the Minkowski exponent m fit to contrast sensitivity data varies somewhat with 
spatial frequency (Fig. 1b), a compromise exponent does a surprisingly good job of fitting entire datasets, with 
fits that are almost as good as those for the power law. Similarly, the Minkowski model does almost as well for the 
binocular-driven neurons, but can’t be extended to cover binocular gate neurons, the way that the power law can. 
Moreover, the estimated power law exponents for neural and psychophysical data are more consistent with each 
other than the Minkowski exponents for the same data (Table 1). Considering just psychophysical data (where 
we have multiple data sets), the power law exponents are more consistent between data sets than the Minkowski 
exponents. Although some kind of nonlinear summation can’t be ruled out for some kinds of binocular enhance-
ment, Occam’s Razor would seem to apply here: if gated amplification, a function of one variable (dominant 
eye), can account for 99% of the experimental variance in psychophysical data and 93–94% of the variance in 
both kinds of binocular neural firing rates, then the role of the other variable (non-dominant/non-driving eye) 
is (in those contexts) negligible. The consequences of adopting a one-variable model are: (a) rethinking the 
venerable notion that binocular enhancement is a form of summation and (b) taking seriously the notion that 
modulatory interactions can modify sensory performance. It is intriguing to consider the disconnect between a 
monocularly-driven binocular enhancement model and the phenomenon of stereopsis. A partial reconciliation 
is inherent in a recent model of stereopsis that utilizes monocularly-dominated  inputs67. It is interesting that 
a recent study of pheromone interaction in insects—a phenomenon that was previously modeled using both 
pheromones—has been shown to be well-modeled using one  pheromone68; the data obey the Billock and  Havig28 
gated amplification model (used here for binocular enhancement) , but with a more compressive exponent. It 
may be that other systems that employ two-variable models, like binaural and bivestibular interactions, might 
be profitably analyzed with a single variable model.

Comparing power laws for neural and psychophysical data
Power laws frequently arise in psychophysics and are often used in neuroscience. It is also not uncommon for 
power laws for particular classes of neurons to have similar exponents as psychophysical data. Here we found that 
visual neurons that amplify their responses when the stimuli are binocular obey a power law with an exponent 
of 0.90 ± 0.03. Similarly, the power law for binocular contrast sensitivity amplification has a power law of with 
an exponent of 0.93 ± -0.03. Similar coincidences have arisen in many other comparisons of neural and psycho-
physical behavior. The most relevant one for our purposes arises from audio-visual amplifications. For example 
Stein et al.69 published data on audio effects on perceived brightness of various dim lights. Billock and  Havig28 
fit the audio-amplified data as a function of the visual-alone data to a power law with an exponent of 0.82. For 
comparison they fit data on visual neurons that amplify their firing rates when audio signals are present and got 
a power law of 0.87. Other, somewhat related examples can be found in the Stevens’ law literature (Billock and 
Havig’s  modeling28 can be thought of as a second-order Steven’s law, arising as a ratio of Stevens’ laws for amplified 
and unamplified data respectively). Stevens reviews several such psychophysical and neural  coincidences69,70. 
Two particularly interesting cases arise from consideration of the brightness of lights measured for conditions 
with and without physical contrast: (a) Several investigators, including Stevens find that apparent brightness 
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of targets on a different background grows as the cube root of the intensity of the  target69,70. Similarly Stevens 
notes that reaction time drops and neural responses in both peripheral neurons and central measures (evoked 
potentials) grow as the cube root of intensity for contrasting targets. (b) A different power law for non-contrasting 
targets governs pupil contraction (an objective measure of neurally controlled subjective brightness intensity); 
the exponent is 0.2272, while the power law for brightness perception in a Ganzfeld (a uniform target filling the 
visual field) is 0.2472,73. If taken seriously, matches between psychophysical and neural response functions have 
interesting theoretical  consequences74–77. As Johnson et al.75 note, if both neural and psychophysical data have 
response functions of the same form, they can be expressed as a linear function of one another, i.e.,

In the case of neural and psychophysical power laws with the same exponent, any differences in the fitted 
proportionality constants of the power laws would be captured in the value of ‘k’. To our knowledge no one has 
designed experiments to probe this exact aspect of the modeling, but Johnson et al. have done the most rigorous 
work (on the linear relationship between texture perception and its best neural correlate)75. More interesting, as 
Werner and  Montcastle77 point out, if both the psychophysical and neural functions have the same mathemati-
cal form (and if this is not just a coincidence), then any subsequent non-measured neural processing must not 
cumulatively distort the measured functional response, beyond changing the value of ‘k’ in Eq. (10).

Similarity between multisensory and binocular interactions
Mildly suppressive binocular neurons—which are well fit by Schrodinger’s nonlinear magnitude weighted aver-
age—behave much like most multisensory suppressive neurons. That is, multisensory neurons deemed suppres-
sive are categorized as suppressive because their response to multisensory stimulation is lower than their best 
response to individual unisensory stimuli. But most such neurons are not strongly suppressive: their multisensory 
response lies between the best and worse unisensory responses. As such they are good candidates for being mod-
eled by a weighted average, but which one? A preliminary report from our laboratory found that in each of three 
tested cases (visual-tactile, audio-tactile and audio-visual), multisensory Between-neurons were well fit by the 
Schrodinger model and that reliability weighting did not do quite as  well59. For binocular facilitation we found 
two candidate neural classes: true binocular neurons and gated binocular neurons. True binocular facilitatory 
neurons fire for stimulation in either eye, but fire harder for binocular stimulation than for either eye stimulated 
alone. Binocular gate neurons fire for stimulation in one eye, but not the other, but still fire harder when both 
eyes are stimulated. On their face, true binocular neurons resemble multisensory bimodal cells and binocular 
gate neurons resemble what various multisensory labs have called subthreshold multisensory cells or modulated 
unisensory cells. Most of the work on these units has been done in cat extrastriate visual cortex and find neurons 
that fire for visual stimuli, don’t fire for auditory stimulation, but fire harder when an audio stimulus accompanies 
a visual stimulus. Our previous modeling (Fig. 2b) of the subthreshold audio-visual neurons found that they were 
well fit by a power law with an exponent of 0.87 ± 0.02. This closely resembles the exponent of 0.84 ± 0.08 which 
we found for the gated binocular neurons. Since true binocular cells behave analogously to bimodal multisen-
sory cells and we had found previously that the Minkowski incomplete summation rule works well for bimodal 
sensory cells, we expected the Minkowski equation to be a good model for true binocular neurons, and it was. 
It was unexpected however that the power law would provide such a good model for true binocular neurons.

Limitations of the study and limitations of power law models
Our psychophysical data was from studies of binocular contrast sensitivity. We are aware of (but do not presently 
have data to model) studies of color and contrast interactions in binocular vision. We do not know if these studies 
could be well modeled at threshold by the power law. Similarly, we make no argument that the true form of the 
binocular sensitivity is a power law, only that it provides the simplest model with an excellent and consistent fit to 
both psychophysical and neural data. For example, our neural amplifier model with Hodgkin–Huxley  dynamics55 
results in a function that closely resembles a power law, with small periodic excursions around the power law 
fit (see Fig. 4c of Ref.28). Establishing that a function is actually a power law (and not another member of the 
family of power-law-like functions) requires more data and a larger response range than is at our disposal. We 
use the power law here to connect the data to similar results in sensory integration and color  vision28,78 and to 
show that no knowledge of the weaker eye’s response (other than it is active) is necessary to model these neural 
and psychophysical data. Related findings in sensory integration and color vision  interactions28 suggest that 
modulatory neurons may play roles in perception in parallel with the role played by the better-studied driver 
neurons. It would be particularly interesting to probe these neural subtypes roles in binocular enhancement 
using experiments that compare neurometric and psychometric functions in the same behaving animals. Simi-
lar caveats apply to the Schrödinger model for suprathreshold perception. In any case, we have identified two 
remarkably simple rules followed by binocular interactions in both perception and in some neural populations.

Methods
Experimental methods
All of the  neural41 and psychophysical  data4,27 modeled in this paper have already been published (several by 
our combined laboratories) except for an excerpt from our unpublished (Kinney & Billock) pilot data that was 
included in the modeling in Figs. 1a and 4. These pilot data motivated a closer look at the other more extensive 
datasets analyzed here, and were taken from a larger unpublished project that examined the clinical effects of 
monocular disease in binocular vision, but was cut short by the COVID pandemic. The pilot data used in this 
paper were monocular and binocular contrast sensitivities measured in nine normal control observers. Because 
the methods were identical to those used in another published study by our  group27, and the apparatus was the 

(10)Psychophysical = k ∗ Neural.
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apparatus used in that study, we briefly summarize here the more detailed methods found in Ref. [27]. Briefly, 
the nine subjects, who were in their twenties and thirties, all had normal or corrected-to-normal vision. Contrast 
sensitivity was measured using a filtered optotype approach with the ‘quick CSF’ methodology of Ref. [79]. The 
commercially available (Adaptive Sensory Technology) apparatus is tablet-based and uses a variety of spatially 
filtered  optotypes80. The variation that we employed was a prototype created by AST for the US Air Force School 
of Aerospace Medicine that employs spatially bandpass filtered Landolt Cs presented on a NEC Multisync P463 
flat panel  display27. Resolution on the 46″ display was 1920 × 1080, with a contrast ratio of 4000:1. Images were 
viewed at 4 m and were scaled to have centroid spatial frequencies of 1, 1.5, 3, 6, 12, and 18.5 c/deg. An interlaced 
presentation, four-alternative forced choice, Bayesian adaptive procedure was used to estimate thresholds for 
each  stimulus79. The experiment was run for both eyes separately and for binocular combination. Five of the nine 
observers returned for a second session before their service was cut short by the COVID pandemic, and data 
from the first and second sessions were averaged. The study was approved by the Institutional Review Board at 
the Naval Medical Research Unit—Dayton and complied with the Declaration of Helsinki. Informed consent was 
obtained from all subjects. The subjects performed all of the experiments in a refraction lane and viewed stimuli 
through a clinical phoropter (NIDEK RT5100, Aichi, Japan). The phoropter was used to refract subjects to their 
optical correction, to add prism and polarization to align and prepare monocular images for binocular fusion 
(to study sensory eye dominance and binocular rivalry for each spatial frequency) and for some experiments to 
degrade one monocular image relative to another. The data on rivalry, dominance and degraded images are not 
treated here and will be employed in a different venue.

Exclusion of non‑facilitatory conditions/subjects and related calculations
Facilitatory neurons are defined as neurons that show binocular spike rate enhancement on a majority of trials, 
even if a few trials don’t show enhancement. When comparing neural and psychophysical behaviors, it would 
be most comparable to use subjects who show binocular enhancement at a majority of spatial frequencies. Most 
subjects show binocular enhancement and most show enhancement at each spatial frequency. For example, in 
Simpson et al.’s dataset,4 only one of 51 subjects showed no binocular enhancement and only five other subjects 
failed to show enhancement at a majority of spatial frequencies tested. Similarly, in the Winterbottom et al. 
dataset,27 we excluded five subjects who showed no enhancement at most spatial frequencies; several of these 
subjects had notations in their records about amblyopia and other binocular problems. The remaining subjects 
had their monocular and binocular data averaged and the averaged best eye sensitivity and binocular sensitivity 
was used to compute the Eq. (6) power law in Fig. 4a. All fits, both for power laws and Minkowski’s equation, 
were performed in CurveExpertPro 2.5 (Hyams Development, Chattanooga, TN).

The Minkowski equation (Eq. 2) has no valid solution unless binocular sensitivity exceeds sensitivity for each 
monocular condition; the Minkowski equation was derived from Pythagorean-like distances in non-Euclidean 
geometries and in no sensible geometry are combined dimensional distances less than the largest component 
distance. If this condition holds, then one way to estimate the Minkowski exponent m for each spatial frequency 
is to calculate the Minkowski exponents for every observer at that spatial frequency and average the exponents. 
This can be done by root-finding, e.g., by solving for the values of m that satisfy Eq. (10).

The root-finding was via the Forsythe algorithm (a hybrid algorithm that combines bisection, secant and 
inverse quadratic interpolating methods)81, as implemented in MATLAB.

One potential limitation: if binocular sensitivity is only barely above one or both of the monocular sensitivi-
ties, then Eq. (11) returns extreme values. For some subjects who had binocular enhancement at a majority of 
spatial frequencies, we must also exclude subjects who did not show enhancement at a particular spatial fre-
quency for that spatial frequency calculation. Alternately, one could use a nonlinear least-squares fit to all the 
individual data at each spatial  frequency4. This method was used to compute the exponent for the fit shown in 
Fig. 4b. A third way to compute m is to average the sensitivity data at each spatial frequency and then compute m 
from the averaged data using root finding. The three methods yield similar results; the results of the third method 
are plotted in Fig. 1b to illustrate the spatial frequency dependence of the Minkowski exponent.

Plotting binocular three dimensional input/output data in two dimensional graphs
For Figs. 4b and 5 we used a new method for plotting three dimensional input–output data in two dimensions 
that was originally created to plot multisensory  data13. The standard practice in multisensory science is to 
plot multisensory combination data as a function of the strongest mono-sensory response. This practice was 
invented to illustrate multisensory enhancement but does not aid understanding of how inputs combine. The 
use of three-dimensional prospective plots is possible but it is difficult to examine model fits in such a plot and 
two-dimensional contour plots can be difficult to interpret. The existence of a solution to this problem in the 
multisensory domain makes the technique useful for the plots of binocular relationships. Both binocular and 
monocular responses are plotted as a function of the binocular response. This places the binocular data on a 
straight 45 degree line, in any monotonic coordinate system. The two monocular responses are placed relative 
to the binocular response so the reader can instantly see the potential relative contributions of the two inputs 
to the binocular outputs. Model discrepancies pop out as deviations from the straight line. Here, the best-fit 
Minkowski binocular model was then simulated from the monocular responses and the simulated binocular 
responses were overlaid on the graph. An alternative would have been to plot the two monocular responses, the 
binocular response, and the modeled response as functions of some fifth variable, but in this case a fifth variable 
was not available and the option of creating a dummy variable seemed unnecessary and excessively convoluted.

(11)BinocularSen−(BestEyeSenm +WorstEyeSenm)1/m = 0
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Data and code availability
Data and code original to this paper will be shared by the lead contact (V.A. Billock, vincent.billock.ctr@us.af.
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