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Unsupervised multimodal 
modeling of cognitive and brain 
health trajectories for early 
dementia prediction
Michael C. Burkhart 1, Liz Y. Lee 1, Delshad Vaghari 1, An Qi Toh 2, Eddie Chong 2, 
Christopher Chen 2, Peter Tiňo 3 & Zoe Kourtzi 1*

Predicting the course of neurodegenerative disorders early has potential to greatly improve clinical 
management and patient outcomes. A key challenge for early prediction in real-world clinical 
settings is the lack of labeled data (i.e., clinical diagnosis). In contrast to supervised classification 
approaches that require labeled data, we propose an unsupervised multimodal trajectory modeling 
(MTM) approach based on a mixture of state space models that captures changes in longitudinal 
data (i.e., trajectories) and stratifies individuals without using clinical diagnosis for model training. 
MTM learns the relationship between states comprising expensive, invasive biomarkers (β-amyloid, 
grey matter density) and readily obtainable cognitive observations. MTM training on trajectories 
stratifies individuals into clinically meaningful clusters more reliably than MTM training on baseline 
data alone and is robust to missing data (i.e., cognitive data alone or single assessments). Extracting 
an individualized cognitive health index (i.e., MTM-derived cluster membership index) allows us to 
predict progression to AD more precisely than standard clinical assessments (i.e., cognitive tests 
or MRI scans alone). Importantly, MTM generalizes successfully from research cohort to real-world 
clinical data from memory clinic patients with missing data, enhancing the clinical utility of our 
approach. Thus, our multimodal trajectory modeling approach provides a cost-effective and non-
invasive tool for early dementia prediction without labeled data (i.e., clinical diagnosis) with strong 
potential for translation to clinical practice.

Dementia due to Alzheimer’s disease (AD) involves a cascade of pathophysiological processes from normal cog-
nition to Mild Cognitive Impairment (MCI) to dementia, with different markers of progression across disease 
 stages1,2. Despite decades of research and development, clinical trials of potential disease-modifying treatments 
for dementia have remained largely unsuccessful. However, recent developments in drug discovery (e.g.3,4) call 
for interventions earlier in the progression of  disease5,6 to enhance patient outcomes and aid future clinical trials. 
Identifying individuals at-risk and predicting dementia early (i.e., at early disease stages or before the onset of 
symptoms) have strong potential to impact clinical management, drug discovery, and treatment outcomes. Yet, 
early dementia prediction remains challenging in the following key respects.

First, neuroimaging-derived biomarkers (i.e., MRI, PET) have been shown to be important for detecting 
neurodegeneration. For Alzheimer’s Disease (AD) in particular, there is a strong link between biomarkers (i.e., 
β-amyloid accumulation, tau accumulation, neurodegeneration) and symptoms (i.e., cognitive decline)1,2,7,8. 
However, PET scans that use radioactive contrast agents to extract biomarkers (β-amyloid, tau) are invasive and 
expensive (e.g., over $3000 for an Amyloid PET scan in the  USA9) for large-scale use in the general population, 
resulting in health inequalities related to their availability across healthcare settings. Addressing this challenge 
raises the need for early prediction from low-cost and non-invasive measures (e.g., cognitive tests alone). Sec-
ond, predicting dementia at early or pre-symptomatic stages of the disease means that individuals have not yet 
been assigned a clinical diagnosis. Recent work on machine learning and mathematical modeling for dementia 
prediction predominantly focusses on supervised models (e.g., SVMs, neural networks) using cross-sectional 

OPEN

1Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK. 2Department of Pharmacology, 
Memory, Aging, and Cognition Center, Yong Loo Lin School of Medicine, National University of Singapore, 
Singapore, Singapore. 3School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK. *email: 
zk240@cam.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-60914-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10755  | https://doi.org/10.1038/s41598-024-60914-w

www.nature.com/scientificreports/

labelled data from patients that have clinical diagnoses (see, e.g.,10–12, for recent reviews). In contrast, making 
predictions based on unlabeled data requires unsupervised modeling approaches. Third, the current diagnos-
tic framework suffers from misdiagnosis (estimated sensitivity 70.9–87.3%; specificity: 44.3–70.8%)13,14 in the 
early stages of Mild Cognitive Impairment (MCI), potentially due to age-related comorbidities (e.g., geriatric 
depression, stroke) that result in cognitive  decline15,16. Modeling approaches that make predictions based on 
binary clinical labels risk incorporating this misdiagnosis into their predictions. Thus, novel trajectory modeling 
approaches are needed to reduce misdiagnosis at early stages by capturing changes in biomarkers and cognition 
based on longitudinal data rather than classifying patients based on clinical diagnosis.

To tackle these key challenges for early dementia prediction, we propose an unsupervised multimodal tra-
jectory modeling (MTM) approach based on a mixture of state space models that trains on longitudinal data 
(states, observations) to learn relationships between the progression of neuroimaging-derived biomarkers and 
cognitive data and stratifies individual trajectories into clusters of cognitive health (Fig. 1). States correspond 
to neuroimaging-based biomarkers (β-amyloid, grey matter density): these features are available during model 
training but may be unavailable or missing when the model is tested (a scenario known in machine learning as 
Learning with Privileged  Information17). Observations correspond to cognitive test scores that can be collected 
inexpensively and non-invasively at scale and have been shown to relate to biomarker  levels18–20. Our modeling 
assumptions allow cluster formation to be driven by the biomarker dynamics that characterize the progression 
of AD, with cognitive measurements tracking biomarker values. We train the MTM on longitudinal data from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI;21) and we derive clusters that stratify individuals (from 
independent test data) based on cognitive decline and clinical outcomes (i.e., clinical diagnosis) that have not 
been used in model training. Further, we demonstrate that the trained multimodal trajectory model stratifies 
individuals into discriminable clusters when tested with cognitive data alone (i.e., observations without access 
to biomarkers) or a single assessment (rather than longitudinal data). Importantly, MTM allows us to derive an 
individualized cognitive health index based on cluster membership that predicts conversion to AD more precisely 
than standard clinical data (grey matter atrophy, β-amyloid, cognitive scores). Finally, we provide out-of-sample 
validation by testing the trained MTM (i.e., training on research cohort data: ADNI)-on real-world patient data 
from memory clinics (Memory Ageing & Cognition Centre at the National University of Singapore: MACC). 
MTM generalizes successfully, despite missing data, stratifying MACC patients into distinct clusters, as profiled 
by clinical diagnoses and clinical scales (i.e., mini-mental state examination,  MMSE22). These findings provide 
evidence for a robust unsupervised trajectory modeling approach that delivers early prediction on unlabeled 
multimodal data, handles missing data, and generalizes from research to real-world patient data, enhancing the 
clinical utility of our modeling approach and its potential for translation to clinical practice.

Methods
ADNI data
Data for this study comprised 571 trajectories from the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 
Table S1) database comprising 2–4 assessments (trajectory length = 2 , n = 337 ; trajectory length = 3 , n = 194 ; 
trajectory length = 4 , n = 40 ). Trajectories used for model training comprised longitudinal measurements of 
neuroimaging-based biomarkers (grey matter density from medial temporal  cortex20 and Florbetapir-based 
amyloid  score23 temporally aligned (within 6 months) with cognitive test scores (ADNI-Mem for  memory24, 
ADNI-EF for executive  functioning25, the Montreal Cognitive Assessment (MoCA)26, and the Alzheimer’s Dis-
ease Assessment Scale (ADAS-13))27. To profile the clusters, we used clinical diagnosis and cognitive decline as 
measured with longitudinal scores from the mini-mental state examination  (MMSE22) that is commonly used in 
clinical practice. Clinical diagnoses based on individuals’ final assessments were as follows: cognitively normal 
(CN: 234), stable MCI (sMCI: 224), progressive MCI (pMCI: 19), and Alzheimer’s disease (AD: 94). Patients 
were identified as pMCI if they progressed from MCI to AD in a 3-year period while sMCI patients remained 
diagnosed as MCI for the same period.

MACC data
We tested MTM on independent memory clinic cohort data from the Memory Ageing & Cognition Centre at the 
National University of Singapore (MACC; Table S1). The MACC dataset comprises 158 trajectories (trajectory 
length = 2, n = 21 ; trajectory length = 3, n = 137 ) containing a single β-amyloid PET measurement and at least 
one measurement of grey matter (GM) density score derived from structural MRI scans (1 GM score, n = 5 ; 2 
GM scores, n = 52 ; 3 GM scores, n = 101 ). MoCA and MMSE scores were available for most patients. However, 
ADNI-Mem, ADNI-EF, and ADAS-13 that were used for training the MTM on ADNI data were not available in 
the MACC dataset. Clinical outcomes based on individuals’ final assessments were as follows: cognitively normal 
(CN, n = 36 ), mild MCI ( n = 50 ), moderate MCI ( n = 18 ), and Alzheimer’s disease (AD, n = 54).

Modeling approach
Unsupervised generative model: as neurodegeneration progresses heterogeneously, we learn a probabilistic mix-
ture of trajectory models on longitudinal data. Each prototypical mixture component takes the form of a state 
space model where biomarkers are states and cognitive test scores are observations. Explicitly, we model the 
sequences zi1:T = (zi1, . . . , z

i
T ) of biomarkers and xi1:T = (xi1, . . . , x

i
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where ci ∈ {1, . . . , nc} denotes the assigned cluster, δ{c=ci} is 1 when c = ci and 0 otherwise, and p(c) = πc is a 
categorical distribution on the nc clusters. For each cluster 1 ≤ c ≤ nc , we specify a linear, Gaussian model

where mc and Sc correspond to the mean and covariance of the first biomarker measurement, Ac and Ŵc govern 
the dynamics of the biomarkers, and Hc and �c describe the relationship between the biomarkers and cognitive 
scores. In an abuse of notation, we allow T to depend on i; our framework allows trajectories to have differing 
lengths. Figure 1a contains our full modeling framework in plate notation. In contrast to the pioneering work 

(2)p(xi1:T ; z
i
1:T |c) = ηd(z1;mc , Sc)

∏T
t=2 ηd(zt; zt−1Ac ,Ŵc)

∏T
t=1 ηℓ(xt; ztHc ,�c),

Figure 1.  Modeling approach. (A) Plate notation for the mixture of state space models. In this directed acyclic 
graph, each node represents a variable. Any two variables are independent after conditioning on their parents. 
Full shading denotes variables available during both training and testing, half shading denotes variables available 
during training but not necessarily during testing, and the remaining variables with no shading must be inferred 
from data. Plates indicate repetition. The plate on the left corresponds to the cluster-specific parameters for each 
of the nc clusters. The larger plate governs the trajectory of each of the nd samples. (B) Generative modeling 
process. The model independently assigns each individual to a cluster and then generates a sequence of states 
with corresponding observations according to the cluster-specific dynamics for the assigned cluster.
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of Chiappa and Barber who fit models using variational inference with probabilistic  assignment28, we fit models 
using expectation–maximization (EM)29 with hard latent indicator variable assignment in the E-step. This affords 
us the possibility of readily extending our framework to allow nonlinear relationships between biomarkers and 
cognitive scores. To avoid local optima, we train models from multiple different random initializations and select 
the one with the highest objective on training data.

Each mixture component is characterized by the underlying dynamics of the biomarkers and the relation-
ship between biomarkers and cognitive scores (Fig. 1a). In the proposed framework, the first-order Markovian 
sequence of biomarker levels drives our process of interest and the cognitive scores at each assessment can be 
viewed as read-outs of a patient’s biomarker levels at a given time/disease stage. That is, as the underlying bio-
logical dynamics closely captured by changes in biological markers (i.e. grey matter density, β-amyloid) drive 
cognitive decline, the current state of cognitive decline can be then non-invasively “read-out” from the system 
in terms of cognitive scores. In this context, cognitive scores could be interpreted as causally driven by changes 
in biological markers. Training the multimodal trajectory model requires access to trajectories that include 
both biomarkers and cognitive scores, in contrast to previous work that inferred underlying  states30,31. Giving 
MTM access to states during training leads to a simpler and more straightforward process for inferring model 
parameters. Following training, marginalizing over missing variables allows us to stratify new trajectories that 
have missing biomarkers or incomplete cognitive scores (Supplementary Information).

Model selection: To choose the optimal number of components for the MTM, we calculate the Bayesian 
information criterion (BIC)32 versus the number of clusters.

Cross-validation: To assess stability of cluster assignment to variations in training data, we performed 10-fold 
cross validation on the ADNI dataset as follows. For each fold, we trained the MTM using the data from the 9 
other folds ( n ≈ 514 trajectories) and tested on the remaining data ( n ≈ 57 trajectories). This gives us 10 models, 
but only one model is used to make a prediction for any given datapoint (i.e., the unique model that did not 
include the datapoint in its training set). The prediction from this model is the unique cross-validated prediction. 
Performing cross-validation with unsupervised models entails an additional challenge of harmonizing the labels 
across the ten separate mixture models learned during training. To harmonize across folds, we assigned labels 
to clusters alphabetically (i.e. cluster A–D) with A corresponding to the cluster with the lowest percentage of 
individuals with an AD diagnosis in the training set, B to the cluster with the second lowest percentage, C to the 
cluster with the third lowest percentage, and D to the cluster with the fourth lowest (i.e. highest) percentage of 
individuals with an AD diagnosis in the training set. Table S2 shows concordance in the percentage of individuals 
with an AD diagnosis per cluster across the 10 cross-validation folds. Further, for each trajectory assigned to a 
given cluster during testing, we determine the number of training runs that assign the trajectory to that cluster. 
Note that for 10-fold cross-validation, each trajectory is in a test set once and in a training set 9 times, resulting 
in values ranging from 0 to 9. Fig. S1 shows that the histograms concentrate on higher values (ranging from 7 to 
9), indicating that most individual trajectories remain in the same cluster across cross-validation runs.

Model-derived index: Given a fitted model, we define the cognitive health index (up to an additive constant) 
as the logarithm of the likelihood under the cluster A model. This is given explicitly by:

We used cross-validation to evaluate the model-derived index, in the same manner as we used to make predic-
tions. This prevents information leakage, as the index is always calculated on data not used for model training.

Results
MTM stratifies individuals based on health trajectories
Our multimodal trajectory model (MTM) effectively stratifies individuals to clusters of cognitive health based 
on the relationship between longitudinal biomarker (β-amyloid, grey matter density) and cognitive data (ADNI-
Mem, ADNI-EF, MoCA, ADAS-13). Informed by both BIC (Bayesian information criterion) and an elbow plot 
(Fig. S2), we present results for a 4-cluster MTM trained and tested on ADNI data in an unsupervised manner 
(i.e. without labelled data). Figure 2A, C shows 4 trajectory clusters based on the relationship of state variables 
(i.e. biomarkers: grey matter density vs. β-amyloid) derived from the model following 10-fold cross validation. 
Figure 2B, D shows 4 trajectory clusters based on the relationship of state (grey matter density) and cognitive 
(ADNI-Mem) data. In particular, individuals in different clusters vary in disease progression based on the com-
bination of different markers (Fig. S3, Table S3 for nonlinear dynamics). Individuals in cluster A show the highest 
grey matter density, lowest β-amyloid burden and highest cognitive scores, while individuals in cluster D show 
the highest β-amyloid burden, lowest grey matter density and lowest cognitive scores with clusters B and C falling 
between A and D (Fig. 2C, D). That is, individuals in cluster C have similar β-amyloid accumulation but higher 
grey matter atrophy compared to individuals in cluster B, suggesting a higher degree of neurodegeneration.

Next, we demonstrate that MTM-derived clusters of cognitive health differ in biomarker dynamics (Fig. 2E) 
and the relationship between biomarker dynamics and cognitive decline (Fig. 2F) over time. In particular, we 
used a linear mixed effects model (LME) to test whether β-amyloid burden predicts change in grey matter den-
sity over time. This LME analysis showed a significant relationship between biomarkers (main effect of cluster 
F3,585 = 12.0, p < 0.001 , interaction F4,625 = 11.4, p < 0.001 ). The estimated cluster-specific trends (slopes for 
a linear approximation of grey matter density change versus β-amyloid burden) decreased monotonically by 
cluster and differed significantly from zero for all clusters (B: t592 = −3.62, p < 0.001 ; C: t574 = −3.83, p < 0.001 ; 
D: t667 = −4.18, p < 0.001 ) except cluster A ( t681 = 0.62, p = 0.534 ). Similarly, testing (linear mixed effects 
model) whether changes in grey matter density predict changes in cognition (ADNI-Mem) showed a signifi-
cant main effect of cluster ( F3,837 = 6.1, p < 0.001 ) and interaction ( F4,837 = 8.1, p < 0.001 ). The estimated 
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Figure 2.  4-cluster model trained on ADNI data. (A) Progression of states over time illustrating the relationship 
between state variables (grey matter density, β-amyloid burden in centiloid), colored by cluster. (B) Progression of 
states over time illustrating the relationship between a state (grey matter density) and an observed (ADNI-Mem) 
variable. (C) Average trajectories per cluster in the state variables (grey matter density, β-amyloid burden in centiloid) 
weighted by cluster assignment probability. For each cluster at each point in time, shading denotes a confidence region 
from a gaussian with mean and covariance corresponding to the empirical mean and covariance of trajectories with 
available data, weighted according to cluster assignment probability. For cluster D, the final time step contains only 
7 observations, and so is not plotted. (D) Average trajectories per cluster for grey matter density and ADNI-Mem 
weighted by cluster assignment probability. Shading as in C. Final time step in cluster D is not plotted to make a fair 
comparison with C. (E) Relationship of changes in grey matter density over a 2-year period to β-amyloid burden per 
cluster. Lines depict cluster-specific slopes and intercepts learned from a linear mixed effects model. Shaded areas 
depict a 95% confidence interval for each line. (F) Relationship of changes in ADNI-Mem (over a 2-year period) to 
changes in grey matter density (over a 2 year-period). Lines and shading same as for E.
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cluster-specific trends were significantly different from zero for clusters C & D (C: t837 = 4.18, p < 0.001 , D: 
t837 = 3.53, p < 0.001 ) but not A or B (A: t837 = −0.07, p = 0.94 , B: t837 = 1.59, p = 0.11).

To enhance MTM interpretability, we profiled MTM-derived clusters using clinical diagnoses (Fig. 3A & S4A, 
Table S4). 98% of individuals in cluster A and 93% in cluster B have a cognitively normal (CN) or sMCI diagnosis, 
whereas 21% of individuals in cluster C and 81% in cluster D have an AD or pMCI diagnosis. Conversely, 78% of 
individuals diagnosed as cognitively normal are assigned to clusters A or B, while 89% of individuals diagnosed 
as AD are assigned to clusters C or D. These clusters differed significantly in their observed frequencies of clinical 

Figure 3.  Profiling ADNI clusters. (A) Pie charts indicating cluster assignment and break down into clinical 
diagnosis, indicating the probability of a clinical outcome given cluster assignment. (B) Average MMSE (±1 
std. error) per cluster over time. Note that years 4 and 6 only include trajectories of length at least 3 and 4, 
respectively (i.e. year 4: n = 194 ; year 6, n = 40).
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outcomes ( χ2(9) = 308.01, p < 0.001 ). Employing a 2-cluster model results in less precise stratification than 4 
clusters, showing a coarser partition of our sample; that is, 94% of individuals in the first cluster are diagnosed 
as CN or sMCI (2% pMCI, 3% AD), while 58% of individuals in the second cluster are diagnosed as AD (8% 
CN, 27% sMCI, 7% pMCI).

We next profiled clusters by rate of cognitive decline, as indicated by age-adjusted MMSE, a scale typically used 
in clinical practice (Fig. 3B; note MMSE was not included in model training). A linear mixed effects model used 
to predict age-adjusted MMSE showed significant effects for cluster, time, and a significant interaction between 
cluster and time (main effect of cluster F3,874 = 61.8, p < 0.001 ; main effect of time F1,932 = 157.1; p < 0.001 ; 
interaction: cluster x time F3,929 = 64.1, p < 0.001 ). The estimated trends for clusters A and B were not sig-
nificantly different from zero ( A : t922 = 0.810, p = 0.42;B : t923 = −1.74, p = 0.082 ), while trends for clus-
ters C and D were significantly lower than zero ( C : t922 = −3.80, p < 0.001;D : t938 = −13.2, p < 0.001 ). The 
trend for cluster D was significantly lower than the trends for clusters A, B, C (post-hoc comparisons, A vs. D, 
t944 = 13.2, p < 0.001 ; B vs. D, t946 = 12.2, p < 0.001 ; C vs. D, t945 = 10.4, p < 0.001 ). These results suggest that 
individuals in clusters A and B may show a slower cognitive decline consistent with normal aging, in contrast to 
individuals in cluster D that decline at a rate higher than 1 point of MMSE per year (i.e., 95% confidence interval 
for trend of D: [−1.35,−1.05]).

MTM-derived cognitive health index predicts conversion to AD
We next tested whether assignment of individuals to MTM-derived clusters allows us to make predictions about 
progression to AD. To quantify individual membership to MTM-derived clusters, we derived a cognitive health 
index as the logarithm of the likelihood under the cluster A model. We showed that this MTM-derived index 
relates to future cognitive decline as indicated by age adjusted rate of MMSE change/year (Pearson’s, A = 0.396, p 
< 0.001, Fig. 4). Further, using logistic regression, we showed that this MTM-derived index predicts conversion to 
AD from baseline data. ROC analysis showed higher AUC for the MTM-derived index (0.878) than a) univariate 
markers: MMSE (0.812), β-amyloid (0.804), GM density (0.736), b) combinations of markers: GM density and 
β-amyloid (AUC = 0.850), GM density and MMSE (AUC = 0.852). We corroborated these results by training 
Cox proportional hazard models to predict conversion to AD from baseline data. Concordance as measured with 
cross-validation was higher for the MTM-derived index (0.836) than β-amyloid (0.807), GM density (0.703) or 
cognitive scores (e.g. ADNI-mem: 0.829, MOCA: 0.801). These results suggest that the MTM-derived cognitive 
health index predicts conversion to AD more precisely than commonly-used clinical assessments.

Figure 4.  Prognostic MTM-derived index relates to cognitive decline. Correlation of MTM- derived index 
calculated using baseline data with age-adjusted annualized MMSE change, indicating that the model-derived 
index relates to cognitive decline (Pearson’s r = 0.396; p < 0.001 ). Outliers in the MTM-derived index (values 
lower than 3 standard deviations from the mean; 2% of the sample) were excluded for illustration purposes. 
Points colored according to cluster assignment from baseline data alone.
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MTM training on trajectories vs. baseline data alone
We asked whether training MTM on longitudinal data (i.e. trajectories) provides an advantage over training 
on baseline data alone. We compared the 4-component MTM model trained on longitudinal data to a 4-clus-
ter Gaussian mixture model trained on baseline data alone (GMM-baseline) using the same cross-validation 
approach as for MTM. We found only 52.9% agreement between the cluster labels assigned by GMM-baseline 
vs. MTM. Further, comparing distributions of clinical diagnoses across clusters showed that clusters derived by 
GMM-baseline ( χ2(9) = 226.4, p < 0.001 ) have a more uniform distribution of clinical diagnoses than MTM-
derived clusters ( χ2(9) = 308.0, p < 0.001 ). Comparing between models (Table S5) showed significantly higher 
deviation of the joint distribution of cluster assignment and clinical diagnosis from the product of the margin-
als for MTM than GMM-baseline (Sharma-Song test for second-order differentials in contingency  tables33, 
χ2(9) = 48.3, p < 0.001 ). These results suggest that MTM training on longitudinal rather than baseline data 
alone stratifies individuals more reliably to clusters of cognitive health based on future disease progression.

MTM stratification based on a single assessment
Collecting longitudinal data often proves challenging and costly in clinical practice, while multiple visits lengthen 
waiting time to diagnosis for patients. Here, we test whether the MTM trained on longitudinal data stratifies 
individuals reliably when tested using a single assessment alone. In particular, we tested the MTM on the first 
(i.e., baseline) or final assessment available per individual in an independent dataset.

We found that MTM maintains similar stratification (as profiled by clinical diagnosis) when tested on a single 
assessment. 81% of individuals remained in the same cluster when using the initial assessment data compared 
to trajectory data; this increased to 85% for the final assessment (columns III–VI in Table S4). These results 
strengthen the clinical utility of our modeling approach, suggesting that MTM stratifies individuals reliably based 
on single patient assessments (e.g., first baseline assessment) with potential impact in expediting diagnosis and 
improving clinical management pathways.

MTM stratification based on cognitive data alone
We next asked whether MTM stratifies individuals reliably when tested with low-cost non-invasive data (i.e., 
cognitive observations) in the absence of state variables comprising biomarkers. We tested the MTM—trained 
on both biomarker and cognitive data—on held-out test data (during the cross-validation process) comprising 
cognitive scores alone (i.e., ADNI-Mem, ADNI-EF, MoCA, and ADAS-13). We show that the model clusters 
individuals to discriminable trajectories of cognitive health and partly maintains the stratification we observed 
when testing with both biomarker and cognitive data (Table S4: columns II, IV, & VI). That is, 58% of individu-
als remained in the same MTM-derived cluster when MTM was tested with cognitive data alone, while 26% 
individuals were stratified to a cluster with lower cognitive decline compared to MTM stratification based on 
both biomarker and cognitive data. These results suggest that MTM handles missing biomarker data and strati-
fies individuals based on non-invasive data (e.g., cognitive assessments), enhancing the clinical utility of our 
modeling approach.

Out of sample validation and model transfer from research to clinical data
To test the generalizability and validate the clinical utility of our approach, we tested the trained MTM (i.e. train-
ing on ADNI data), on independent memory clinic cohort data from the Memory Ageing & Cognition Centre at 
the National University of Singapore (MACC). This is a challenging task that requires transfer from a research to 
a clinical dataset with missing data; that is, trajectories ( n = 158 ) in the MACC dataset comprise single β-amyloid 
PET measurements, some longitudinal structural MRI scans, and limited cognitive data (MoCA and MMSE 
for most participants but no ADNI-Mem, ADNI-EF, and ADAS-13 data that were used for training the MTM).

MTM stratifies patients to clinically meaningful clusters when (I) using trajectory data, (II) cognitive scores 
alone (i.e., MoCA), or (III) data from the final assessment alone (Table S6). A 3-cluster MTM (as determined 
by BIC; Fig. S2) showed that 94% of individuals assigned to cluster A have CN or MCI diagnosis, whereas 47% 
of individuals assigned to cluster C have AD diagnosis (Fig. 5A). Conversely, 74.4% of individuals diagnosed as 
cognitively normal (CN) are assigned in clusters A or B and 73.6% of individuals diagnosed as AD are assigned 
to cluster C (Fig. S4B). These MTM-derived clusters differ significantly in their observed frequencies of clinical 
outcomes ( χ2(6) = 39.5, p < 0.001).

Profiling the clusters for cognitive decline showed significant differences in rate of cognitive decline (i.e. 
rate of MMSE change/year) between clusters A and C (Fig. 5B; linear mixed effects model of MMSE over 
time including age). A mixed effects model for age-adjusted MMSE showed a significant effect for cluster 
( F2,195.11 = 10.8, p < 0.001 ) and a significant cluster x time interaction ( F3,294.97 = 9.23, p < 0.001 ). We found 
that the estimated trends for clusters A and B were not significantly different from zero (A: t295 = 0.527, p = 0.60 ; 
B: t296 = −0.433, p = 0.66 ), while for cluster C the trend was significantly below zero ( t294 = −5.22, p < 0.001 ). 
The trend for cluster C was significantly higher than for cluster A ( t295 = 2.93, p = 0.010 ), suggesting that indi-
viduals in cluster C are predicted to have higher rate of cognitive decline.

Finally, stratification in discrete clusters was maintained when testing the MTM using limited data (i.e. first 
assessment or cognitive data alone). That is, 79% of individuals remained in the same cluster when MTM was 
tested with data from the first assessment. When MTM was tested with limited cognitive data (MoCA alone) 
without biological (i.e. GM density) data, 48% of individuals retained their cluster assignment. 44% of individu-
als were assigned to a healthier cluster, suggesting that when biomarker data is missing, the model assigns more 
individuals to cluster A, corresponding to a healthier trajectory. This is consistent with MTM stratification on 
ADNI data, suggesting that biomarker data may provide additional information for disease progression.
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Discussion
We develop and validate an unsupervised multimodal trajectory modeling approach (MTM) that stratifies indi-
viduals early and precisely based on their brain and cognitive health trajectories. MTM learns class-specific 
relationships over time between biomarkers-that are acquired through costly and invasive measurements (e.g., 
PET scans)-and cognitive observations that are acquired through less costly and non-invasive testing. To tackle 
the challenge of early dementia prediction with unlabeled data (i.e. at early or pre-symptomatic disease stages 
before cognitively normal individuals have a clinical diagnosis), we adopt an unsupervised training approach. 
In contrast to most machine learning models for dementia prediction that adopt supervised learning to classify 

Figure 5.  Transfer to clinical data: Profiling MACC clusters. (A) Pie charts indicating cluster assignment and 
break down into clinical diagnosis indicating the frequency of each clinical diagnosis given cluster assignment. 
(B) Average MMSE (±1 std. err.) per cluster over time.
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patients based on clinical diagnosis, our unsupervised MTM approach stratifies individuals based on their brain 
and cognitive health trajectories without using clinical labels for model training.

Working on a generatively specified framework allows us to obtain interpretable models of prototypical 
biomarker and cognitive progression, handle trajectories of variable lengths, short observation sequences (i.e. 
single assessments), and missing data (i.e. cognitive data alone). Our modeling approach is inspired by recent 
work on unsupervised trajectory clustering for AD prediction including mixtures of generalized mixed effects 
 models34, hierarchical mixture models of longitudinal Siamese neural  networks35, and mixtures of Gaussian 
processes inductively biased towards monotonic  decline36.  Ramamoorthy36 found that the majority of the largest 
AD-related trajectory components were well-approximated as linear, providing justification for our choice of 
linear state model. However, cluster interpretability in some of these previous  approaches34,35 may be limited by 
small sample sizes ( n < 100 ). Further, given the paucity of available longitudinal data in research and clinical 
practice, it may be difficult to learn the underlying dynamics with modeling frameworks that may allow more 
degrees of freedom (i.e. kernel- or neural network-based approaches).

Specifically, MTM aims to map the variability structure in health trajectories, using state space models to 
model trajectories. We explore whether the trajectory variability in the data is captured through a limited number 
of “prototypical” state space models. We perform probabilistic clustering of trajectories using probabilistic mix-
ture modeling where the individual mixture components correspond to those prototypical state space models. 
This is inherently an unsupervised learning process. However, as health trajectories contain information about 
the dynamics of disease progression, it is expected that clusters of trajectories governed by the corresponding 
group-level state space models relate to different disease progression stages. In comparison to previous trajectory 
modeling approaches (SuStaIn;37–39) that focus on stratifying disease subtypes based on cross-sectional data and 
require data from individuals who have progressed to later disease stages, MTM focuses on health trajectories and 
disease progression, targeting stratification of healthy or at-risk individuals. Further, MTM takes into account 
rate of decline (i.e. time between assessments) rather than simply event  order37, allowing us to robustly stratify 
individuals at early stages based on disease progression compared to modeling approaches that require data from 
individuals at advanced disease stages to differentiate between dementia subtypes. Thus, MTM allows us to make 
inferences about an individual’s future cognitive health given their probabilistic assignment to a cluster based 
on their multimodal health trajectory. We demonstrate that model training on trajectories offers an advantage 
over training on baseline data alone; that is, MTM stratifies individuals more reliably into clusters when trained 
on longitudinal data. To formalize this, we derive an individualized index of cluster assignment and show that 
this index predicts conversion to AD more precisely than standard clinical data (grey matter atrophy, β-amyloid, 
cognitive scores).

Our findings provide the following main advances with strong potential for clinical translation. First, MTM 
reliably stratifies individuals to clinically meaningful clusters and allows us to derive an individualized index of 
cognitive health that predicts conversion to AD more reliably than standard clinical assessments (i.e. cognitive 
tests or MRI scans alone) with strong potential for reducing risk of misdiagnosis. Further, investigating individual 
variability in cognitive health and resilience remains a key challenge for understanding the underlying mecha-
nisms of neurodegenerative  disorders40,41. That is, why do some individuals show increased β-amyloid burden 
without experiencing grey matter  loss42,43 or clinical cognitive  symptoms44–46, or others experience grey matter 
loss without exhibiting memory  symptoms47–49? MTM allows us to determine how individuals in different clusters 
vary in disease progression based on the combination of different markers. For example, for individuals in cluster 
A, β-amyloid burden does not significantly impact grey matter degeneration or memory decline. Individuals in 
cluster C have similar β-amyloid accumulation but higher grey matter atrophy compared to individuals in cluster 
B, suggesting that individuals in cluster C may have progressed to later neurodegeneration stages than individu-
als in cluster B. Thus, MTM offers a framework for precise individual patient stratification and individualized 
predictions of cognitive health early (i.e. at early or pre-symptomatic disease stages) with strong translational 
potential for clinical management and personalized interventions for improved patient outcomes.

Second, MTM harnesses the power of longitudinal multimodal data during training (i.e., learning relation-
ships between biomarker and cognitive data over time) and generalizes to independent test datasets with miss-
ing data. In particular, MTM reliably stratifies individuals when tested with data from single assessments or 
cognitive trajectories alone. This has the potential to expedite clinical diagnosis from first assessment, reducing 
time to diagnosis-that currently varies between 6 and 18 months-and enhancing clinical management efficiency. 
Further, unsupervised modeling of non-invasive and low-cost data (e.g., cognitive tests) has strong potential to 
support early dementia prediction at scale from non-invasive testing, reducing patient burden, costs and health 
inequalities (e.g., due to limited access to MRI/PET scanners).

Third, MTM generalizes from research to clinical cohort data; that is, we validate our model by testing not 
only on research (ADNI) but also an independent clinical cohorts (MACC) despite missing data. Research cohort 
data may be subject to biases (e.g., selective volunteer demographics) while patient data tends to be more diverse 
and representative of the population at large. Validating MTM with data from patients across different settings 
(i.e., different MRI scanners, cognitive screening tools) and countries (USA, Singapore) provides evidence for 
interoperability with strong potential for reducing bias and enhancing the clinical utility of our approach.

Finally, our approach has strong potential to generalize to other non-invasive and cost- effective data (e.g., 
digital markers from wearable technologies) and dementia subtypes (extending beyond AD), enhancing the 
translational impact of MTM for early and precise stratification at pre-symptomatic stages. In the future, MTM-
as an unsupervised AI-guided tool-could be optimized to make early dementia predictions from digital data 
and implemented in brain health checks (e.g. digital assessments at home) to select individuals at-risk for more 
extensive follow-up, making early dementia prediction scalable and cost-effective with potential impact for 
prevention and population health.
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