Check for updates

scientific reports

OPEN Density functional theory study on the formation mechanism and electrical properties of two-dimensional electron gas in biaxial-strained LaGaO₃/BaSnO₃ heterostructure

Yuling Li¹, Yuxi Huang¹, Xiaohua Liu¹, Yaqin Wang^{1,2} & Le Yuan¹

The two-dimensional electron gas (2DEG) in BaSnO₃-based heterostructure (HS) has received tremendous attention in the electronic applications because of its excellent electron migration characteristic. We modeled the *n*-type (LaO)⁺/(SnO₂)⁰ interface by depositing LaGaO₃ film on the BaSnO₃ substrate and explored strain effects on the critical thickness for forming 2DEG and electrical properties of LaGaO₃/BaSnO₃ HS system using first-principles electronic structure calculations. The results indicate that to form 2DEG in the unstrained LaGaO₃/BaSnO₃ HS system, a minimum thickness of approximately 4 unit cells of LaGaO₃ film is necessary. An increased film thickness of LaGaO₃ is required to form the 2DEG for -3%-biaxially-strained HS system and the critical thickness is 3 unit cells for 3%-baxially-strained HS system, which is caused by the strain-induced change of the electrostatic potential in LaGaO₃/BaSnO₃ HS system. The interfacial charge carrier density, electron mobility and electrical conductivity can be optimized when a moderate tensile strain is applied on the BaSnO₃ substrate in the *ab*-plane.

Recently, the two-dimensional electron gas (2DEG) at the *n*-type $(LaO)^+/(TiO_2)^0$ interface in LaAlO₃/SrTiO₃ heterostructures (HS) system has attracted considerable attention due to its unique interfacial properties and promising applications in the next-generation nanoelectronics¹⁻⁴. The typical explanation for the formation of 2DEG is the so-called "polar catastrophe" mechanism^{5,6}. The LaAlO₃ film is formed by alternating charged $(LaO)^+$ and $(AlO_2)^-$ layers, while the SrTiO₃ substrate is considered as stacks of neutral $(SrO)^0$ and $(TiO_2)^0$ layers. The *n*-type $(LaO)^+/(TiO_2)^0$ interface can be formed by growing LaAlO₃ films on the SrTiO₃ substrate. Then an electronic reconstruction occurs at the LaAlO₃/SrTiO₃ interface to compensate the polar discontinuity by migrating electrons from the interfacial polar $(LaO)^+$ layer to the adjacent non-polar $(TiO_2)^0$ layers. Although the LaAlO₃/SrTiO₃ HS system exhibits a high interfacial carrier density with 3.2×10^{-14} cm⁻², the

Although the LaAlO₃/SrTiO₃ HS system exhibits a high interfacial carrier density with 3.2×10^{-14} cm⁻², the electron mobility is low (1 cm²V⁻¹s⁻¹) at room temperature (RT), which limits its application in the photoelectric devices^{7,8}. This phenomenon is originated from that the conduction band bottom of SrTiO₃ is composed of highly dispersed d_{xy} orbitals and the electrons on these orbitals show high mobility at low temperature. While it consists of lowly dispersed d_{xz}/d_{yz} orbitals at RT. The multi-band degeneracy leads to the inter-band transition scattering and stronger electron-phonon coupling effect, which reduces the electron mobility. To broaden the application of LaAlO₃/SrTiO₃ HS system at RT, some approaches are proposed to improve its interfacial electron mobility. For instance, defect engineering^{9,10}, strain engineering^{11,12}, and find other materials to replace the SrTiO₃ channel material^{13,14}. Z. Q. Liu et al.⁹ pesented that the interfacial carrier density of LaAlO₃/SrTiO₃ HS system at RT increases with the decrease of oxygen partial pressure, and the carrier mobility shows the opposite

¹Key Laboratory of Fluid and Power Machinery, School of Material Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China. ²State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China. ^{Elemail:} wangyqyyxf@sina.com trend. Ariando et al.¹² reported that the electron mobility of interfacial 2DEG in LaAlO₃/SrTiO₃ HS system is sensitive to the biaxial strain. The biaxial compressive strain decreases the electron mobility and increases the interfacial carrier density. The largest electron mobility is < 10 cm²V⁻¹s⁻¹at RT. Zou et al.¹³ prepared a polar/ polar perovskite oxide heterostructure, that is, LaTiO₃/KTaO₃ HS system with (LaO)⁺/(TaO₂)⁺ interface, and found that this HS system exhibits high interfacial electron mobility of 21 cm²V⁻¹s⁻¹ at RT, which is higher than that of well-known LaAlO₃/SrTiO₃ HS system. Therefore, the performance of LaAlO₃/SrTiO₃ HS system can be effectively regulated by perovskite channel material KTaO₃. The search for other channel materials with high electron mobility at RT to further improve the interfacial electron mobility of pervoskite-type HS system has become a research focus.

BaSnO₃ film with Sn 5s orbitals at the bottom of conduction bands has considered as an ideal material for oxide transistor channel material due to its high electron mobility at RT. This is because that the s orbitals are less localized than d orbitals, which results in larger band dispersion and lower electron effective mass. Compared with traditional SrTiO₃ films, BaSnO₃ film with s orbitals at the conduction band bottoms has extremely high electron mobility at RT, with a value of 150 cm²V⁻¹s⁻¹¹⁵. Our group have explored the possibility of producing a high-mobility 2DEG in LaGaO₃/BaSnO₃ HS system using first-principles electronic structure calculations. This HS system presented twice larger electron mobility and enhanced interfacial conductivity compared to the prototype LaAlO₃/SrTiO₃ HS system¹⁶. Kookrin et al.¹⁷ combined experimental and theoretical approach to study the different electrical properties of perovskite-type LaInO₃/BaSnO₃ HS system on MgO and SrTiO₃ substrates, which are well explained by the varying deep acceptor densities for the HS system on two different substrates. They also reported that when the thickness of LaScO₃ (LaInO₃) film is 12 unit cells, the interfacial charge density of HS system at RT is about 2.5×10^{13} cm⁻², and the electron mobility is about 20-25 cm²V⁻¹s⁻¹, which is obviously higher than that of LaAlO₃/SrTiO₃ system. Moreover, with the increase of La concentration doped in BaSnO₃, the interfacial electron density and mobility of HS system shows an increasing trend^{18,19}. Aggoune et al.²⁰ preliminally explored the formation mechanism of 2DEG and two-dimensional hole gas (2DHG) by regulating the polarity and thickness of LaInO₃ film, as well as the interface structure using the first-principles calculation. However, the detailed formation mechanism for 2DEG needs further systematically studied. Particularly, the changes of electrical properties of the BaSnO₃-based HS systems deposited on the substrates with different lattice parameters also need further investigation. This lattice mismatch between the HS system and substrate is easy to form growth strain, which is also usually induced by varying experimental preparation parameters and the uneven thermal diffusion during the heating/cooling process caused by the mismatch of thermal expansion coefficient between the HS system and substrate. Previous researchers^{12,21} have found that this growth strain is generally in the range of $-3\% \sim 3\%$. For example, Z. Huang et al.¹² selected four substrates with different lattice parameters to prepare Nb-SrTiO₃ thin film and LaAlO₃/SrTiO₃ HS system. The lattice mismatch between the HS system and substrate resulted in - 2.98% (LaAlO₃), - 0.96% (LSAT), 0 (SrTiO₃), and 0.99% (DyScO₃) strains, respectively. C. W. Bark et al.²¹ deposited LaAlO₃/SrTiO₃ HS system on the substrates with different lattice parameters by pulsed laser deposition, resulting in a biaxial range of -1.21% (NdGaO₃) \sim 1.59% (GdScO₃) in the HS system. Lan Meng et al.²² prepared WS₂ film by chemical vapor deposition on SiO₂ /Si substrate, and then cooled it rapidly. In the process of rapidly cooling, the mismatch of thermal expansion coefficient between WS₂ film and substrate led to local stress in WS₂ film, but the stress/strain value was not referred to in this paper. Besides growth strain, we can dynamically regulate the force of film/heterostructure by artificially applying strain in the experiments, which is called "extrinsic strain". Then the range of strain can be artificially regulated according to the ultimate force of the material. For example, B Jalan et al.²³ applied different stresses on the epitaxial SrTiO₃ thin films by three-point bending, studying the changes of electron mobility of film with the temperature and stress.

In this work, we systematically investigated the (LaGaO₃)_m/BaSnO₃ HS models by means of the first-principles calculations. Firstly, the LaGaO₃ film thickness dependence of the formation of 2DEG in the unstrained (LaGaO₃)_m/BaSnO₃ HS model was studied. Next, we explored the influence of biaxial strain in the *ab*-plane on the critical thickness of LaGaO₃ film for forming 2DEG. The electrical properties of LaGaO₃/BaSnO₃ HS system dependent on the biaxial strain were analyzed from the electron effective mass, interfacial electron density, electron mobility, and electrical conductivity. This work may provide some guidances for adjusting the electrical properties of LaGaO₃/BaSnO₃ HS system by biaxial strain.

Results

Bulk parent compounds

First, we calculated the lattice parameters and energy band gap of LaGaO₃ and BaSnO₃ materials in their cubic phase, shown in Table S1 in the supporting information. The calculated lattice constants from GGA+U functional are well consistent with the experimental values (3.939 vs 3.860 Åfor LaGaO₃ and 4.186 vs 4.115 Åfor BaSnO₃)^{24,25}. In contrast, the calculated energy band gaps from the GGA+U approach are underestimated with respect to the experimental values (3.668 vs 4.4 eV for LaGaO₃ and 2.208 vs 3.1 eV for BaSnO₃)^{26,27}, which is due to the well-known shortcoming of the GGA functional that cannot give an accurate description for the electron-electron correlation-exchange interaction. However, this underestimation has been determined that it has no influence on our conclusions about the 2DEG at the perovskite-type HS systems because the electronic states that contribute to the formation of DEG can be well reproduced from GGA+U calculations²⁸⁻³⁰. Then our GGA+U approach can well predict the 2DEG-related Sn 5s states as well as the critical thickness of the LaGaO₃ for forming the 2DEG in the LaGaO₃/BaSnO₃ HS system.

2DEG in the *n*-type LaGaO₃/BaSnO₃ HS system

The calculated total density of states (DOS) for the *n*-type (LaGaO₃)_m/BaSnO₃ HS system with different LaGaO₃ unit cells (m=2, 3, 4, 5, 6 and 8) are shown in Fig. 1, where the vertical dotted line at 0 eV represents the fermi level. At m=2 and 3, the fermi level of (LaGaO₃)_m/BaSnO₃ HS system is on the top of the valence bands, and the HS system shows insulating characteristics. The band gap of HS system decreases with the increase of LaGaO₃ film thickness. While at m=4, 5, 6 and 8, the band gap disappears and all the HS models exhibit metallic properties. With the increase of LaGaO₃ film thickness, the metallic states near the fermi level increase. These results indicate that the critical thickness of insulator-to-metal transition is 4 unit cells for LaGaO₃ film in the *n*-type LaGaO₃/BaSnO₃ HS system, which is similar to the case of well-known *n*-type LaAlO₃/SrTiO₃ HS model³¹.

To further understand the origin and charge transfer of metallic electronic states in the *n*-type $(LaGaO_3)_m/BaSnO_3$ HS system, We calculated the layer-resolved partial DOS for *n*-type $(LaGaO_3)_m/BaSnO_3$ HS system at m=2, 4 and 8, as shown in Figs. 2, S1 in the supporting information and Fig. 3, respectively. To directly observe the contribution of each layer to the metallic states, we calculated the charge density projected on metallic bands for each model. For the convenience of discussion, the first and second layers of SnO₂ are defined as IF-I and IF-II, respectively. For the $(LaGaO_3)_2/BaSnO_3$ HS system in Fig. 2, the layer-resolved partial DOS and the charge density show that the fermi level does not cross the conduction bands and valence bands. Then there are no metallic states exist in the IF-I and IF-II layers, and the HS system shows insulating characteristic. These phenomena can be clearly seen in the enlarged view of IF-I and IF-II layers in Fig. 2b. Since the polarization strength of LaGaO_3 film in $(LaGaO_3)_2/BaSnO_3$ HS system is strong enough to make the electrons transfer from the $(LaO)^+$ layer to $(GaO_2)^-$ layer, neutralizing the holes in $(GaO_2)^-$ layer. Then there exist no holes on the surface and no electrons at the interface. The polar discontinuity in the *n*-type $(LaO)^+/(SnO_2)^0$ interface is offset by strong polarization in LaGaO_3 film, which is similar to the LaAlO_3/SrTiO_3 HS system³¹.

For the $(LaGaO_3)_8/BaSnO_3$ HS system in Fig. 3, the fermi level passes through the valence bands of the surface $(GaO_2)^-$ layer, showing *p*-type conducting states. While the interface indicates *n*-type conducting states from the interfacial $(SnO_2)^0$ layer. Then the overlap of these states make the $(LaGaO_3)_8/BaSnO_3$ HS system show metallic property in Fig. 1. The O2*p* states of $(LaO)^+$ and $(GaO_2)^-$ layers significantly shift toward higher energy with the layers move from the interfacial $(LaO)^+$ layer to the surface $(GaO_2)^-$ layer, presenting the electrostatic potential in the LaGaO_3 film. This is because that the LaGaO_3 film in the $(LaGaO_3)_8/BaSnO_3$ HS model exhibits a weaker polarization than that in the $(LaGaO_3)_2/BaSnO_3$ HS model, which is not enough to offset the polarity discontinuity between LaGaO_3 and BaSnO_3. Thus, there exist *p*-type conducting states from O 2*p* orbitals on the LaGaO_3 BASNO_3 HS system present metallic properties with the *p*-type conducting states from O 2*p* orbitals on the surface and the *n*-type conducting states from Sn 5*s* orbitals at the interface.

Figure 1. Calculated total density of states (DOS) for the *n*-type $(LaGaO_3)_m/BaSnO_3$ HS models with different LaGaO₃ unit cells. (**a**) m = 2, (**b**) m = 3, (**c**) m = 4, (**d**) m = 5, (**e**) m = 6 and (**f**) m = 8. The vertical dashed line indicates the Fermi level at 0 eV in this and each subsequent DOS plot. The insets are the enlarged view of the DOS near fermi level for models.

Figure 2. Calculated layer-resolved partial DOS for the *n*-type (LaGaO₃)₂/BaSnO₃ HS model along with the charge density projected on bands forming the 2DEG.

To clearly present the transition from the insulating characteristic to the metallic property of LaGaO₃/BaSnO₃ HS system, we also calculated the layer-resolved partial DOS for the n-type (LaGaO₃)₄/BaSnO₃ HS model along with the charge density projected on bands forming the 2DEG, shown in Fig. S1 in the supporting information. All the characteristics of (LaGaO₃)₄/BaSnO₃ HS model are consistent with that of (LaGaO₃)₈/BaSnO₃ HS system, except that the surface and interface metallic states are less. To quantify the change of interfacial electron concentration of the (LaGaO₃)_m/BaSnO₃ HS system with the LaGaO₃ film thickness, we also calculated their interfacial electron concentration by integrating the partial DOS of the Sn 5s orbitals near the fermi level from the interfacial IF-I and IF-II $(SnO_2)^{\circ}$ layer divided by the interfacial area, shown in Fig. 4a. As a comparison, the interfacial carrier concentration of (LaAlO₃)_m/SrTiO₃ HS system are also calculated in Fig. 4a, which is about $2-6 \times 10^{13}$ cm⁻² at $m \ge 5$. For (LaGaO₃)_m/BaSnO₃ HS system, at $m \le 3$, the interfacial electron concentration is zero; at m > 4, as m increases, the interfacial electron concentration increases. Similar to LaAlO₃/SrTiO₃ HS system, a sudden increase of interfacial electron concentration in LaGaO₃/BaSnO₃ HS system occur from m=4 to m=5. But he values of electron concentration are on the order of 10^{12} cm⁻³, which is about an order of magnitude smaller than that in the corresponding (LaAlO₃)_m/SrTiO₃ HS system. This is because that the Sn 5s orbitals are more dispersive and poorly localized for electrons than the Ti 3d orbitals. This phenomenon is unfavorable to the practical application of 2DEG. Therefore, we indicate that the localization of interfacial electrons for the $BaSnO_3$ -based HS system can be improved by doping the elements who have d orbitals. This method has already been used to modify the electrical properties of BaSnO₃ film. For example, Bing Li etal.³² prepared Nb doped BaSnO₃ films by pulsed laser deposition, showing that the BaNb_{0.05}Sn_{0.95}O₃ film simultaneously has a high electron mobility of 19.65 cm²V⁻¹s⁻¹and electron density of 6.59 ×10²⁰ cm⁻³, which is beneficial to its application in optoelectronic devices.

To analyze the change of interfacial 2DEG for LaGaO₃/BaSnO₃ HS system with different LaGaO₃ film thickness, the average polarization strength in the LaGaO₃ film was calculated by the following equation^{33,34}:

Figure 3. Calculated layer-resolved partial DOS for the *n*-type $(LaGaO_3)_8/BaSnO_3$ HS model along with the charge density projected on bands forming the 2DEG. The isovalue of 1.1×10^{-4} e/bohr³ is used to produce the charge density plots.

$$P = \frac{e}{\Omega} \sum_{i=1}^{N} Z_i^* \cdot \delta_{z_i} \tag{1}$$

where Ω is the total volume of the LaGaO₃ film, N is the total number of atoms in the unit cell, Z_i^* is the Born effective charge of each atom, and δ_{z_i} is the relative displacement of the ith atom in the HS system. The relative displacement δ_{z_i} of La(Ga) atoms with respect to the oxygen atom in the same LaO and GaO₂ layers is calculated as $\delta_{z_{La/Ga}} = z_{La/Ga} - z_O$. Our calculated Born effective charge Z_i^* for La and Ga atoms are 4.03 and 3.34, respectively.

Figure 4. (a) Calculated interfacial charge carrier density (*n*) and (b) Polarization strength (P) in LaGaO₃ (LaAlO₃) film for the *n*-type LaGaO₃/BaSnO₃ (LaAlO₃/SrTiO₃) HS system as a function of LaGaO₃ (LaAlO₃) unit cells. The inset is the locally enlarged view of interfacial charge carrier density for LaGaO₃/BaSnO₃ HS system.

The calculated polarization strength in the LaGaO₃ film of *n*-type (LaGaO₃)_m/BaSnO₃ HS system with different LaGaO₃ thickness are shown in Fig. 4b. As the LaGaO₃ film thickness increases from 2 to 8, the average polarization strength in the LaGaO₃ film decreases from 52.59 μ C· cm⁻² to 34.52 μ C· cm⁻², indicating that the electrostatic force drives the electron from (LaO)⁺ layer to (GaO₂)⁻ layer is weaken, leading to the increase of interfacial electron density. Combined with the total DOS diagram in Fig. 1, it can be concluded that the critical polarization strength of insulator-to-metal transition for LaGaO₃/BaSnO₃ HS system is 43.50 μ C· cm⁻² (polarization strength at m=4), which is lower than that of LaAlO₃/SrTiO₃ HS system with the value of 50.03 μ C· cm⁻².

2DEG in the strained LaGaO₃/BaSnO₃ HS system

Based on the discussions above, we know that the critical thickness of insulator-to-metal transition for the unstrained (LaGaO₃)_m/BaSnO₃ HS system is 4 unit cells. The formation of 2DEG at the interface is strongly related to the distortion of LaGaO₃ film. To study the changes of interfacial electronic states induced by this distortion, we calculated the total DOS of $(LaGaO_3)_m/BaSnO_3$ (m=2, 3, 4, and 5) HS models with different biaxial strains of -3%, -2%, 2%, and 3%, as shown in Fig. 5. The "+" and "-" signs indicate tensile and compressive strains, respectively. Our calculated total DOS shows that all the $(LaGaO_3)_2/BaSnO_3$ HS models with -3%, -2%, 0, 2%, and 3% strains show semiconducting characteristics (first row in Fig. 5). While the (LaGaO₃)₃/BaSnO₃ HS model with -3%, -2%, and 0 strains and the (LaGaO₃)₄/BaSnO₃ HS model with -3% strain also show a similar semiconducting behavior. With the strain from -3% to 3%, the band gap of (LaGaO₃)₄/BaSnO₃ HS model decreases and vanishes. A small number of states present at the fermi level for the models with 0, 2% and 3% strains, thus exhibiting weak metallicity. All the (LaGaO₃)₅/BaSnO₃ HS models exhibit metallic properties and more states arise near the fermi level with the strain from compressive to tensile. In short, we can obtain the following conclusions: (1) For the unstrained (LaGaO₃)₅/BaSnO₃ HS system, 4 unit cells of LaGaO₃ is the minimum critical thickness to obtain a 2DEG; (2) For the -3%-biaxially-strained HS system, a critical thickness of 5 unit cells of LaGaO₃ is required, while 3 unit cells are the minimum requirement to form a 2DEG for the 3%-biaxially-strained HS system. These results present biaxial strains on the BaSnO3 substrate has a significant impact on the critical thickness of LaGaO₃ film for forming 2DEG.

To exhibit the distribution of 2DEG for the *n*-type $(LaGaO_3)_m/BaSnO_3$ HS models with various biaxial strains, we further plotted the partial density states of Sn 5s orbitals in IF-I and IF-II layers for $(LaGaO_3)_4/BaSnO_3$ HS system with the biaxial strains of - 3%, 0, and 3% in Fig. S2 in the supporting information. The fermi level of the $(LaGaO_3)_4/BaSnO_3$ HS system with -3% strain does not cross the Sn 5s orbitals, exhibiting an insulating property. But for the unstrained and 3%-strained $(LaGaO_3)_4/BaSnO_3$ HS models, the fermi level crosses the Sn 5s orbitals, showing an metallic property. Moreover, the 3%-strained $(LaGaO_3)_4/BaSnO_3$ HS system has a higher concentration of electronic states near the fermi level compared to the unstrained HS system.

To further understand the change of electronic states at the interface, the polarization strength of $(LaGaO_3)_4$ /BaSnO₃ HS system with the biaxial strain from – 3 to 3% is calculated, as shown in Fig. 6. The average polarization strength of $(LaGaO_3)_4$ /BaSnO₃ HS system decreases with the biaxial strains from – 3 to 3%. In Fig. 4, we know that the critical polarization strength of unstrained LaGaO₃/BaSnO₃ HS system is 43.50 μ C · cm⁻² corresponding to the values of HS system with 4-unit-cells thickness of LaGaO₃ film. The average polarization strength of compressively-strained (LaGaO₃)₄/BaSnO₃ HS system is larger than that of the unstrained HS system. The electrostatic force prevent electron transfer from (LaO)⁺ layer to (GaO₂)⁻ layer is strengthen, resulting in insulating behavior for the compressively-strained (LaGaO₃)₄/BaSnO₃ HS system. On the opposite, the average polarization strength of tensilely-strained HS system is smaller than that of the unstrained HS system. Then the electrostatic force present the electron from (LaO)⁺ layer to (GaO₂)⁻ layer is weaken, thus the (LaGaO₃)₄/BaSnO₃ HS system under biaxial tensile strain present a metallic property. Overall, the polarization strength of (LaGaO₃)₄/BaSnO₃ HS system is strongly influenced by the biaxial strain, which determining the critical thickness of insulator-to-metal transition.

Figure 5. Calculated total DOS for the *n*-type (LaGaO₃)_{*m*}/BaSnO₃ (m = 2, 3, 4, and 5) HS models with different strains. (**a**) – 3%, (**b**) – 2%, (**c**) 0%, (**d**) 2% and (**e**) 3%. The insets are the enlarged view of the DOS near fermi level for models.

Figure 6. Calculated average polarization strength (P) in the LaGaO₃ film for *n*-type (LaGaO₃)₄/BaSnO₃ HS models with different biaxial strains.

Next, we calculated the electronic band structures for the strained $(LaGaO_3)_4/BaSnO_3$ HS system along the path M- Γ -X of the interfacial Brillouin zone compared to the unstrained model, shown in Fig. S3 in the supporting information. Some electronic states reside below the fermi level for the unstrained and tensilely-strained $(LaGaO_3)_4/BaSnO_3$ HS system, indicating metallic properties. While the compressively-strained HS system exhibit an insulating property. Further, we calculated the electron effective mass (m^*/m_0) for the minimum conduction bands along the Γ -X and Γ -M directions, in which m_0 is the electron effective mass for free electron. The electron effective mass m* was calculated using the parabolic approximation by the following formula³⁵:

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{\partial^2 E_{CB}}{\partial \kappa^2} \tag{2}$$

where \hbar is the reduced plank constant, κ is the corresponding wave vector of the conduction bands, and E_{CB} is the energy of the minimum conduction band. For the unstrained (LaGaO₃)₄/BaSnO₃ HS system, the calculated electron effective mass is 0.24m₀, which is in good agreement with that of BaSnO₃ bulk³⁶. As the biaxial strain changes from -3% to 3%, the electron effective mass decreases from 0.27m₀ to 0.18m₀. That is, the biaxial compressive strains harm the electron migration characteristic, and the tensile strains play the opposite role. What's more, we calculated the charge carrier density by integrating the layer-resolved partial DOSs for the conducting states below the fermi level from the interfacial IF-I and IF-II (SnO₂)⁰ layer, see Fig. 7a. The HS systems with biaxial strains from -3 to 3% exhibit an increasing charge density from 0 to $4.49 \times 10^{12} \text{cm}^{-2}$, which provides evidence that the biaxial compressive strain suppresses the production of 2DEG, and the biaxial tensile strain promotes the formation of 2DEG at the interface.

Besides the interfacial charge density, the electron mobility is also an important factor in determining the interfacial conductivity of the 2DEG. We calculated the normalized electron mobility (μ/μ_0) and normalized electrical conductivity (σ/σ_0) for (LaGaO₃)₄/BaSnO₃ HS system under different biaxial strains, see Fig. 7b. μ_0 and σ_0 refer to the electron mobility and electrical conductivity of the unstrained (LaGaO₃)₄/BaSnO₃ HS system, respectively. The following two Eqs. (3) and (4) were used³⁷:

σ

$$\mu = e < \tau > /m^* \tag{3}$$

$$=ne\mu$$
 (4)

where $e, < \tau >, m^*$, n, μ , and σ are the elementary charge, average scattering time, electron effective mass, interfacial electron density, electron mobility, and electrical conductivity, respectively. The scattering time τ is determined by all the scattering events, i.e. impurity scattering, electron-phonon scattering and electron-electron scattering. The inverse of τ can be described as the sum of rates associated with all the scattering mechanisms according to Matthiessen's rule³⁸. It has been extremely challenging to calculate the scattering time τ due to the complicated scattering mechanisms. One common and simplified approach is to treat τ as a constant, which has been validated in prior studies^{35,39,40} and used in this work. The electron mobility and the electrical conductivity of (LaGaO₃)₄/BaSnO₃ HS system with different biaxial strains are presented in Fig. 7b. As the biaxial strain changes from -3 to 3%, the value of μ/μ_0 and σ/σ_0 increases. Compared to the unstrained HS system, the μ/μ_0 and σ/σ_0 for compressively-strained (LaGaO₃)₄/BaSnO₃ HS system show lower, while for tensilely-strained HS system present higher.

Discussion

In conclusion, the insulator-to-metal transition critical thickness and electrical properties of unstrained and strained LaGaO₃/BaSnO₃ HS slab systems are studied using density functional theory calculations. The results show that a critical thickness of 4 unit cells for LaGaO₃ film is required for forming 2DEG in the unstrained LaGaO₃/BaSnO₃ HS system, while the critical thickness of LaGaO₃ film increases up to 5 unit cells in – 3%-biax-ially-strained HS system and decreases to 3 unit cells in 3%-biaxially-strained HS system. These results are originated from that the biaxial strain along *ab* plane on the BaSnO₃ substrate can significantly affects the polarization strength in the LaGaO₃ film. We also find that the biaxial tensile strain can considerably increase the interfacial charge carrier density, electron mobility and electrical properties of 2DEG in LaGaO₃/BaSnO₃ HS system can be optimized by applying a tensile strain on the BaSnO₃ substrate along the *ab*-plane.

Methods

In this work, all the density functional theory (DFT)⁴¹ calculations were carried out using the Vienna Ab initio Simulation Package (VASP)^{42,43}. The projector augmented-wave (PAW) potentials were applied for electronion interactions⁴⁴. The generalized gradient approximation (GGA) parameterized by Perdew-Burke-Ernzerhof (PBE) with the on-site Coulomb interaction approach (GGA+U) was employed for the exchange-correlation

Figure 7. (a) The electron effective mass (m^*/m_0) and interfacial electron density (n), (b) The normalized electron mobility (μ/μ_0) and normalized electrical conductivity (σ/σ_0) for the $(LaGaO_3)_4/BaSnO_3$ HS model under different biaxial strains.

functional⁴⁵. Since the electronic properties of perovskite oxides are sensitive to the U value of transition metal ions. An empirical U value of 7.5 eV was used to describe La 4*f* orbitals. A cutoff energy of 450 eV was used for the plane-wave basis set, and k-space grids of $10 \times 10 \times 1$ within the monkhorst-pack scheme⁴⁶ were employed to converge the total energy. The electronic self-consistency calculation was assumed for a total energy convergence of less than 10^{-5} eV. All the atomic position were optimized until the interatomic forces smaller than 0.03 eV Å⁻¹.

BaSnO₃ crystallizes in a cubic phase with a space number of 211 (Pm $\bar{3}$ m) at RT⁴⁷, while LaGaO₃ exhibits an orthogonal perovskite structure. A symmetric sandwich-type structural model, (LaGaO₃)_m/(BaSnO₃)_{12.5}/ (LaGaO₃)_m, was built to model the *n*-type (LaO)⁺/(SnO₂)⁰ interface by adding different thickness of LaGaO₃ film on the SnO₂-terminated BaSnO₃ with the thickness of 12.5 unit cells. A vacuum layer of 20 Å was added on the GaO₂-terminated LaGaO₃ films to avoid the dipole-dipole interaction between the periodic slabs. To model the epitaxial growth process, all the ions were fully relaxed with fixed lattice parameters along the *ab* plane. The value of *m* was set from 2 to 8 to figure out the formation mechanism of 2DEG at the interface. The lattice parameter was changed to simulate various strains from – 3 to 3%, at intervals of 1% in the *ab* plane.

Data availability

The data that support the findings of this study are not openly available, but are available from the corresponding author upon reasonable request. If necessary, please contact the corresponding author: wangyqyyxf@sina.com.

Received: 3 February 2024; Accepted: 29 April 2024 Published online: 04 May 2024

References

- Ohtomo, A. & Hwang, H. A high-mobility electron gas at the LaAlO₃/SrTiO₃ heterointerface. *Nature* 427, 423–426. https://doi. org/10.1038/nature02308 (2004).
- Cen, C. et al. Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater. 7, 298–302. https:// doi.org/10.1038/nmat2136 (2008).
- Cen, C., Thiel, S., Mannhart, J. & Levy, J. Oxide nanoelectronics on demand. Science 323, 1026–1030. https://doi.org/10.1126/scien ce.1168294 (2009).
- 4. Stornaiuolo, D. *et al.* Weak localization and spin-orbit interaction in side-gate field effect devices at the LaAlO₃/SrTiO₃ interface. *Phys. Rev. B* **90**, 235426. https://doi.org/10.1103/PhysRevB.90.235426 (2014).
- Savoia, A., Paparo, D., Perna, P., Ristic, Z. & Marrucci, L. Polar catastrophe and electronic reconstructions at the LaAlO₃/SrTiO₃ interface: Evidence from optical second harmonic generation. *Phys. Rev. Bhttps://doi.org/10.1103/PhysRevB.80.075110 (2009).*
- Nanda, B. R. K. & Satpathy, S. Polar catastrophe, electron leakage, and magnetic ordering at the LaMnO₃/SrMnO₃ interface. *Phys. Rev. Bhttps://doi.org/10.1103/PHYSREVB.81.224408 (2010).*
- Förg, B., Richter, C. & Mannhart, J. Field-effect devices utilizing LaAlO₃-SrTiO₃ interfaces. *Appl. Phys. Lett.* 100, 053506. https:// doi.org/10.1063/1.3682102 (2012).
- Irvin, P. et al. Anomalous high mobility in LaAlO₃/SrTiO₃ nanowires. Nano Letters 13, 364–368. https://doi.org/10.1021/nl303 3729 (2013).
- Liu, Z. et al. Origin of the two-dimensional electron gas at LaAlO₃/SrTiO₃ interfaces: The role of oxygen vacancies and electronic reconstruction. *Phys. Rev. X* 3, 021010. https://doi.org/10.1103/PhysRevX.3.021010 (2013).
- Weston, L., Cui, X., Ringer, S. & Stampfl, C. Density-functional prediction of a surface magnetic phase in SrTiO₃/LaAlO₃ heterostructures induced by al vacancies. *Phys. Rev. Lett.* 113, 186401. https://doi.org/10.1103/PhysRevLett.113.186401 (2014).
- Kalisky, B. *et al.* Locally enhanced conductivity due to the tetragonal domain structure in LaAlO₃/SrTiO₃ heterointerfaces. *Nat. Mater.* 12, 1091–1095. https://doi.org/10.1038/NMAT3753 (2013).
- Huang, Z. et al. Biaxial strain-induced transport property changes in atomically tailored SrTiO₃-based systems. Phys. Rev. B 90, 125156. https://doi.org/10.1103/PhysRevB.90.125156 (2014).
- Zou, K. et al. LaTiO₃/KTaO₃ interfaces: A new two-dimensional electron gas system. APL Mater. 3, 036104. https://doi.org/10. 1063/1.4914310 (2015).
- Wang, Y., Tang, W., Cheng, J., Behtash, M. & Yang, K. Creating two-dimensional electron gas in polar/polar perovskite oxide heterostructures: First-principles characterization of LaAlO₃/A⁺B⁵⁺O₃. ACS Appl. Mater. Interfaces 8, 13659–13668. https://doi. org/10.1021/acsami.6b02399 (2016).
- Raghavan, S. *et al.* High-mobility BaSnO₃ grown by oxide molecular beam epitaxy. *APL Mater.* 4, 016106. https://doi.org/10. 1063/1.4939657 (2016).
- Wang, Y., Tang, W., Cheng, J., Nazir, S. & Yang, K. High-mobility two-dimensional electron gas in SrGeO₃-and BaSnO₃-based perovskite oxide heterostructures: An ab initio study. *Phys. Chem. Chem. Phys.* 18, 31924–31929. https://doi.org/10.1039/C6CP0 5572A (2016).
- Kim, Y. M. *et al.* Interface polarization model for a 2-dimensional electron gas at the BaSnO₃/LaInO₃ interface. *Sci. Rep.* 9, 16202. https://doi.org/10.1038/s41598-019-52772-8 (2019).
- Cho, H., Song, D., Kim, Y., Kim, B. & Char, K. High-mobility field-effect transistor using 2-dimensional electron gas at the LaScO₃ /BaSnO₃ interface. ACS Appl. Electron. Mater. 4, 356–366. https://doi.org/10.1021/acsaelm.1c01048 (2022).
- Kim, Y. M., Kim, Y. & Char, K. The role of coherent epitaxy in forming a two-dimensional electron gas at LaIn_{1-x}Ga_xO₃/BaSnO₃ interfaces. *Commun. Mater.* 2, 73. https://doi.org/10.1038/s43246-021-00179-2 (2021).
- Aggoune, W. & Draxl, C. Tuning two-dimensional electron and hole gases at LaInO₃/BaSnO₃ interfaces by polar distortions, termination, and thickness. NPJ Comput. Mater. 7, 174. https://doi.org/10.1038/s41524-021-00646-x (2021).
- Bark, C. W. et al. Tailoring a two-dimensional electron gas at the LaAlO₃/SrTiO₃ (001) interface by epitaxial strain. Proc. Natl. Acad. Sci. 108, 4720–4724. https://doi.org/10.1073/pnas.1014849108 (2011).
- Meng, L. *et al.* Two dimensional WS₂ lateral heterojunctions by strain modulation. *Appl. Phys. Lett.* 108, 263104. https://doi.org/10.1063/1.4954991 (2016).
- Jalan, B., Allen, S. J., Beltz, G. E., Moetakef, P. & Stemmer, S. Enhancing the electron mobility of SrTiO₃ with strain. *Appl. Phys. Lett.* 98, 132102. https://doi.org/10.1063/1.3571447 (2011).
- 24. Perna, P. et al. Conducting interfaces between band insulating oxides: The LaGaO₃/SrTiO₃ heterostructure. Appl. Phys. Lett. **97**, 152111. https://doi.org/10.1063/1.3496440 (2010).
- Ogisu, K. *et al.* Electronic band structures and photochemical properties of La-Ga-based oxysulfides. J. Phys. Chem. C 112, 11978–11984. https://doi.org/10.1021/jp802153t (2008).
- 26. Zhang, W., Tang, J. & Ye, J. Structural, photocatalytic, and photophysical properties of perovskite MSnO₃ (M = Ca, Sr, and Ba) photocatalysts. J. Mater. Res. 22, 1859–1871. https://doi.org/10.1557/jmr.2007.0259 (2007).

- Wadekar, P. V. et al. Improved electrical mobility in highly epitaxial la: BaSnO₃ films on SmScO₃ (110) substrates. Appl. Phys. Lett. 105, 052104. https://doi.org/10.1063/1.4891816 (2014).
- Nazir, S., Cheng, J. & Yang, K. Creating two-dimensional electron gas in nonpolar/nonpolar oxide interface via polarization discontinuity: First-principles analysis of CaZrO₃/SrTiO₃ heterostructure. ACS Appl. Mater. Interfaces 8, 390–399. https://doi.org/ 10.1021/acsami.5b09107 (2016).
- Nazir, S. & Yang, K. First-principles characterization of the critical thickness for forming metallic states in strained LaAlO₃/SrTiO₃ (001) heterostructure. ACS Appl. Mater. Interfaces 6, 22351–22358. https://doi.org/10.1021/am506336w (2014).
- Pavlenko, N. & Kopp, T. Structural relaxation and metal-insulator transition at the interface between SrTiO₃ and LaAlO₃. Surf. Sci. 605, 1114–1121. https://doi.org/10.1016/j.susc.2011.03.016 (2011).
- Behtash, M., Nazir, S., Wang, Y. & Yang, K. Polarization effects on the interfacial conductivity in LaAlO₃/SrTiO₃ heterostructures: A first-principles study. *Phys. Chem. Chem. Phys.* 18, 6831–6838. https://doi.org/10.1039/C5CP07581E (2016).
- Li, B., Liu, Q., Zhang, Y., Liu, Z. & Geng, L. Highly conductive Nb doped BaSnO₃ thin films on MgO substrates by pulsed laser deposition. J. Alloys Compd. 680, 343–349. https://doi.org/10.1016/j.jallcom.2016.04.157 (2016).
- Liu, X., Wang, Y., Lukashev, P. V., Burton, J. D. & Tsymbal, E. Y. Interface dipole effect on thin film ferroelectric stability: First-principles and phenomenological modeling. *Phys. Rev. B* 85, 125407. https://doi.org/10.1103/PhysRevB.85.125407 (2012).
 Zhong, W., King-Smith, R. & Vanderbilt, D. Giant LO-TO splittings in perovskite ferroelectrics. *Phys. Rev. Lett.* 72, 3618. https://
- Zhong, W., King-Smith, R. & Vanderbilt, D. Giant LO-TO splittings in perovskite ferroelectrics. *Phys. Rev. Lett.* 72, 3618. https:// doi.org/10.1103/PhysRevLett.72.3618 (1994).
- Miglio, A. et al. Computed electronic and optical properties of SnO₂ under compressive stress. Opt. Mater. 38, 161–166. https:// doi.org/10.1016/j.optmat.2014.10.017 (2014).
- Aggoune, W. et al. A consistent picture of excitations in cubic BaSnO₃ revealed by combining theory and experiment. Commun. Mater.https://doi.org/10.1038/s43246-022-00234-6 (2021).
- 37. Yu, P. Y. Fundamentals of Semiconductors : Physics and Materials Properties Vol. 198 (Springer, 1996).
- Karamargin, M., Reynolds, C., Lipschultz, F. & Klemens, P. Lattice thermal conductivity and deviations from Matthiessen's rule for dilute alloys of tin with cadmium. *Phys. Rev. B* 6, 3624. https://doi.org/10.1103/PhysRevB.6.3624 (1972).
- Madsen, G. K. Automated search for new thermoelectric materials: The case of LiZnSb. J. Am. Chem. Soc. 128, 12140–12146. https://doi.org/10.1021/ja062526a (2006).
- 40. Chen, W. et al. Understanding thermoelectric properties from high-throughput calculations: Trends, insights, and comparisons with experiment. J. Mater. Chem. C 4, 4414–4426. https://doi.org/10.1039/c5tc04339e (2016).
- Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. *Phys. Rev.* 140, A1133. https://doi. org/10.1103/PhysRev.140.A1133 (1965).
- Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* 54, 11169. https://doi.org/10.1103/PhysRevB.54.11169 (1996).
- Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* 59, 1758. https:// doi.org/10.1103/PhysRevB.59.1758 (1999).
- 44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. Lett. 50, 17953. https://doi.org/10.1103/PhysRevB.50.17953 (1994).
- Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* 77, 3865. https://doi. org/10.1103/PhysRevLett.77.3865 (1996).
- Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. *Phys. Rev. B* 13, 5188. https://doi.org/10.1103/PhysR evB.13.5188 (1976).
- Xingyi, T., Yanjun, G., Changle, C. & Kexin, J. First-principles calculations of electronic structure and optical properties of n-type doped BaSnO₃. *Rare Metal Mater. Eng.* 43, 1387–1391. https://doi.org/10.7498/aps.61.237107 (2014).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51802268 and 51972276). Al the numerical computations were performed on Hefei advanced computing center.

Author contributions

Y.Q.W. designed the study. Y.L.L. and Y.X.H. performed the calculations. Y. L.L., X.H.L. and L.Y. prepared figures and wrote the manuscript. All authors contributed to the interpretation of the results and the review of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-024-60893-y.

Correspondence and requests for materials should be addressed to Y.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024