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Study on plasma metabolomics 
profiling of depression in Chinese 
community‑dwelling older adults 
based on untargeted LC/GC‒MS
Jiangling Guo 1,9, Peipei Han 2,9, Yaqing Zheng 3,9, Yahui Wu 2,4, Kai Zheng 2,4, 
Chuanjun Huang 2,4, Yue Wang 2,4, Cheng Chen 2,5, Yiqiong Qi 2,6, Xiaoyu Chen 2, Qiongying Tao 7, 
Jiayi Zhai 7 & Qi Guo 2,8*

Depression is a serious psychiatric illness that causes great inconvenience to the lives of elderly 
individuals. However, the diagnosis of depression is somewhat subjective. Nontargeted gas 
chromatography (GC)/liquid chromatography (LC)–mass spectrometry (MS) was used to study the 
plasma metabolic profile and identify objective markers for depression and metabolic pathway 
variation. We recruited 379 Chinese community‑dwelling individuals aged ≥ 65. Plasma samples were 
collected and detected by GC/LC‒MS. Orthogonal partial least squares discriminant analysis and a 
heatmap were utilized to distinguish the metabolites. Receiver operating characteristic curves were 
constructed to evaluate the diagnostic value of these differential metabolites. Additionally, metabolic 
pathway enrichment was performed to reveal metabolic pathway variation. According to our 
standard, 49 people were included in the depression cohort (DC), and 49 people age‑ and sex‑matched 
individuals were included in the non‑depression cohort (NDC). 64 metabolites identified via GC‒MS 
and 73 metabolites identified via LC‒MS had significant contributions to the differentiation between 
the DC and NDC, with VIP values > 1 and p values < 0.05. Three substances were detected by both 
methods: hypoxanthine, phytosphingosine, and xanthine. Furthermore, 1‑(sn‑glycero‑3‑phospho)‑
1D‑myo‑inositol had the largest area under the curve (AUC) value (AUC = 0.842). The purine metabolic 
pathway is the most important change in metabolic pathways. These findings show that there were 
differences in plasma metabolites between the depression cohort and the non‑depression cohort. 
These identified differential metabolites may be markers of depression and can be used to study the 
changes in depression metabolic pathways.

Keywords Depression, Nontargeted metabolomics, GC/LC‒MS, Receiver operating characteristic curve, 
Metabolic pathways

Currently, China’s population is ageing rapidly. The number of individuals over the age of 60 exceeded 264 million 
in  20201, and the elderly population is estimated to increase to 480 million by  20502. According to research, 
depression in elderly people is a major public health problem, with an estimated point prevalence ranging 
from 7.8 to 34.8% in individuals over 60 years old in Asian  countries3. Depression is a persistent and serious 
psychiatric  illness4 and places a great burden on individuals in this age group, causing cognitive  impairment5, 
physical activity ability  decline6, and fall risk  increase7. However, there is a huge challenge with respect to the 
recognition and accurate diagnosis of these disorders in older  adults8. The main reason is that the clinical 
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diagnosis of depression is often not achieved through administering scales, which are somewhat subjective and 
lead to a high rate of  misdiagnosis9. Therefore, objective measures are needed in the diagnosis of depression.

The goal of metabolomics is to conduct a comprehensive study of all substances with low molecular weights 
in body fluids, cells, tissues, and  organs10. Comprehensive metabolite profiling, or “metabolomics”, defines the 
chemical phenotype of human subjects and animal models and, as such, has unique potential for defining 
biomarkers that predict disease incidence, severity, and progression and for casting new light on underlying 
mechanistic  abnormalities11. Currently, there are many detection methods for metabolomics research, such 
as gas chromatography‒mass spectrometry (GC‒MS) and liquid chromatography–mass spectrometry (LC‒
MS). A previous study analysed the plasma of children and adolescents with major depressive disorder using 
LC‒MS and identified polyunsaturated fatty acid metabolism, purine metabolism, and inosine as potential 
independent diagnostic  biomarkers12. Moreover, in plasma samples of from young adults with depression 
identified via LC‒MS, branched-chain amino acids showed a significant association with  depression13. In 
addition, blood samples from patients with postpartum depression were analysed via GC‒MS, and the results 
revealed that serine/threonine and glycerol lipid metabolism were  changed14. However, these studies did not focus 
on elderly individuals and only used GC‒MS or LC‒MS rather than both methods. No single metabolomics 
platform could provide adequate coverage of the entire human metabolome in  biosamples15. The combination 
of gas chromatography and liquid chromatography can overcome the barrier of liquid chromatography only 
detecting polarity, heat resistance, and nonvolatile metabolites and can also overcome the limitation of low 
chromatographic resolution that is associated with liquid  chromatography16,17.

Our study analysed the changes in the plasma metabolism profile of elderly, Chinese, community-dwelling 
individuals with depression by GC/LC‒MS. Our goal is to help diagnose and effectively treat potential biomarkers 
of depression in this age group and to discover metabolic pathway alterations.

Materials and methods
Participants
All of the subjects were individuals aged ≥ 65 who n. This study included 379 subjects who were invited to 
complete a comprehensive geriatric assessment and a face-to-face interview in the local community hospital. 
Our questionnaire assessed sociodemographic, lifestyle and health information. Sociodemographic variables 
included age and sex. Lifestyle includes smoking, drinking and daily activity levels. Daily activity levels were 
measured using the short form of the International Physical Activity Questionnaire (IPAQ)18. Health information 
included BMI, chronic conditions (such as diabetes, hypertension, hyperlipidemia, stroke, and heart disease, 
medication use and cognitive function. Cognitive function was assessed by the Mini-Mental State Examination 
(MMSE)19. Details of the questionnaire have been described in our previous  study20. We excluded subjects who 
(1) did not complete the questionnaire (n = 8), (2) took antidepressants (n = 2) and (3) lacked blood samples 
(n = 1). Our subject screening process is shown in Fig. 1. The protocol of our study was reviewed and approved 
by the ethics committee at Shanghai University of Medicine and Health Sciences, China, and the methods were 
carried out in accordance with the principles of the Declaration of Helsinki. All the subjects provided informed 
consent before participation.

Measures of depression
Depression was measured using the 30-item geriatric depression scale (GDS)21. On this scale, items 2–4, 6, 8, 
10–14, 16–18, 20, 22–26, and 28 are scored 1 point if answered “yes”, and items 1, 5, 7, 9, 15, 19, 21, 27, 29 and 30 
are scored 1 point if answered “no”. A total score of more than 10 points was considered to indicate depression. 
According to our standard, there were 49 subjects in the depression cohort (DC) and 49 age- and sex-matched 
individuals in the non-depression cohort (NDC).

Figure 1.  A flowchart of participant selection.
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Sample collection and preparation
Sample collection and LC‒MS have been described in detail in our previous  study19. Each plasma sample was 
collected from the study subjects on an empty stomach in the morning and stored at − 80 °C until analysis. Before 
LC‒MS, 150 μl of plasma that was thawed at room temperature was added to a 1.5-ml Eppendorf tube with 10 μl 
of 2-chlorophenylalanine (0.3 mg/ml) dissolved in methanol as an internal standard and 450 μl of a mixture of 
methanol/acetonitrile (2/1) to remove the protein and then vortexed for 1 min. The mixture was extracted by 
ultrasonication for 10 min, stored for 30 min (− 20℃) and then centrifuged at 4 °C for 10 min (13,000 rpm). 
Two hundred microlitres of supernatant was dried in a freeze concentration centrifuge dryer, redissolved in 
300 μl of methanol/water (1/4), vortexed for 30 s, and extracted by ultrasonication for 3 min. The sample was 
centrifuged at 4 °C for 10 min (13,000 rpm), and 150 μl of supernatant was filtered through 0.22-μm microfilters 
and transferred to LC vials. The vials were stored at − 80 °C until LC‒MS.

The pretreatment for GC‒MS was similar to that for LC‒MS. A total of 150 μl of plasma was added to an 
Eppendorf tube with 20 μl of 2-chlorophenylalanine (0.3 mg/ml) dissolved in methanol as an internal standard 
and vortexed for 10 s. Then, 450 μl of an ice-cold mixture of methanol/acetonitrile (2/1, v/v) to remove the protein 
was added to the tube and vortexed for 30 s. The mixture was extracted by ultrasonication in an ice water bath 
for 10 min, stored for 30 min (− 20 °C), and centrifuged at 4 °C for 10 min (13,000 rpm). Two hundred millilitres 
of supernatant was placed into a new glass bottle, dried in a freeze concentration centrifuge and added to 80 
μL of 15 mg/mL methoxylamine hydrochloride in pyridine. The resultant mixture was vortexed for 2 min and 
incubated at 37 °C for 90 min. Then, 50 μL of BSTFA (with 1% TMCS) and 20 μL of n-hexane were added into 
the bottle, and the bottle was vortexed violently for 2 min and derivatized at 70 °C for 60 min. The samples were 
placed at room temperature for 30 min before GC‒MS.

LC‒MS and GC‒MS
LC‒MS was performed on the ACQUITY UPLC I-Class system (Waters Corporation, Miford, USA) coupled with 
VION IMS QT of the high-resolution mass spectrometer (Waters Corporation, Milford, USA). An ACQUITY 
UPLC BEH C18 column (1.7 μm, 2.1 × 100 mm) was employed in both the positive and negative models. GC‒
MS was performed on an Agilent 7890B gas chromatography system coupled to an Agilent 5977A MSD system 
(Agilent Technologies Inc., CA, USA). A DB-5MSf used-silica capillary column (30 m × 0.25 mm × 0.25 μm, 
Agilent J& W Scientific, Folsom, CA, USA) was utilized to separate the derivatives. To monitor the stability and 
repeatability of LC‒MS and GC‒MS, QC samples were inserted regularly and analysed in every ten samples.

Metabolite identification and analysis
The LC‒MS data were analysed using Proggenesis Qi software version 2.3 (Nonlinear, Dynamics, Newcastle, 
UK). First, the software is used to carry out meaningful data mining and perform advanced alignment, picking, 
normalization, and retention time (RT) correction. The obtained characteristic matrix includes information about 
the mass charge ratio (m/z), RT, and peak intensities. Then, the identification of metabolites was based on precise 
m/z, secondary fragments, and isotope distribution using the human metabolome database (HMDB), Human 
Metabolome Database (HMDB) (http:// www. hmdb. ca/), lipid maps (version 2.3) (http:// www. lipid maps. org/), 
METLIN (http:// metlin. scrip ps. edu/), and self-built databases (EMDB) for qualitative analysis.

The GC‒MS data used the software MS-DIAL version 2.74 for peak detection, peak identification, characteri-
zation, peak alignment, wave filtering, etc. Metabolites were annotated through the LUG database (Untargeted 
database of GC–MS rom Lumingbio). The raw data matrix was obtained from the raw data with a three-dimen-
sional dataset, including sample information, the name of the peak of each substance, retention time, retention 
index, mass-to-charge ratio, and signal intensity, after alignment with the Statistical Compare component. The 
internal standards with RSD > 0.3 were used to segment and normalize all peak signal intensities in each sample, 
and the segmented and normalized results were removed redundancy and merged peak to obtain the data matrix.

A total of 1008 compound identifications detected by LC‒MS and 446 compound identifications detected 
by GC‒MS were automatically linked to the compounds. Finally, orthogonal partial least-squares discriminant 
analysis (OPLS-DA) was used to visualize the differences in metabolites between DC and NDC, and 200 response 
permutation tests (RPTs), including parameters such as R2 and Q2, were used to quantify the goodness of fit 
and assess the reliability of the established models. If these parameters were close to 1.0, the model was consid-
ered valid. Multidimensional coupling and single-dimensional analysis were used to select different metabolites 
between groups. The variable importance in projection (VIP) generated in OPLS-DA represented differential 
metabolites with biological significance. Furthermore, the significance of differential metabolites was further 
verified by Student’s t test. Variables with VIP > 1.0 and p < 0.05 were considered to be differential metabolites. To 
quantify the diagnostic performance of differential metabolites, a receiver operating characteristic curve (ROC) 
analysis was carried out, and the value of the area under the ROC curve (AUC) was calculated.

Pathway analysis
To determine the mechanism of metabolic pathway variation, the differential metabolites were based on the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http:// www. kegg. jp/ kegg/ pathw ay. html) to carry 
out metabolic pathway enrichment analysis. Their KEGG ID and pathway were found, and then the number of 
metabolites enriched in the corresponding pathway was calculated. The pathway with a p < 0.05 was selected as 
an enriched pathway; its calculation formula is given as follows:

http://www.hmdb.ca/
http://www.lipidmaps.org/
http://metlin.scripps.edu/
http://www.kegg.jp/kegg/pathway.html


4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10303  | https://doi.org/10.1038/s41598-024-60836-7

www.nature.com/scientificreports/

where N is the total number of metabolites, n is the number of differential metabolites, M is the number of 
metabolites annotated as a specific pathway, and m is the number of differential metabolites annotated as a 
specific pathway.

Statistical analyses
Baseline sociodemographic and health-related characteristic analyses were performed using SPSS version 25.0 
(SPSS Incorporation, Chicago, IL, USA), and p < 0.05 was regarded as statistically significant. Baseline sociode-
mographic and health-related characteristics were compared between the DC and the NDC using an independent 
t test for numeric variables and a chi-square test for categorical variables. Data with a normal distribution are 
expressed as the mean ± SD, and categorical variables are expressed as proportions.

Results
Characteristics of the study population
According to the exclusion criteria, we excluded 11 subjects; the remaining 368 were included in the experi-
ment. Of the 368 subjects we included in the experiment, 49 were diagnosed with depression according to the 
diagnostic criteria as DC. The 319 people without depression were matched with 49 people according to age and 
sex as NDC. As shown in Table 1, there was no significant difference in sociodemographic lifestyle and healthy 
conditions between the DC and the NDC (p > 0.05). GDS scores (p < 0.001) was significantly different between 
the two groups.

Untargeted GC/LC‒MS of samples
A total of 446 compounds were identified in plasma via GC‒MS, and 1012 were identified via LC‒MS. To 
determine the difference in plasma metabolites between the two groups of samples, we used the OPLS-DA 
model. The OPLS-DA model showed that there was obvious separation and little overlap between the two groups 
(Fig. 2A,B). Two hundred permutation tests were confirmed to not be overfitted (Fig. 2C,D).

Potential biomarker analysis
Among all identified metabolites, 64 metabolites identified via GC‒MS and 73 metabolites identified via by 
LC‒MS had significant contributions to the differentiation between the DC and the NDC, with VIP values > 1 
and p values < 0.05 (Tables 2, 3). Three substances with the same name and KEGG ID were detected by both 
methods, including hypoxanthine, phytosphingosine, and xanthine. The volcanic map shows the P value and 
fold change value, thus proving the effectiveness of differential metabolites (Fig. 3A,B). Hierarchical clustering 
displayed the levels of these metabolites, in which colours represent higher levels (red) or lower levels (blue), 
with the intensity reflecting the corresponding concentration (Fig. 3C,D). The top 10 metabolites are shown by 
box-and-whisker plots according to VIP values (Fig. 4).

Evaluation of the metabolite panel and for the diagnosis of depression
ROC curve analysis further evaluated the diagnostic performance of differential metabolites. There were 11 
metabolites with AUC values > 0.8, including 1-(sn-glycero-3-phospho)-1D-myo-inositol (AUC = 0.842, 95% CI 
0.752–0.932), ergothioneine (AUC = 0.834, 95% CI 0.753–0.915), taurine (AUC = 0.832, 95% CI 0.745–0.919), 
15(S)-HETE (AUC = 0.824, 95% CI 0.739–0.909), guanosine monophosphate (AUC = 0.821, 95% CI 0.733–0.909), 
quercetin (AUC = 0.814, 95% CI 0.719–0.908), 14,15-epoxy-5,8,11-eicosatrienoic acid (AUC = 0.810, 95% CI 
0.718–0.903), diclofenac (AUC = 0.809, 95% CI 0.722–0.897), 3’-AMP (AUC = 0.808, 95% CI 0.711–0.904), 
CDP-ethanolamine (AUC = 0.805, 95% CI 0.709–0.901), and inosine-5′-monophosphate (AUC = 0.804. 95% CI 
0.709–0.899) (Table 4).

Metabolic pathways change depression
To understand which metabolic pathways may affect depression, we conducted metabolic pathway enrichment 
(Fig. 5). We found that these metabolites are mostly related to purine metabolism and galactose metabolism.

Discussion
To our knowledge, our study is the first to use a nontargeted metabolomic method to study the plasma metabolic 
profile of depression in Chinese community-dwelling older adults. A total of 1458 metabolites were detected by 
LC‒MS and GC‒MS, including 137 different metabolites with VIP values > 1 and p values < 0.05. To identify 
reliable biomarkers, we made a volcano map, and we performed hierarchical clustering, box diagram analysis 
and ROC curve analysis for different metabolites. Furthermore, we also enriched the metabolic pathways and 
analysed the affected metabolic pathways.

In a previous study of major depressive disorder, 822 metabolites were detected in plasma using LC, and 17 
metabolic pathway changes were  found22. Thirty-seven metabolites were detected by GC‒MS in the plasma 
of pregnant women with antenatal depressive  symptoms23. Compared to using only LC–MS or GC‒MS, we 
detected more metabolites using both LC–MS and GC‒MS and discovered more differential metabolites and 
changes in metabolic  pathways12–14,22,23. Previous studies have found changes in amino acid, fatty acid, and 
purine metabolism in plasma samples of depression, and our study also found similar findings. In addition, we 
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also found changes in FoxO signaling and Ampk signaling pathway pathways, which are involved in cellular 
 autophagy24,25. Therefore, our results suggest that depression may be related to cellular autophagy.

Our results revealed that 1-(sn-glycero-3-phospho)-1D-myo-inositol had a high diagnostic value. 1-(sn-
Glycero-3-phospho)-1D-myo-inositol, also known as glycerophosphoinositol, is produced through membrane 
phosphatidylinositol through two successive deacylation steps catalysed by phospholipase A2IVα26,27. Accord-
ing to a study, high glycerophosphoinositol levels indicate cellular phenomena associated with the activation of 
RAS/mitogen-activated protein kinase (MAPK)  pathways27. Our metabolic pathway enrichment results showed 
that depression was closely associated with the MAPK signaling pathway. Ras/MAPK pathway alterations play 
a critical role in human brain structure and white matter  microstructure28. In a study of depression in elderly 
individuals, it was found that white matter changes in elderly individuals with depression and that the changed 
white matter was related to cognitive control and emotional  regulation29. Therefore, 1-(sn-glycero-3-phospho)-
1D-myo-inositol may affect the structure of white matter through the Ras/MAPK pathway, leading to depression.

In this study, we found significant changes in several metabolic pathways, the most important of which was 
the purine metabolic pathway. Compared with the non-depression cohort, the depression cohort was char-
acterized by higher levels of purine compounds (2′-deoxyguanosine 5′-monophosphate, 3′-AMP, adenosine 
monophosphate, xanthine, guanosine monophosphate, inosinic acid, adenine, and hypoxanthine) and lower 
levels of uric acid. Purine compounds are the substrate of purine metabolism, and uric acid is the end product 
of purine  metabolism30. Thus, based on these findings, we suggest that downregulated purine metabolism may 
occur in older adults with depression. A previous study also showed that uric acid in the plasma of patients with 
depression  decreased30. Uric acid has an important role in vivo as an antioxidant that provides more than 60% 

Table 1.  Baseline sociodemographic variables of the matched groups (N = 98). DC depression cohort, NDC 
non-depression cohort, BMI body mass index, IPAQ international physical activity questionnaire, HDL high-
density lipoprotein, LDL low-density lipoprotein, MMSE Mini-mental State Examination, GDS score Geriatric 
Depression Scale score.

Characteristic DC (n = 49) NDC (n = 49) p Value

Age(years) 72.10 ± 5.12 73.47 ± 4.49 0.163

Sex (%) 0.671

Male 36.7 32.7

Female 63.3 67.3

Smoking (%) 0.727

No 91.8 89.8

Yes 8.2 10.2

Drinking (%) 0.133

No 85.7 73.5

Yes 14.3 26.5

BMI (kg/m2) 23.64 ± 3.59 24.27 ± 3.89 0.412

IPAQ (Met-min/wk) 5977.30 ± 5977.31 6385.78 ± 5391.08 0.712

Total cholesterol (mmol/L) 5.23 ± 0.94 5.29 ± 1.06 0.748

Triglycerides (mmol/L) 1.32 ± 0.70 1.27 ± 0.72 0.732

HDL (mmol/L) 1.41 ± 0.77 1.51 ± 0.39 0.129

LDL (mmol/L) 3.38 ± 0.78 3.39 ± 0.99 0.919

Number of diseases

Diebetes (%) 0.316

No 75.5 83.7

Yes 24.5 16.3

Hypertension (%) 0.667

No 30.6 34.7

Yes 69.4 65.3

Hyperlipidemia (%) 0.505

No 87.8 91.8

Yes 12.2 8.2

Stroke 0.277

No 63.3 73.5

Yes 36.7 26.5

Heart disease (%) 0.671

No 63.3 73.5

Yes 36.7 26.5

MMSE 24.69 ± 4.67 23.94 ± 4.80 0.432

GDS score 14.71 ± 3.57 4.90 ± 2.37  < 0.001
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antioxidant activity in  plasma31,32. Depression is associated with increasing levels of oxidative  stress33. Excessive 
oxidative stress leads to damage to the brain function of patients and various psychiatric symptoms. Downregu-
lation of purine metabolism and lack of sufficient uric acid to fight oxidative stress result in brain damage and 
depression. However, purine metabolism was upregulated in a metabonomic study of children and adolescents 
with major depressive  disorder12. Therefore, the role of purine metabolism in depression needs further study.

We have made certain achievements in metabolomics research on depression. Three substances (hypoxan-
thine, phytosphingosine, and xanthine) were detected by LC‒MS and GC‒MS. In addition, many articles also 
mentioned these  metabolites9,22,34, so our results are reliable and repeatable. Hypoxanthine and xanthine affect 
the occurrence of depression through purine metabolism (described above). Phytosphingosine is classified as 
a sphingolipid, and the D-erythro-sphingosine that we detected is a  sphingolipid35. There is a large amount of 
sphingolipids in the central nervous system. Their metabolites are an important structure of biological mem-
branes and participate in many cell signal transduction pathways as second  messengers35,36. Sphingolipids are 
acylated to produce  ceramide37. A study injected ceramide into the hippocampus of mice, and then the prolifera-
tion, maturation, and survival of neurons in mice decreased, leading to depressive  behaviour38. However, our 
results showed that the concentration of ceramide in plasma decreased in the depression cohort. This may be 
because ceramide enters the central nervous system through the blood‒brain barrier and accumulates in the 
hippocampus, resulting in depression and a decrease in ceramide concentration in the  periphery39.

However, our research still has some limitations. First, our sample size is small, including only elderly indi-
viduals aged 65 and above in Chongming, Shanghai. Secondly, our article only compared the metabolite differ-
ences between the two groups without an in-depth study of the metabolites. The Hamilton Depression Rating 
Scale is the most common tool for clinically diagnosing depression, but the GDC scale was used in this study. 
The two scales may have some differences in the diagnosis of depression. In future studies, we will increase the 
sample size and pay attention to the differences between the two scales for diagnosing depression to identify 
better biomarkers. At the same time, we will also conduct some in-depth studies on metabolites in subsequent 
studies, and we will also validate the metabolites in the depression model again.

Figure 2.  Multivariate date analysis of date from plasma between the depression cohert (DC) and non-
depression corhort (NDC) base on GC/LC–MS. (a, c) OPLS-DA score plots (left panel) and statistical 
validation of the corresponding OPLS-DA model by permutation analysis (right panel) based on the GC–MS. 
(b, d) OPLS-DA score plots (left panel) and statistical validation of the corresponding OPLS-DA model by 
permutation analysis (right panel) based on the LC–MS. The two coordinate points are relatively far away on the 
score map, indicating that there is a significant difference between the two samples, and vice versa. The elliptical 
region represents a 95% confidence interval.
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Metabolites KEGG ID aVIP value bp Value cFC dTREND

Dl-dopa 3.82  < 0.001 0.42 ↓

D-glucose C00031 3.62 0.001 0.42 ↓

Dehydroascorbic acid 3.55 0.018 0.38 ↓

Altrose 3.53  < 0.001 0.49 ↓

D-mannose C00159 3.34  < 0.001 0.52 ↓

Alpha-d-glucose C00267 3.29  < 0.001 0.53 ↓

Xylofuranose 3.15 0.003 0.56 ↓

D-erythro-sphingosine 3.12  < 0.001 0.55 ↓

Phytosphingosine C12144 3.12  < 0.001 0.53 ↓

Glucose 3.12  < 0.001 0.43 ↓

Diclofenac C01690 2.96  < 0.001 4.31 ↑

Glutathione C00051 2.91  < 0.001 5.98 ↑

Scopoletin C01752 2.90 0.005 0.43 ↓

Hydroxypropanedioic acid 2.85 0.005 0.57 ↓

Hypoxanthine C00262 2.65  < 0.001 3.59 ↑

Inosine-5′-monophosphate 2.65  < 0.001 7.48 ↑

Glucose-1-phosphate 2.62 0.002 0.60 ↓

L-2-hydroxyglutaric acid 2.53 0.003 5.96 ↑

Beta-mannosylglycerate 2.43  < 0.001 0.58 ↓

Kynurenic acid 2.40  < 0.001 0.60 ↓

Galactinol 2.28 0.007 0.56 ↓

5′-adenosine monophosphate 2.26  < 0.001 3.22 ↑

Delta-tocopherol C14151 2.25  < 0.001 0.58 ↓

Alloxanoic acid 2.23 0.002 2.14 ↑

Ethyl beta-d-glucopyranoside 2.19 0.001 0.47 ↓

Uracil C00106 2.07 0.012 2.16 ↑

2-Oxo-propanoic acid 2.07 0.001 2.02 ↑

Xanthine C00385 2.00  < 0.001 2.96 ↑

Malate C00711 1.96  < 0.001 2.91 ↑

Glycerol 3-phosphate 1.96  < 0.001 2.35 ↑

Galactitol C01697 1.90  < 0.001 0.60 ↓

O-phosphoethanolamine 1.90  < 0.001 2.53 ↑

Lactobionic acid 1.89 0.007 0.61 ↓

3-Methyl-3-buten-1-ol 1.88 0.004 2.09 ↑

Methyl-alpha-lyxofuranoside 1.87 0.025 0.28 ↓

D-ribose C00121 1.86  < 0.001 0.61 ↓

Methylboronate 1.80  < 0.001 2.16 ↑

4,Alpha-dihydroxycinnamic acid 1.79  < 0.001 1.85 ↑

O-phosphoserine 1.76  < 0.001 2.11 ↑

4′,5-Dihydroxy-7-Glucosyloxyflavanone 1.75  < 0.001 2.01 ↑

Theophylline C07130 1.75  < 0.001 0.50 ↓

1-Kestose 1.73 0.028 0.36 ↓

Resveratrol C03582 1.70  < 0.001 2.39 ↑

Linolenic acid 1.69  < 0.001 2.30 ↑

Glyceric acid 1.66  < 0.001 1.95 ↑

Pyruvic acid 1.62  < 0.001 1.82 ↑

D-fructose-6-phosphate 1.57  < 0.001 1.79 ↑

Boric acid C12486 1.57  < 0.001 1.83 ↑

3-Phosphoglyceric acid 1.53  < 0.001 2.10 ↑

2,4-Diaminobutyric acid 1.53 0.001 1.75 ↑

2′,6′-Dihydroxyacetophenone 1.52 0.001 4.74 ↑

Mannose 6-phosphate 1.47  < 0.001 1.85 ↑

5-Hydroxy-3-indoleacetic acid 1.47  < 0.001 1.80 ↑

Succinic acid 1.47  < 0.001 1.72 ↑

L-glutamic acid 1.46  < 0.001 1.82 ↑

Tridecanol 1.40  < 0.001 1.68 ↑

Continued
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Conclusion
In conclusion, our results suggest that there are several plasma metabolites associated with depression. Several 
of these metabolites have high diagnostic value and may be used as markers for depression diagnosis. Through 
further study of differential metabolites, we can also find changes in the metabolic pathway of depression.

Table 2.  Differential metabolites detected by GC–MS. a Correlation coefficient and VIP value were obtained 
from OPLS-DA analysis. b p Value determined from Student’s t-test. c Fold change between depression cohort 
and non-depression cohort. dRelative concentrations compared to non-depression cohort: ↑ = upregulated, 
↓ = downregulated. FC fold change, VIP variable importance for projection.

Metabolites KEGG ID aVIP value bp Value cFC dTREND

2,4-Dihydroxy-pentanedioic acid 1.39  < 0.001 1.73 ↑

Udp-N-acetylglucosamine 1.30 0.001 1.76 ↑

Leucinic acid 1.21  < 0.001 1.81 ↑

N-carbamylglutamate 1.15  < 0.001 1.32 ↑

Glucose 6-phosphate 1.14 0.001 1.59 ↑

D-Arabinose C00216 1.14  < 0.001 1.69 ↑

3-Hydroxypalmitic acid 1.10 0.007 2.03 ↑

Nicotianamine C05324 1.09 0.043 1.51 ↑
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Metabolites KEGG ID aVIP bp Value cFC dTREND

Hypoxanthine C00262 12.06  < 0.001 3.05 ↑

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)) 7.65 0.034 0.91 ↓

2′-Deoxyguanosine 5’-Monophosphate C00362 6.52  < 0.001 3.94 ↑

L-Carnitine C00318 4.68  < 0.001 0.80 ↓

(3R,5S)-1-pyrroline-3-hydroxy-5-Carboxylic Acid C04281 4.55  < 0.001 2.63 ↑

3′-AMP C01367 4.29  < 0.001 3.88 ↑

Sphingosine 1-phosphate C06124 3.93  < 0.001 0.74 ↓

Adenosine monophosphate C00020 3.89  < 0.001 3.79 ↑

PE(18:2(9Z,12Z)/0:0) 3.85 0.014 0.83 ↓

D-Glucose C00221 3.71  < 0.001 0.51 ↓

Quercetin C00389 3.67  < 0.001 7.74 ↑

15-HETE-DA 3.65 0.021 0.83 ↓

Taurine C00245 3.46  < 0.001 2.01 ↑

Malonic semialdehyde C00222 3.33  < 0.001 3.05 ↑

9(S)-HPODE C14827 3.30 0.039 1.33 ↑

Pyroglutamic acid C01879 3.15  < 0.001 2.60 ↑

Paracetamol sulfate 3.11  < 0.001 2.85 ↑

Uric acid C00366 3.11 0.031 0.88 ↓

12,13-EpOME C14826 3.04 0.002 1.38 ↑

Inosinic acid C00130 3.03  < 0.001 10.69 ↑

Phytosphingosine C12144 2.83 0.002 0.68 ↓

TG(17:0/18:2(9Z,12Z)/20:0)[iso6] 2.57  < 0.001 0.67 ↓

Arginyl-Leucine 2.53  < 0.001 28.28 ↑

Benzeneacetamide-4-O-sulphate 2.46  < 0.001 2.77 ↑

1-Pyrroline-4-hydroxy-2-Carboxylate C04282 2.44  < 0.001 2.45 ↑

PC(25:0/18:0) 2.39  < 0.001 2.72 ↑

10E-Heptadecen-8-ynoic acid 2.14 0.017 1.36 ↑

L-3-Cyanoalanine C02512 2.04 0.027 1.24 ↑

5-propylideneisolongifolane 2.01  < 0.001 0.69 ↓

PC(O-16:0/0:0) 1.85 0.027 1.21 ↑

Pyrophosphate C00013 1.76  < 0.001 2.46 ↑

Ribothymidine 1.69  < 0.001 0.55 ↓

Niacinamide C00153 1.67  < 0.001 2.87 ↑

L-Glutamic acid C00025 1.67  < 0.001 1.71 ↑

LysoPC(P-18:0) C04230 1.66 0.025 1.21 ↑

Sphinganine C00836 1.63 0.039 0.81 ↓

Guanosine monophosphate C00144 1.58  < 0.001 18.43 ↑

Arachidic acid C06425 1.53 0.046 0.81 ↓

L-Glutamine C00064 1.52 0.002 0.89 ↓

(2′E,4′Z,7′Z,8E)-Colnelenic acid C16320 1.52 0.048 1.57 ↑

Phytophthora mating hormone Alpha1 1.50  < 0.001 0.59 ↓

Behenic acid C08281 1.47 0.043 0.79 ↓

Adenine C00147 1.45  < 0.001 3.76 ↑

Oleamide C19670 1.44 0.001 1.65 ↑

Uridine C00299 1.40  < 0.001 0.72 ↓

PC(16:0/5:0(CHO)) 1.39 0.044 1.44 ↑

Pentanal 1.38 0.003 1.15 ↑

5′-(3′-Methoxy-4′-hydroxyphenyl)-gamma-valerolactone 1.35 0.049 0.75 ↓

15(S)-HETE C04742 1.35  < 0.001 2.86 ↑

Ergothioneine C05570 1.34  < 0.001 3.45 ↑

24-Methylene-cholest-5-en-3beta,7beta,19-triol 1.25 0.012 0.83 ↓

CDP-Ethanolamine C00570 1.25  < 0.001 5.29 ↑

Dimethylglycine C01026 1.22  < 0.001 1.63 ↑

Hydroxypropionic acid C01013 1.22  < 0.001 1.22 ↑

18-fluoro-9Z,12Z-octadecadienoic acid 1.18  < 0.001 2.52 ↑

PC(P-16:0/20:4(5Z,8Z,11Z,14Z)) 1.18 0.048 0.91 ↓

Continued
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Table 3.  Differential metabolites detected by LC–MS. a Correlation coefficient and VIP value were obtained 
from OPLS-DA analysis. b p value determined from Student’s t-test. c Fold change between depression cohort 
and non-depression cohort. dRelative concentrations compared to non-depression cohort: ↑ = upregulated, 
↓ = downregulated. PC phosphatidylcholine, LysoPC lysophosphatidylcholine, PE phosphatidylethanolamine, 
TG triglyceride, Cer ceramide, FC fold change, VIP variable importance for projection.

Metabolites KEGG ID aVIP bp Value cFC dTREND

Dolichyl beta-D-glucosyl Phosphate C01246 1.16 0.050 1.42 ↑

Undecanal 1.11  < 0.001 1.64 ↑

Isopimaric acid C09118 1.11  < 0.001 2.50 ↑

Dihydro-2(3H)-thiophenone 1.11  < 0.001 0.82 ↓

PC(16:1(9Z)/2:0) 1.10 0.001 2.01 ↑

1-(sn-Glycero-3-phospho)-1D-Myo-inositol C01225 1.10  < 0.001 4.87 ↑

2-Aminoacrylic acid C02218 1.09  < 0.001 2.95 ↑

14,15-Epoxy-5,8,11-Eicosatrienoic acid C14771 1.09  < 0.001 3.81 ↑

Fumaric acid C00122 1.08  < 0.001 1.68 ↑

Cer(d18:0/14:0) 1.07 0.020 0.94 ↓

3-Oxoglutaric acid 1.07 0.003 1.25 ↑

PE(P-16:0/0:0) 1.05 0.043 1.20 ↑

Xanthine C00385 1.03  < 0.001 2.96 ↑

5,7-Dihydroxyflavone 7-benzoate 1.03  < 0.001 0.57 ↓

8,9-Epoxyeicosatrienoic acid C14769 1.03  < 0.001 3.89 ↑

5,6-Epoxy-8,11,14-eicosatrienoic acid C14768 1.03  < 0.001 3.46 ↑

Conicasterol D 1.03 0.049 1.16 ↑
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Figure 3.  Volcano plot and hierarchical clustering based on the LC/GC–MS of serum metabolites obtained 
from the depression cohert (DC) and non-depression corhort (NDC). (a) Volcano plot based on GC–MS. (b) 
Volcano plot based on LC–MS. (c) Hierarchical clustering based on GC–MS. (d) Hierarchical Clustering based 
on LC–MS. In (a, b), the blue dot represents metabolite with a downward trend, red represents metabolites with 
an upward trend, and the gray origin represents that the change of metabolites is not obvious. The area size of 
the point is related to the VIP value. In (c, d), the color from blue to red illustrates that metabolites Hexpression 
abundance is low to high in hierarchical clustering.
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Figure 4.  The top 10 metabolites are shown by box-and-whisker plots according to VIP values.
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Figure 4.  (continued)

Table 4.  Metabolites with AUC greater than 0.8.

Metabolites AUC Specificity Sensitivity Cutoff 95% CI

1-(sn-Glycero-3-phospho)-1D-yo-inositol 0.842 0.796 0.898 1.054 0.752–0.932

Ergothioneine 0.834 0.612 0.939 3.632 0.753–0.915

Taurine 0.832 0.694 0.939 41.978 0.745–0.919

15(S)-HETE 0.824 0.653 0.959 5.243 0.739–0.909

Guanosine monophosphate 0.821 0.673 1.000 2.024 0.733–0.909

Quercetin 0.814 0.714 0.939 10.049 0.719–0.908

14,15-Epoxy-5,8,11-eicosatrienoic acid 0.810 0.673 0.959 2.026 0.718–0.903

Diclofenac 0.809 0.673 0.857 0.001 0.722–0.897

3′-AMP 0.808 0.673 0.959 31.111 0.711–0.904

CDP-Ethanolamine 0.805 0.673 0.959 2.610 0.709–0.901

Inosine-5′-monophosphate 0.804 0.673 0.959 0.001 0.709–0.899
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Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to protect 
study participant privacy but are available from the corresponding author on reasonable request.
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