
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11169  | https://doi.org/10.1038/s41598-024-60835-8

www.nature.com/scientificreports

New alternatives 
to the Lennard‑Jones potential
Pablo Moscato 1* & Mohammad Nazmul Haque 1,2

We present a new method for approximating two-body interatomic potentials from existing ab initio 
data based on representing the unknown function as an analytic continued fraction. In this study, our 
method was first inspired by a representation of the unknown potential as a Dirichlet polynomial, i.e., 
the partial sum of some terms of a Dirichlet series. Our method allows for a close and computationally 
efficient approximation of the ab initio data for the noble gases Xenon (Xe), Krypton (Kr), Argon (Ar), 
and Neon (Ne), which are proportional to r−6 and to a very simple depth = 1 truncated continued 
fraction with integer coefficients and depending on n−r only, where n is a natural number (with 
n = 13 for Xe, n = 16 for Kr, n = 17 for Ar, and n = 27 for Neon). For Helium (He), the data is well 
approximated with a function having only one variable n−r with n = 31 and a truncated continued 
fraction with depth = 2 (i.e., the third convergent of the expansion). Also, for He, we have found 
an interesting depth = 0 result, a Dirichlet polynomial of the form k1 6−r

+ k2 48
−r

+ k3 72
−r (with 

k1, k2, k3 all integers), which provides a surprisingly good fit, not only in the attractive but also in the 
repulsive region. We also discuss lessons learned while facing the surprisingly challenging non-linear 
optimisation tasks in fitting these approximations and opportunities for parallelisation.

Keywords  Lennard-Jones potential, Dirichlet polynomial, Symbolic regression, Analytic continued fraction, 
Memetic algorithm

The Lennard-Jones (LJ) potential has once been considered “one of the centerpieces in Molecular Dynamics (MD) 
simulations, the key computational method for studying atomistic phenomena across Chemistry, Physics, Biology, 
and Mechanics”1. It is a well-known functional form proposed for approximating two-body interatomic poten-
tials when existing data is available. While the LJ potential possesses favourable mathematical properties, it is a 
special case of a more general parameterisable functional form attributed to Mie2.

Despite its widespread fame and extensive use, the LJ potential may not accurately represent certain char-
acteristics of specific physical interactions. Consequently, a model-independent mathematical method that can 
directly “learn from data” the specific functional form of a two-body interaction potential without making 
excessive assumptions is a crucial research endeavour. This is particularly relevant in symbolic regression, where 
developing reliable identification methods for accurate approximations of two and three-body potentials would 
greatly enhance data-driven model building. However, this task poses a significant challenge, even when dealing 
with relatively small datasets and highly non-linear target functions, as is the case here.

It is essential to acknowledge that this problem is far from being solved. The field has a rich history of a 
century of research, and numerous potentials, bearing the names of their proposers, are now widely used in 
molecular dynamics simulations. For instance, a comprehensive review of many proposed potentials can be 
found in Ref.3.

Deriving an analytical form for the potential from experimental data poses a more significant challenge for 
machine learning approaches. However, it remains an area of interest for testing new data-driven methods, such 
as those proposed in Ref.1, which utilise data provided by Halpern for the Argon dimer4. In this paper, we also 
revisit this dataset and utilise ab initio data available for Xenon (Xe), Krypton (Kr), Argon (Ar), Neon (Ne), and 
Helium (He) from several publications, including the work by Jäger, Hellmann, Bich, and Vogel5, as well as the 
comprehensive study by Deiters and Sadus in 2019 (see Ref.3 and the references cited therein).

The Lennard‑Jones potential
The Lennard-Jones potential VLJ (r; σ , ε, n,m) for a pair of interacting particles is defined by Eq. (1),
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where r is the distance between the interacting atoms and n is the ‘repulsion exponent’ and historically1, by 
mathematical convenience at the time, it was set as n = 12 , m = 6 and the values of σ , ε are chosen accord-
ing to the available experimental data. Clearly the potential has a single root ( VLJ (σ ) = 0 ) and a minimum at 
rmin = 21/6σ and VLJ (rmin) = −σ.

The Mie Potential and Kulakova’s approximation with non‑integers n and m
It is known that Lennard-Jones explored various values for the parameters n and m before arriving at the final 
form. In 2017, Lina Kulakova and her colleagues conducted an intriguing study in which they investigated the 
joint calibration of all parameters in the Lennard-Jones functional form, allowing for non-integer values of n 
and m1. They concluded that “the repulsion exponent n ≈ 6.5 provides an excellent fit for experimental data of 
liquid argon across a range of thermodynamic conditions, as well as for saturated argon vapor”. However, when 
using the quantum simulation data of the Argon dimer made available by Arthur M. Halpern in 20104, a good 
fit was not obtained with p = 12 . The data suggested that values of n ≈ 12.7 are “preferred for Argon gas, while 
experimental data support lower values”.

It is worth noting that many decades before 2017, there was a similar proposal; an even more general form 
of the LJ potential was proposed by the German physicist Gustave Mie in 19032:

The potential has a root at r = σ and a minimum at rmin given by

where

So for n = 12 and m = 6 , we have that the minimum is

It is important to remark that this functional form of the Mie potential (given by Eq. (3)), which is frequently 
attributed to Ref.2, does not appear in that manuscript. In fact, it seems that a generalised form first appeared in 
a textbook6 in 1939. We are indebted to R. Sadus, who communicated this fact to us.

Buckingham and other proposed potentials
In 1938, while studying the equation of state for gaseous helium, neon and argon, Richard Buckingham proposed 
a simplification of the Lennard-Jones potential7

where A, B, and C are constants. It is important to note that this functional form has a caveat. As the interatomic 
distance r approaches zero, the first term tends to a constant value, while the second term diverges and becomes 
negative for small r, indicating an attractive force. Consequently, it loses its physical relevance for very close 
interatomic distances. This problem is not present in both the Mie and Lennard-Jones potentials. We highlight 
this fact because, throughout the 20th century, introducing problem domain (i.e., physical) information has 
been crucial in the proposal of several alternative functional forms. We will discuss this issue in the ‘Introducing 
problem domain information’ section.

Other recently proposed functional forms of interest have been extensively discussed in Ref.3, so we refer the 
reader to that paper for more information on these potentials.

In the same paper3, Deiters and Sadus introduced a general functional form for a potential called SAAPx, 
which requires fixing seven coefficients for Helium (He) and six coefficients for the other noble gases Xenon 
(Xe), Krypton (Kr), Argon (Ar), and Neon (Ne).

Analytic continued fractions and symbolic regression methods
We will start with a simple introduction to symbolic regression to understand how our proposal was data-driven.

An example of symbolic regression
To illustrate how symbolic regression works, let’s assume we are given values of an unknown function f(r) on 
some points (i.e. no experimental error in this case) so we know that the values in the given set {(r, f (r))} are 
perfectly known. See, for instance, Table 1 as an illustrative example.
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Current symbolic regression methods, such as the one implemented at the core of the TuringBot software, 
have demonstrated remarkable power (see the methods used in Ref.8 and their results on a large variety of data-
sets). They are capable of “learning” from data using a number of built-in mathematical functions.

For this illustrative task, we have employed the TuringBot software (which implements a symbolic regression 
approach) to obtain the following function:

which does not make any error in the training data and “predicts” that f1(10) = 259 , f1(11) = 399 and 
f1(12) = 597.

We have obtained a formula with no coefficients and no error in the training data. This may be appealing, but 
we may suspect that this formula may not be the “true unknown function” we are trying to approximate. To deal 
with this, TuringBot, like many other symbolic regression packages, allows you to “unselect” many mathemati-
cal functions used as “building blocks” provided as default. In fact, we could search for functions using “just” 
integer coefficients and only the basic arithmetic functions of addition, subtraction, multiplication and division.

In this case, we have been able to use symbolic regression solvers to obtain, for instance, a simple polynomial 
equation in u = r − 1 such as:

which also perfectly fits the data and for which fg .t(10) = 256 , fg .t(11) = 386 and fg .t(12) = 562 , which, as 
perhaps expected, do not agree with those of Eq. (5). We can rewrite it as:

for any integer r ≥ 1.
Without further addition of problem domain knowledge about the nature of the unknown function f(r), 

both Eqs. (5) and  (7) can equally be the function (as well as infinitely many others that fit the training data).
We will return to this motivating example later. Still, at this point, we want to remark that we can think of 

Eq. (7) as an approximation using ratios of polynomials in r with integer coefficients. When searching for rela-
tively simpler equations, it is frequently the case that a change of variables may help to reduce the complexity 
of the final model. This simple illustration paves the way for discussing the following topics since we propose a 
novel representation.

Analytic continued fraction regression
Since 2019 we have been championing a new approach for multivariate regression. It is based on representing 
the unknown target function as an analytic continued fraction. The resulting method, called Continued Frac-
tion Regression (cfr), has been demonstrated to have competitive performance on a variety of regression 
problems9,10, including in materials science11 and physics12,13. In Ref.14, using 352 datasets from real experiments 
in the physical and chemical sciences, CFR showed, employing leave-one-out cross-validation, that it was ranked 
first in 350 out of the 352 datasets (in training) in comparison with ten machine learning regression methods 
of the scikit-learn collection. In testing, CFR ranked first 192 times, i.e. more than all of the other ten 
algorithms combined.

In CFR, it is proposed that the target function of a multivariate regression problem can be represented as an 
analytic continued fraction. For a multivariate input x = [x1, x2, · · · , xd] , where d is the number of variables, 
an output y ∈ R , a regression model is defined as an analytic continued function f : X → Y with Y ⊆ R . In 
Ref.10 Eq. (8) was first proposed, as a first approach to developing the theory, to start studying the representation 
potential of this functional form:

(5)f1(r) = Round
(
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)))ln(r)
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(6)fg .t(r) =
24+ 14u+ 11u2 − 2u3 + u4
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24
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f (x) = g0(x)+
h0(x)

g1(x)+
h1(x)

g2(x)+
h2(x)

g3(x)+ . . . +
hn(x)
gn(x)

Table 1.   An example of a hypothetical function f(r) to be learned from the existing data with r a positive 
integer 1 ≤ r ≤ 9. The unknown function in this case relates to Moser’s circle problem, and further details 
are given in Supplementary Material’s Appendix 3. This example is used here to illustrate the discussion on 
symbolic regression approaches.

r 1 2 3 4 5 6 7 8 9

f(r) 1 2 4 8 16 31 57 99 163
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In Eq. (8) for a continued fraction with depth n, we have gi(x) ∈ R for all integers i such that 0 ≤ i ≤ n . Each 
gi : R

n
→ R is associated with an array ai ∈ R

n and a constant αi ∈ R . Analogously, each hi : Rn
→ R is defined 

by an array bi ∈ R
n and a constant βi ∈ R . We thus define:

We note that the full representational power behind CFR is more general, and other functional forms for 
the functions gi and hi can be used. It has been a conscious design choice to start exploring the power of this 
representation by restricting these base functions to be linear. We refer to Ref.9 to see how complex functions, 
like the Gamma Function, can be well approximated using these choices and how they perform on 94 real-world 
datasets of the Penn Machine Learning Database.

A Dirichlet‑inspired representation
A general Dirichlet series is an infinite series of the form

where an and s are complex numbers and the set {�n} is a strictly increasing sequence of non-negative real 
numbers that tend to infinity. When �n = ln(n) we have the “ordinary” Dirichlet series. One of the most famous 
of them is the Riemann zeta function which has applications in physics, statistics and many branches of math-
ematics and is defined as

where Re(s) > 1 and its analytic continuation elsewhere.
This has suggested a new representation; for a large value of an integer N, it may be possible to approximate 

the potential value between two molecules (labelled 1 and 2) at a distance r. We can write

so the problem of finding the best approximation for V1,2 has now reduced to the problem of finding the set 
{a1, a2, . . . , aN }.

In Supplementary Material’s Appendix 1, we show how to use symbolic regression software to search for 
continued fraction approximations of an unknown potential using the Dirichlet representation. We illustrate 
the methods using Halpern’s Argon dataset.

Introducing problem domain information
In this section, we show how we can get very good solutions for several Noble gases using the same dataset 
employed by Deiters and Sadus3. It is worth mentioning that all potential values V1,2(r) are dimensionless, and 
the variable r is measured in nanometers (nm) in this work.

Deiters and Sadus’s SAAP two‑body potential and the introduction of problem‑domain 
information
In 2019, Deiters and Sadus presented a two-body potential for the noble gases Ne, Ar, Kr, and Xe, which is called 
SAAP, an acronym for ‘Simplified Ab initio Atomic Potential (and a variant of it called SAAPx for Helium)3. They 
provided a set of rules originating from their physical understanding of the problem domain that can help design 
a useful functional form that fits experimental data for all these gases well. First of all, the asymptotic behaviours 
that are desired should be taken into consideration:

•	 It is known that V1,2(r) should be approaching zero for large values of r as a function of r−6 (and have negative 
values). They validate their claim by saying that dispersion interactions dominate the potential; this means 
that the original Lennard-Jones potential had that specific asymptotic behaviour already “hardwired” in the 
functional form.

•	 When r tends to zero, there is a repulsion effect (Pauli repulsion), and limr→0V1,2(r) = ∞.

They also propose the following behaviour for the potential (our rephrasing):

•	 Following the same Mie potential convention, let σ > 0 be the value satisfying V1,2(σ ) = 0 . Such a value is 
unique for all r > 0 and in addition dV/dr < 0 for all 0 < r ≤ σ (and it is called the “collision diameter”).

(9)gi(x) = a
T
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Deiters and Sadus include another source of problem domain information. In two previous articles by Pathak 
and Thakkar15 as well and by Deiters and Neumaier16, an expression of the form exp(r)/r was proposed for the 
repulsion. Then the proposed formula for SAAP is:

where a1, . . . , a4 < 0 and a0, a5 > 0 . These six coefficients are then to be adjusted using the experimental data.
Remembering then the definition of a general Dirichlet series, it is then interesting to note that SAAP resem-

bles a two-body potential of the form:

New fits with continued fraction regression with asymptotic behaviour as r−6

Following Deiters and Sadus’s approach of introducing problem domain information, we now propose to approxi-
mate V1,2(r) as:

so, in this case, we would multiply the value of the observed values at any given r by r6 to find truncated continued 
fraction approximations. Interestingly, for Xenon, Krypton, Argon and Neon, we obtained.

Xenon

with σ ≈ 3.90352 and rmin ≈ 4.34565,
with V1,2(rmin) ≈ −280.4872.

Krypton

with σ ≈ 3.59067

and rmin ≈ 3.98787,
with V1,2(rmin) ≈ −201.5254.

Argon

with σ ≈ 3.36624 and rmin ≈ 3.7528 , with V1,2(rmin) ≈ −143.335.

Neon

with σ ≈ 2.76803 and rmin ≈ 3.08297 , with V1,2(rmin) ≈ −42.20354 . We highlight that all these formulas can be 
rearranged in the form V1,2(r) ≈ r−6 (a0 + a1/(a2 + nr)) that requires a single computation of an exponential 
(to the power of r only) and only have four free adjustable integer coefficients. We believe that these relatively 
simpler forms have the potential to lead towards more efficient molecular dynamics simulations.

SAAPx and our model for Helium
To fit the ab initio data from Helium, Deiters and Sadus proposed a modification of the SAAP potential and 
called it SAAPx. It needs an extra coefficient to be empirically fitted from the data ( a6 ). Formally it is written as:

(14)V1,2(r) ≈ SAAP(r) =
a0
r e

a1 r + a2 e
a3 r + a4

1+ a5 r6

(15)V1,2(r) ≈

∑

∞

n=1 bn e
−�n r

1+ r6
.

(16)V1,2(r) =
1

r6

N
∑

n=1

an

nr
,

(17)V1,2(r) = r−6

(

−2975348+
80437659232× 13−r

4735× 13−r + 1

)

(18)V1,2(r) = r−6

(

−1270942+
30538104125× 16−r

2961× 16−r + 1

)

(19)V1,2(r) ≈ r−6

(
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10640800000× 17−r
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)

(20)V1,2(r) = r−6
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−58578+
603430988× 27−r

1138× 27−r + 1

)
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Clearly, SAAPx(r) , can be seen as just a generalisation of SAAP(r), so it is reasonable to state that Deiters 
and Sadus’s proposal for these potentials is based on a functional form with seven adjustable parameters, with 
a6 being ad hoc set to zero for all other noble gases that are not Helium.

In contrast, we continue with our investigation of the representational properties derived from our proposal 
of eq. (16). We will present two functions that we have found that fit the experimental data relatively well.

with σ ≈ 2.64036 and rmin ≈ 2.97924 , with V1,2(rmin) ≈ −11.01906.

We have found an approximation of the model in Eq. (23) as a simplified format as follows:

with σ ≈ 2.65168 and rmin ≈ 2.9572 , with V1,2(rmin) ≈ −11.03116.
Figure 1 shows the comparison of ab initio potential energy of He and approximation by Eq. (22) at intera-

tomic separations in the repulsive region and Fig. 2 shows the comparison of ab initio, SAAP and approximation 
by Eq. (25) close to the attractive well.

Plots for all depth = 1 or depth = 2 (He) models
We show the comparison of ab inito potential energies along with the corresponding models for He, Ne, Ar, Kr 
and Xe gases in Fig. 3. We have computed the relative error (RE) to assess the fitting of data points by respective 
models, and the results are summarised in Table 2 for a more accessible and concise presentation of our findings.
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Figure 1.   Comparison of the ab initio potential energy of He (green solid stars) with our model’s (the solid 
green line with Eq. (22)) calculations at interatomic separations in the repulsive region.
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Figure 2.   Comparison of the ab initio potential energy of He (black solid dots) with SAAP (orange dashed line) 
and our model’s (the solid red for Eq. (22) and blue for Eq. (25)) calculations at interatomic separations close to 
the attractive well.
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Discussion
It is perhaps proper to highlight again that the choice of a good representation governs the process of finding 
approximations of potentials and the many aspects involved in obtaining a good fit via a computer-based opti-
misation process. We thus consider that there is merit in continuing to investigate how to improve these fits, 
using these functional forms, perhaps with more powerful optimisation approaches than the ones we have used 
so far. For instance, in regards to Eq. (22), we have also found another similar equation with different values for 
the integers of the associated Dirichlet polynomial:

with σ ≈ 2.6407 and rmin ≈ 2.9706 , with V1,2(rmin) ≈ −11.01307.
Figure 4 shows the comparison of the approximations of Eqs. (22), (24) and (25), in the range of the repulsive 

region where the potential is positive. We can see the effect of the introduction of problem-domain knowledge. 
In the case of Eq. (24), the depth = 2 truncated continued fraction now has an asymptotic behaviour which is 
very different from data-driven generated equations Eqs. (24) and (25). However, in this range of values of r, for 
which ab initio data was used to fit parameters, the approximations given by the Dirichlet polynomials were very 
good. In fact, Eqs. (22) and (25) were in some practical sense “easier” to fit than the depth = 2 Eq. (24). We will 
return to this issue later when we discuss the optimisation lessons learned in the process. We should also note 
that in Fig. 2, we have plotted the results of four equations, and the results of SAAP (which, surprisingly, seems 
to be even better than the Helium-ad hoc potential SAAPx in this region, see Fig. 3 of Ref.3), so it is clear that, 
near the minimum, these are also good approximations.

We show the comparison of the ab initio potential energy and approximation of the models for all gases in 
the range of r = {0.15, · · · , 0.4} in Fig. 5 in log scale.

Conclusions
This study emphasises the challenges in deriving analytical potentials from experimental data, especially when 
using machine learning approaches. This challenge is particularly significant in the context of accurately model-
ling two-body interaction potentials without making excessive assumptions. Problem-domain knowledge about 
asymptotic behaviour, together with a novel representation inspired by a Dirichlet series, has been an effective 
combined approach.

For the area of symbolic regression, the paper underscores the importance of pursuing model-independent 
mathematical methods that can learn the specific functional form of two-body interaction potentials directly 
from data. Such approaches are critical for improving data-driven model building and could be used as bench-
marks for symbolic regression solvers.

The study leverages a variety of data sources, including ab initio data for noble gases such as Xenon (Xe), 
Krypton (Kr), Argon (Ar), Neon (Ne), and Helium (He). These sources also include publications by J”ager, 
Hellmann, Bich, and Vogel, as well as the comprehensive study by Deiters and Sadus in 2019. These data sources 
are invaluable for developing and testing new data-driven methods.

The research problem of deriving accurate analytical forms of interatomic potentials from data remains open 
and continues to be a topic of ongoing investigation. This work represents a step in that direction and highlights 
the need for further research in this area. The approach based on continued fraction regression seems promising 
as iteratively increasing depth will deliver increased fitting performance13. However, we have illustrated in this 
study how a depth = 1 truncated continued fraction with integer coefficients is already a good approximation 
for this case and that the final model requires a single exponent computation.

Our paper suggests that future research may inspire novel data-driven methods, potentially improving 
the approximation of two and three-body potentials using continued fraction regression, including the use of 
dynamic depth strategies17. It also underscores the importance of addressing the computational challenges asso-
ciated with these methods, especially when dealing with small datasets and highly non-linear target functions.
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Figure 3.   Comparison of ab initio potential energies with corresponding model calculations (solid lines) for He 
(green solid stars) with Eq. (22), Ne (orange solid triangles) with Eq. (20), Ar (black solid circles) with Eq. (19), 
Kr (red solid squares) with Eq. (18), and Xe (blue solid diamonds) with Eq. (17) at interatomic separations close 
to the attractive well.
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Table 2.   Comparison of relative error (RE) for predicting the ab initio potential energies for He by eq. (22), Ne 
by eq. (20), Ar by eq. (19), Kr by with eq. (18) and Xe by eq. (17).

He Ne Ar Kr Xe

r V1,2(r) RE r V1,2(r) RE r V1,2(r) RE r V1,2(r) RE r V1,2(r) RE

0.052918 286570 0.2570 0.14 68634.3 0.2061 0.18 98948.5 0.1077 0.22 53147.5 0.2167 0.24 67031.2 0.0262

0.066147 173854 0.1955 0.16 26879.9 0.1443 0.2 51406.2 0.1401 0.24 27872.3 0.2281 0.26 37578.5 0.0016

0.079377 104343 0.1371 0.18 10402.2 0.0415 0.22 25736.3 0.1029 0.26 14136.1 0.2485 0.28 20522.1 0.0435

0.092606 61787.5 0.0852 0.2 3918.98 0.0522 0.24 12404.6 0.0335 0.28 6856.11 0.2619 0.3 10810.4 0.0949

0.105835 36150.5 0.0396 0.22 1399.23 0.1103 0.26 5701.43 0.0364 0.3 3106.29 0.2591 0.32 5404.88 0.1364

0.119065 20911.2 0.0003 0.24 444.443 0.1302 0.28 2439.02 0.0874 0.32 1242.57 0.2397 0.34 2481.02 0.1555

0.132294 11961.9 0.0330 0.25 227.49 0.1311 0.3 912.136 0.1150 0.33 716.617 0.2272 0.35 1592.04 0.1550

0.145524 6760 0.0598 0.26 99.956 0.1336 0.31 502.756 0.1236 0.34 361.343 0.2192 0.36 958.642 0.1487

0.158753 3768.15 0.0798 0.27 27.186 0.1734 0.32 235.724 0.1371 0.35 126.701 0.2430 0.37 514.265 0.1383

0.171983 2066.63 0.0932 0.28 − 12.388 0.1328 0.33 66.058 0.2025 0.36 − 23.509 0.7933 0.38 208.418 0.1292

0.185212 1110.65 0.0998 0.29 − 32.165 0.0005 0.34 − 37.753 0.1754 0.37 − 115.326 0.0172 0.39 3.312 0.9064

0.198441 581.162 0.1004 0.3 − 40.392 0.0051 0.35 − 97.643 0.0070 0.38 − 167.342 0.0288 0.4 − 129.334 0.0562

0.211671 292.634 0.0958 0.31 − 42.13 0.0005 0.36 − 128.726 0.0062 0.39 − 192.735 0.0181 0.41 − 210.472 0.0442

0.2249 138.517 0.0864 0.32 − 40.423 0.0052 0.37 − 141.366 0.0044 0.4 − 200.741 0.0035 0.42 − 255.56 0.0276

0.23813 58.4111 0.0738 0.33 − 37.04 0.0089 0.38 − 142.546 0.0007 0.41 − 197.781 0.0107 0.43 − 275.892 0.0113

0.251359 18.3547 0.0599 0.34 − 33.032 0.0105 0.39 − 136.953 0.0059 0.42 − 188.246 0.0230 0.44 − 279.634 0.0033

0.264589 − 0.4774 0.0384 0.35 − 28.972 0.0098 0.4 − 127.658 0.0098 0.43 − 175.11 0.0326 0.45 − 272.638 0.0156

0.277818 − 8.3667 0.0198 0.36 − 25.137 0.0064 0.41 − 116.63 0.0118 0.44 − 160.33 0.0392 0.46 − 259.034 0.0254

0.291047 − 10.8336 0.0056 0.37 − 21.678 0.0014 0.42 − 105.114 0.0118 0.45 − 145.167 0.0430 0.47 − 241.706 0.0327

0.296339 − 11.0085 0.0001 0.38 − 18.629 0.0053 0.43 − 93.849 0.0098 0.46 − 130.404 0.0440 0.48 − 222.63 0.0374

0.304277 − 10.7796 0.0074 0.4 − 13.723 0.0215 0.44 − 83.251 0.0058 0.47 − 116.498 0.0426 0.49 − 203.141 0.0398

0.317506 − 9.6869 0.0176 0.42 − 10.136 0.0406 0.45 − 73.536 0.0001 0.48 − 103.683 0.0390 0.5 − 184.042 0.0397

0.330736 − 8.2821 0.0237 0.44 − 7.554 0.0594 0.46 − 64.786 0.0069 0.5 − 81.609 0.0268 0.52 − 149.04 0.0339

0.343965 − 6.8976 0.0251 0.46 − 5.69 0.0772 0.48 − 50.128 0.0238 0.52 − 64.073 0.0100 0.54 − 119.495 0.0219

0.370424 − 4.6257 0.0112 0.48 − 4.34 0.0926 0.5 − 38.825 0.0427 0.54 − 50.404 0.0092 0.56 − 95.464 0.0052

0.423342 − 2.0684 0.0987 0.5 − 3.345 0.1071 0.52 − 30.207 0.0624 0.56 − 39.836 0.0291 0.58 − 76.301 0.0148

0.52 − 2.605 0.1205 0.54 − 23.66 0.0816 0.59 − 28.321 0.0583 0.6 − 61.18 0.0365

0.56 − 1.631 0.1412 0.56 − 18.674 0.0999 0.62 − 20.458 0.0849 0.62 − 49.288 0.0592

0.6 − 1.058 0.1573 0.59 − 13.298 0.1244 0.65 − 15.023 0.1082 0.64 − 39.932 0.0821

0.65 − 0.643 0.1721 0.62 − 9.643 0.1454 0.7 − 9.294 0.1396 0.66 − 32.569 0.1039

0.7 − 0.406 0.1846 0.65 − 7.113 0.1632 0.75 − 5.97 0.1640 0.69 − 24.262 0.1357

0.8 − 0.179 0.1990 0.7 − 4.432 0.1868 0.8 − 3.96 0.1832 0.72 − 18.336 0.1645

0.75 − 2.865 0.2048 0.9 − 1.889 0.2101 0.75 − 14.034 0.1911

0.8 − 1.911 0.2187 1 − 0.982 0.2273 0.8 − 9.223 0.2306

0.9 − 0.918 0.2391 1.2 − 0.319 0.2505 0.85 − 6.248 0.2626

1 − 0.479 0.2530 1.5 − 0.082 0.2651 0.9 − 4.343 0.2891

1.2 − 0.156 0.2735 1 − 2.237 0.3301

1.5 − 0.04 0.2894 1.2 − 0.724 0.3763

1.5 − 0.184 0.4196
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author upon reasonable request.
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