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1D‑CNN‑based audio tampering 
detection using ENF signals
Haifeng Zhao 1,2, Yanming Ye 1,2, Xingfa Shen 1* & Lili Liu 1

The extensive adoption of digital audio recording has revolutionized its application in digital forensics, 
particularly in civil litigation and criminal prosecution. Electric network frequency (ENF) has emerged 
as a reliable technique in the field of audio forensics. However, the absence of comprehensive ENF 
reference datasets limits current ENF‑based methods. To address this, this study introduces ATD, a 
blind audio forensics framework based on a one‑dimensional convolutional neural network (1D‑CNN) 
model. ATD can identify phase mutations and waveform discontinuities within the tampered ENF 
signal, without relying on an ENF reference database. To enhance feature extraction, the framework 
incorporates characteristics of the fundamental harmonics of ENF signals. In addition, a denoising 
method termed ENF noise reduction (ENR) based on the variational mode decomposition (VMD) and 
robust filtering algorithm (RFA) is proposed to reduce the impact of external noise on embedded 
electric network frequency signals. This study investigates three distinct types of audio tampering—
deletion, insertion, and replacement—culminating in the design of binary‑class tampering detection 
scenarios and four‑class tampering detection scenarios tailored to these tampering types. ATD 
achieves a tampering detection accuracy of over 93% in the four‑class scenario and exceeds 96% in the 
binary‑class scenario. The effectiveness, efficiency, adaptability, and robustness of ATD in the two and 
four classification scenarios have been confirmed by extensive experiments.

In the era of the Internet of Things (IoT), security and privacy protection are the cornerstones of building con-
sumer trust. As various smart consumer devices increasingly infiltrate our daily lives, they frequently collect and 
process personal information, including audio data. However, the security and integrity of audio data are also 
facing challenges, especially with the advancement of tampering techniques. Audio tampering can take many 
forms, ranging from simple clipping to intentional content modification using advanced software. In an IoT 
environment, if consumer devices or communication links are not secure enough, attackers could hijack these 
devices and tamper with audio data, whether stored or in transit. Against this backdrop, detecting audio data 
tampering in the IoT environment has become the key issue to address this tampering risk.

In recent years, the significance of electric network frequency (ENF) in identifying audio manipulation has 
been well-established. ENF, a dynamic signal generated by the electric network at either 50 or 60 Hz, displays 
slight variations in different temporal and spatial  locations1. These inherent fluctuations in the ENF signal can 
be extracted from recorded audio and serve as a natural time stamp. This process holds promise for authenticat-
ing audio recordings, especially when recording devices capture the ENF signal within the magnetic field of the 
electric network. Analyzing the extracted ENF signal provides a means to determine the veracity of the audio.

The development of an ENF-based method for identifying audio tampering is attributed to Dr. Grigoras in 
 20052. Current ENF-based algorithms for tampering identification generally rely on cross-referencing the electric 
network signal extracted from audio recordings against a reference ENF  database3,4. Such comparisons authen-
ticate characteristics including time, location, and the integrity of recording. Nevertheless, these approaches are 
confronted with challenges: Dependence on authorized reference ENF databases is limited by legal constraints, 
the comparison process with large databases is time-consuming, and the effectiveness of these algorithms is 
reduced for brief audio segments where the uniqueness of the ENF signal fades quickly.

Given the limitations of audio tampering detection relying on ENF reference databases, researchers are 
exploring alternative methods that are independent of such dependencies. Nicolalde et al. introduced blind 
forensic techniques for authenticating audio tampering, proposing methods based on phase changes or spectral 
distance of the ENF  signal5. They automated authenticity assessment by establishing a categorization threshold, 
but manual threshold settings were not precise enough. The advent of deep convolutional neural networks pro-
vides a compelling alternative, enabling the automatic extraction of latent features from audio without enabling 
the. Mao et al. put forward a two-dimensional convolutional neural network for binary classification of raw 
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and tampered  audio6. However, their approach focused solely on the fundamental ENF wave, and neglected the 
higher-order harmonic components, thereby omitting some distinctive characteristics.

Numerous studies have highlighted the vulnerability of embedded ENF signals in audio recordings to external 
noise  contamination7. This issue becomes particularly pronounced in recordings involving human speech , where 
the lowest fundamental frequency can reach down to 80 Hz, or when music is present, utilizing the same 30 to 
500 Hz frequency range that coincides with ENF signals—often exploited for bass and rhythm effects. Such noise 
interference within the ENF is a critical concern in audio forensics, as it can significantly affect the accuracy of 
forensic result. To mitigate this challenge, researchers have been developing effective methods for controlling 
ENF signal noise during audio progressing, which are critical in environment with low Signal-to-Noise Ratio 
(SNR) scenarios, where many forensic algorithms struggle to provide accurate detection results. Robust noise 
control techniques specific to ENF signals in audio are essential for the reliability and precision forensic analysis.

The existing research on audio tampering detection mostly focuses on binary classification of original and 
tampered audio, without considering common tampering techniques such as deletion, insertion, and replace-
ment of audio clips. This study aims to investigate these prevalent tampering techniques by proposing a novel 
four-class tampering identification problem, which includes untampered audio, deleted audio, inserted audio, 
and replaced audio. By considering these four categories, the research broadens the scope of audio tampering 
detection beyond the traditional binary classification. Additionally, it is worth mentioning that the four-class 
problem can be simplified into a general binary-class tamper detection problem-untampered audio and tampered 
audio- when the three tampering techniques are consolidated into a single class of tampered audio.

In response to the aforementioned challenges, we have undertaken targeted research efforts. Our main con-
tributions are as follows:

• We designed a four-classification audio tampering detection scenario for the first time, which is able to differ-
entiate between three types of tampering, namely deletion, insertion and replacement, as well as untampered 
audio, which is richer than the traditional two-classification scenario and more in line with the practical 
application requirements. This design extends the research scope of audio tampering detection and provides 
a new perspective for the field of audio forensics.

• We proposed ENR, a noise suppression method for ENF signals that combines the variational modal decom-
position (VMD) and the robust filtering algorithm (RFA). the VMD effectively separates and removes the 
noise components of ENF signals, while the RFA suppresses the power grid noise. This combination method 
significantly improves the quality of the ENF signal and lays the foundation for subsequent audio tampering 
detection.

• We proposed a new feature combination method, using the fundamental and its harmonic components of 
the ENF signal as input features. Through this combination, the model can learn richer feature information, 
which significantly improves the performance of audio tampering detection. This innovative point verifies 
the effectiveness of multi-feature combination input and provides a new idea for audio tampering detection.

Related work
The integration of digital recording systems with power frequency has sparked extensive research on audio tam-
pering identification based on electric network frequency (ENF), which has garnered considerable attention in 
the industry. Currently, ENF-based approaches for audio tampering identification can be broadly classified into 
two categories: ENF database-based methods and blind detection-based methods.

ENF database‑based
The foundational link between ENF and the authenticity of digital voice was first established by the Romanian 
scholar  Grigoras2, who proposed the ENF criterion for verifying the authenticity of digital voice by extracting 
the fundamental component of the electric network from the recording and comparing it with a standardized 
ENF database to determine the authenticity. Liu et al.8,9 emphasized the importance of accurate frequency esti-
mation methods and reliable frequency reference databases in the realm of audio forensics. They employed the 
Short-Time Fourier Transform (STFT) to estimate the ENF signal within audio files and aligned the estimates 
with an ENF-based frequency database according to the ENF criterion. The results substantiated the precision of 
STFT method for ENF extraction. Elmesalawy et al.10 introduced a novel approach for constructing a robust ENF 
reference database utilizing Geographic Information Systems (GIS) and comprehensive frequency measurements 
across wide areas to increase the matching process’s accuracy. Gerazov et al.11 advanced a method for recording 
high-quality ENF reference signals from the power supply using LabVIEW-based virtual instruments. Hua et al.4 
analyzed the absolute error in ENF signals when compared to the reference database, a crucial step that facilitates 
the verification of timestamps in audio data. Various digital tampering techniques such as insertion, deletion, 
and splicing were employed to validate the algorithm. Chowdhury et al.12 developed a multi-class support vector 
machine (SVM) classification model to authenticate the location of recordings through a detailed analysis of ENF 
sequences extracted from power and audio recordings. The experimental results demonstrated the efficacy of 
their approach. Karantaidis et al.13 proposed the use of the Matthews Correlation Coefficient (MCC), a statistical 
rate that measures the quality of binary classifications, to detect tampering in multimedia data by calculating 
the correlation between the reference ENF signal and the estimated ENF signal. These studies have significantly 
contributed to the advancement of ENF-based audio tampering identification methods, encompassing aspects 
such as reference database matching, frequency estimation, geographic information integration, signal recording 
techniques, and classification models.
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Blind detection‑based
Nicolalde et al.5 presented an audio tampering identification scheme independent of ENF reference signals. This 
algorithm assesses the authenticity of audio by examining the spectral distance and phase variation of the ENF 
signal within the audio, thus enhancing flexibility in tampering detection. It employs a threshold derived from 
the extent of phase shifts at suspected tampering points to facilitate automatic verification of audio integrity. In 
2013, Nicolalde et al.14 further discussed the presence of higher harmonics in ENF signals, which emerge from 
nonlinearities inherent in the recording process. When the ENF fundamental signal is corrupted, the phase 
information around its harmonic frequencies can also be utilized for audio tampering forensics. Esquef et al.15 
identified audio tampering by comparing the ENF variation around the nominal frequency against the upper 
limit of normal variation observed in unedited signals, using resulting equal error rate (EER) values as a measure. 
Reis et al.16 proposed an ENF estimator called ESPRIT-Hilbert, which spots outliers in the ENF signal based on 
abnormal changes observed in the audio recording. The estimation results are then used as inputs to a support 
vector machine to confirm the presence of tampering. Whilst expediting detection, this technique may risk over-
looking certain feature information that could be critical for a comprehensive analysis. Wang et al.17 utilized the 
discrete Fourier transform of the audio signal and a support vector machine classifier to analyze the consistency 
of ENF components to identify audio tampering. However, the accuracy of this scheme failed to achieve the 
desired level. Jadhav et al.18 proposed a CNN-based audio splicing detection , which excels at extracting high-
level features by processing the spectrogram of audio data directly. The study conducted experiments on audio 
data tampering detection by inserting with 1-s, 2-s, and 3-s segments, whose results showed the highest detec-
tion accuracy for 3-s insert tampering. Mao et al.6 proposed a two-dimensional convolutional neural network 
model for binary classification of original audio and tampered audio. Zeng et al.19 proposed an audio tampering 
detection method based on ENF phase sequence representation learning. Zeng et al.20 proposed a new method 
for digital audio tampering detection based on ENF deep spatio-temporal features. However, their approach only 
considers the ENF fundamental wave as a feature instead of including higher harmonic components as input. 
Furthermore, the noise reduction methods they designed for denoising progress were not effective enough.

Problem interpretation
Four‑class tampering detection scenarios
Audio tampering can be executed through deletion, insertion, and replacement, which are classified as deletion 
tampering, insertion tampering, and replacement tampering, respectively. Much of the existing research focuses 
on a binary classification problem, that is, distinguishing between original and tampered audio, and it can only 
determine whether the audio has been tampered with. It would be more helpful for the court to determine the 
truth if the exact audio tampering technique can be accurately identified. Therefore, this work analyzes these three 
typical tampering techniques as well as the type of untampered audio and for the first time puts forth a four-class 
tampering identification problem. Additionally, the four-class problem can be simplified into a universal two-
class tamper detection problem by combining the three tampering types into a single category of altered audio. 
The descriptions of the two classification scenarios are shown in the Table 1 below.

Characteristics of ENFs in tampered audio
Assume a sinusoidal signal with a fixed frequency such as Eq. (1):

where ∂ represents fixed amplitude, f represents frequency, fs represents sampling frequency, ϕ0 represents initial 
phase.

The correlation between adjacent frames in an audio signal is a crucial characteristic for audio tampering 
identification. Tampering, such as sound insertion or deletion, can disrupt the natural correlation, causing sig-
nal discontinuities or singularities. In the context of ENF-based audio tampering identification, the embedded 
electric network signal also exhibits similar tampering patterns. The electric network signal, being a pseudo-
sinusoidal time-stamped signal that varies over time, will be affected by any tampering operations performed 
on the audio, such as insertion or deletion. For instance, when a sinusoidal signal is edited, the amplitude before 
and after the editing positions may experience abrupt changes, resulting in a discontinuous signal. This disrup-
tion in the continuity of the electric network signal can indicate potential tampering in the audio. Therefore, 
identifying audio tampering can be reframed as detecting continuity or discontinuity in the embedded electric 
network signals. The regions of tampered audio can thus be identified by analyzing the correlation and continu-
ity of the electric network signal. Note that the specific equation referenced as “formula (1)” is not available in 
the provided text.

The description provided explains three common tampering methods: deletion tampering, insertion tamper-
ing, and replacement tampering. The latter two methods involve altering the original audio and result in specific 

(1)x = ∂ cos

(

2π f

fs
+ ϕ0

)

,

Table 1.  Description of two classification scenarios.

Classification scene Type

Four classes of tampering detection scenarios Original audio Deletion tampering Insertion tampering Replacement tampering

Two classes of tampering detection scenarios Original audio Tampered audio
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characteristics in the ENF signal, while Deletion tampering involves removing a segment of the original audio 
at a random location.

The comparison diagrams in Fig. 1a,b show the audio before and after deletion tampering, while the corre-
sponding ENF diagrams in Fig. 1c,d illustrate the ENF signal before and after tampering. After deletion tamper-
ing, a point of discontinuity appears in the ENF signal. Insertion tampering, on the other hand, entails inserting 
audio clips with the same sampling rate as the original audio. at a random position, resulting in a different kind 
of tampering effect.

The comparison diagrams in Fig. 2a,b display the audio before and after insertion tampering, while the cor-
responding ENF diagrams in Fig. 2c,d depict the ENF signal before and after tampering. In the case of insertion 
tampering, two points of discontinuity can be observed in the ENF signal. As for replacement tampering, it 
involves exchanging a specific segment at a random position of the audio in sequential.

The comparison diagrams in Fig. 3a,b showcase the audio before and after replacement tampering, while the 
corresponding ENF diagrams in Fig. 3c,d demonstrate the ENF signal before and after tampering. In the ENF 
signal after replacement tampering, four points of discontinuity can be identified. By analyzing the discontinuities 
in the ENF signal caused by different tampering methods, it becomes possible to detect and identify the specific 
tampering technique employed to tamper with the audio.

Algorithm design
The ATD framework we propose is mainly composed of data preprocessing, feature processing, network model 
building, and final tampering identification and classification. Data downsampling and data windowing are the 
two primary steps in data preprocessing. Feature processing mainly includes noise reduction of ENF signal in the 
audio to be verified, ENF signal estimation, and combination of fundamental harmonic features. The network 
model construction is mainly based on the 1D-CNN network model to process the one-dimensional ENF signal 

(a) (b) (c) (d)

Figure 1.  An example of deletion tampering. (a) Original audio; (b) tampered audio; (c) ENF signal of original 
audio; (d) ENF signal of tampered audio.

(a) (b) (c) (d)

Figure 2.  An example of insertion tampering. (a) Original audio; (b) tampered audio; (c) ENF signal of original 
audio; (d) ENF signal of tampered audio.

(a) (b) (c) (d)

Figure 3.  An example of exchange tampering. (a) Original audio; (b) Tampered audio; (c) ENF signal of 
original audio; (d) ENF signal of tampered audio.
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data. The final tampering detection classification aims to effectively identify the four-classs detection scene (or 
binary-class detection scene when simplified) scene proposed in this study. The overall framework of ATD is 
illustrated in Fig. 4) below.

Data preprocessing
In processing audio samples, the initial step involves downsampling and windowing. This ensures a consistent 
number of sampling points for the ENF signal within each cycle, and reduces the computational load of subse-
quent data analyses. The downsampling of the audio data is performed to achieve these goals.

In audio signal processing, short-time analysis technique is widely used for feature extraction of speech and 
audio signals. This technique is used to analyse the changing characteristics of a signal over a short period of 
time by performing a frame-splitting process on the signal. Thus, to prepare for such analysis, it is necessary to 
segment the signal into shorter frames it. This entails dividing the longer speech signal into multiple segments, 
often with overlapping portions to ensure smooth transitions between consecutive frames. If we denote the 
total length of a voice signal as Len, the formula for calculating the frames can be expressed as shown in Eq. (2):

where fn represents the number of frames after framing, wlen represents the frame length of each frame, inc 
represents the frame shift, n = 1, 2, ...,wlen , the overlapping part overlap = wlen− inc

The speech signal framing process is shown in Fig. 5.

Feature processing
ENF signal noise reduction
The ENF signal that is embedded in the audio recording is weak relative to the noise, making the assessment 
of the ENF signal highly susceptible to noise interference. To address this issue, we propose a noise reduction 
method for the ENF signal, termed ENR, which utilizes the VMD  algorithm21 and RFA  algorithm7. The accuracy 

(2)fn = (Len− wlen+ inc)/inc,

Figure 4.  ATD framework structure.

Figure 5.  Framing diagram of speech signal.
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of any ENF instantaneous frequency estimation technique can be indirectly improved by passing the noisy ENF 
signal through the noise reduction algorithm. Letx(n) represents the audio signal to be verified, and the general 
signal model is formulated as shown Eq. (3):

where s̃(n) represents ENF signal, n ∈ {0, 1, . . . . . . ,N − 1} , c̃(n) represents the audio noise interference signal, 
ṽ(n) represents the electric network disturbance signal.

In the noise reduction process depicted in Fig. 6, the ENR method initially employs a band-pass filter to 
filter out unwanted out-of-band audio content and electrical network interference signals, and obtains an in-
band signal model x(n), which is formulated as x(n) = s(n)+ c(n)+ v(n) . In order to extract the pure ENF 
signal, namely s(n), it is necessary to eliminate the audio noise interference signal c(n) and the electric network 
interference signal v(n). ENR comprises two primary algorithms: VMD algorithm and RFA algorithm. After the 
application of the VMD algorithm, the audio noise interference signal c(n) in the ENF signal can be effectively 
filtered out. Consequently, the signal model after filtering out the audio noise interference signal is represented 
as x(n) = s(n)+ v(n) . However, in actual signal processing, the separation between noise and non-stationary, 
nonlinear, and signals cannot be fully realized solely through the use of the VMD  algorithm22,23. Therefore, To 
achieve a better noise reduction result, the signal must undergo additional processing using supplementary noise 
reduction techniques. The RFA  algorithm7, which functions as a electric network noise reduction mechanism, 
can effectively suppress the additional electric network interference noise v(n). Integrating the RFA algorithm 
with the VMD algorithm proves advantageous in isolating a purer ENF signal s(n).

It is important to acknowledge that numerous audio recording devices and software available in the market 
have the capability to modify the output frequency of multimedia data. For instance, the Tascam DR-07X offers 
the option to selectively attenuate frequencies below 40, 80, or 120 . Similarly, the Sony ICD-TX650 digital 
recorder has a frequency response range spanning from 95 to 20,000 Hz. Additionally, many smartphone record-
ing applications provide options to select a frequency range or automatically apply low-frequency filters. Conse-
quently, the application of ENF fundamental frequency-based research methods for audio authenticity analysis is 
not always feasible. In related  literature24, Hajj-Ahmad proposed the utilization of higher harmonic components 
for ENF estimation, although the research was limited to the examination of a single harmonic component. A 
thorough analysis of the current methodologies indicates that the Enhanced Noise Reduction (ENR) technique 
is capable of effectively removing noise from both the fundamental and higher harmonic bands of the ENF signal

Feature combination
In this study, we adopt a direct modeling approach where the ENF signal, extracted via an instantaneous ENF 
estimation algorithm, serves as the network input feature. This approach helps to mitigate information loss 
associated with the extraction of representative feature values. By directly using the ENF signal extracted from 
the audio data as the input feature, we aim to simplify the process of audio forensics identification. Previous 
research has indicated that the ENF signal manifests not only at its fundamental frequency but also within its 
higher harmonics. The strength of these higher harmonics vary with the recording environment and technology 
employed, yet their fluctuation characteristics align with the fundamental frequency of the  ENF24. Presently, many 
ENF-based audio tampering forensics techniques can be circumvented due to the existence of  methods25,26 that 
can conceal tampering traces can be concealed by eliminating the fundamental frequency of the ENF signal from 
the audio. Consequently, the fundamental component may often be absent in practical scenarios. In such cases, 
when identifying audio tampering, it is crucial to consider the higher harmonics of the ENF, as these elements 
may still be present and indicative of manipulation.

In light of the aforementioned factors, this research seeks to develop a technique that incorporates funda-
mental harmonic features to enhance the model’s signal feature learning efficiency. This technique, referred 
to as the Feature Combination Method (FCM), aims for precise signal characteristic capture via integration 
of the fundamental waveform and its higher harmonic orders, which is illustrated in Fig. 7. This method aims 

(3)x̃(n) = s̃(n)+ c̃(n)+ ṽ(n),

Figure 6.  ENF signal noise reduction process.
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to achieve a more robust and precise feature representation by combining different components present in the 
ENF signal, rather than relying on a single feature component. The FCM leverages spectrograms centered on 
multiple harmonics and the ENF fundamental to construct multiple input channels for the network. Firstly the 
FCM method enables the model to learn richer signal features by using the fundamental of the ENF and its 
harmonics as multiple input channels. Compared to using only the fundamental of the ENF, combining multiple 
harmonic components enables the model to learn more diverse signal features, thus improving the feature learn-
ing efficiency. The harmonic components contain signal information that is complementary to the fundamental, 
which helps to improve the feature learning ability of the model.

Network model
Since the ENF signal in the input network is a one-dimensional time series data, it can be read using a one-
dimensional convolutional neural network. The translation invariance properties of the CNN network can also be 
fully exploited to learn the tampering features of the signal data due to the ambiguity of the tampering position. 
Therefore, this study designs a one-dimensional convolutional neural network model (1D-CNN) that employs 
convolution akin to scanning the signal from left to right with a small window. In the model, the feature data 
needs to be compressed by the pooling layer, which can minimize the quantity of features, and reduce the phe-
nomenon of overfitting. The model also employs max pooling, a technique that selects the maximum value within 
a defined region to represent the feature value of that area. The final compressed feature set is then fed into a 
fully connected layer for classification purposes. The specific network model structure is shown in Fig. 8. It can 
be seen from the network model diagram that the size of the convolution kernel must not exceed the length of 
the input ENF signal N, and the input data undergoes convolution with the designated number of convolution 
kernels. During the convolution process, the dimensions of the training set must align to maintain dimensional 
consistency. To achieve this, the commonly used Padding method is employed to supplement the data. When 
the input signal length is less than N, padding is performed using the electric network center frequency of the 
corresponding fundamental wave or harmonic.

The key experimental configurations in this study consist of binary-class and four-class tampering detection. 
The binary-class approach ascertains the presence of alterations in the audio, whereas the four-class method 

Figure 7.  ENF fundamental harmonic feature combination.

Figure 8.  1D-CNN network model.
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identifies both the presence and the type of alterations. Building on the preceding analysis, the dimension of the 
output result can be determined as shown in Eq. (4):

where n−out represents the dimension of the data output after convolution, N represents the length of the input 
data, kernel−size represents the convolutional kernel, S represents the step size of the convolution kernel’s move-
ment. The specific details of the entire convolution process and its associated dimensions are shown in Fig. 8. The 
1D-CNN model leverages its translation invariance property to perform a one-dimensional convolutional scan on 
the dataset, subsequently employing a max-pooling layer to distill the post-convolution data. Through extensive 
training on a substantial dataset, the model is capable of learning the optimal features for detecting tampering.

Experiments setup
The Carioca 1  dataset27, an open-source collection recorded via landlines, comprises 200 audio clips sampled at 
144.1 kHz with a 16-bit quantization depth for single-channel waveforms. The dataset includes an equal number 
of original (50 male and 50 female voices) and tampered audio files, each ranging from 30 to 40 seconds in dura-
tion. The Electric Network Frequency (ENF) of the fundamental wave is maintained at 50 Hz. Audio files with 
names terminating in “e.wav” indicate tamperings. Accompanying documentation provides detailed descriptions 
of the tampering methods and the specific alterations made to each audio file.

To mitigate the limitations imposed by the limited sample size in the Carioca 1 dataset, we employed a data 
augmentation strategy. This strategy involved segmenting the 100 original audio tracks from the corpus into 
10-s clips. These clips were extracted at random intervals, allowing for each original audio to yield 10 distinct 
segments. As a result, we generated a total of 1000 new, unaltered audio samples, each with a duration of 10 s. 
This expanded dataset comprises an equal distribution of 500 male and 500 female voice samples.

Before the tampering detection experiment, the supplementary 1000 original audio clips requires manual 
modification to ensure a balanced number of samples across each classification category. In the four-class tam-
per detection model, we manually modify the 1000 samples four times, each time using a different tampering 
technique to ensure that there are 1000 samples in each category to achieve a 1:1:1:1 sample ratio. Specifically, 
we performed four separate processes of deletion, insertion, replacement, and no tampering on each original 
sample so that there were 1000 samples in each category. In the binary-class tamper detection model, we simi-
larly ensure that the number of original audio samples and tampered audio samples are balanced. Therefore, we 
retained 1000 original audio samples and tampered the other 1000 original samples with three kinds of tamper-
ing: deletion, insertion, and substitution, so that the number of tampered samples reached 1000, achieving a 1:1 
sample ratio. With such manual modifications, we ensured that each category had a sufficient number of samples, 
thus avoiding the impact of sample imbalance on model training and improving the generalisation ability of the 
model. Tables 2 and 3 present a comprehensive breakdown of the sample categories and their respective counts:

Evaluation indicators
In order to assess the generalization ability of the model, appropriate evaluation metrics must be applied. For 
the four-class tampering detection scenario, the accuracy serves as the primary metric. For binary tampering 
detection scenarios, precision, recall, and the F-Score—the harmonic mean of precision and recall—are utilized 
for evaluation. In the binary-class framework, the label of the original audio is set to “0”, and the label of the 
tampered audio is set to “1”. TP (True Positive) indicates the number of tampered audio samples that correctly 
identified by the model as tampered. FP (False Positive) indicates the number of original audio samples wrongly 
classified as tampered by the model. FN (False Negative) represents the number of tampered audio sample 

(4)n−out =
N − kernel−size

S
+ 1,

Table 2.  Four classes of tampering identification.

Number of samples/piece Label

Original audio 1000 “0”

Deletion tampering 1000 “1”

Insertion tampering 1000 “2”

Replacement tampering 1000 “3”

Table 3.  Two classes of tampering identification.

Number of samples/piece Label

Original audio 1000 “0”

Deletion tampering 333 “1”

Insertion tampering 333 “1”

Replacement tampering 334 “1”
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incorrectly detected as original. TN (True Negative) represents the number of original audio samples accurately 
recognized as original. Using these four variables, the following four evaluation indicators can be calculated.

• Accuracy indicate the ratio of correctly classified samples, both original and tampered, to the total number 
of samples examined. 

• Precision indicates the probability that a sample predicted as tampered is indeed tampered, essentially meas-
uring the correctness of positive predictions. 

• Recall indicates the proportion of actual tampered samples that are correctly identified as such. 

• F-Score represents the harmonic mean of precision and recall. 

For the evaluation metrics of noise reduction algorithms for electric frequency signals, this chapter quantifies 
their noise reduction performance through Normalized Misalignment (NM) and correlation coefficient (CC), 
the corresponding equations are as follows:

where fGT (n) denotes the reference ENF signal (Ground Truth), f ′(n) denotes the estimated signal after noise 
reduction by the signal noise reduction algorithm in this chapter, µGT and µ̂ denote the corresponding sample 
means. Note that NM ≥ 0, where smaller results represent better performance, and CC ∈ [−1, 1] , where larger 
results represent more correlation between the two signals.

Experimental details
Experimental environment
In the experiment, the operating system is Windows 10, the compiler is MATLAB 2018A and PyCharm, the 
experiments were conducted using Python 3.7 and PyTorch 1.8.1 with CPU support, the machine learning library 
sklearn 0.0, and the data analysis library is Matplotlib 3.0.3.

Experimental setup
In the data preprocessing phase, the new sampling frequency of down-sampling is set to 20 times the fundamental 
frequency of ENF. The audio data that to be analyzed, for instance, is down-sampled to 1 kHz if the ENF pivot 
value is 50 Hz. The Hamming window is selected as the window function. The frame length wlen is set to 30 ms, 
and the frame shift inc is set to 15 ms. The overlap between frames is set to 50% to ensure smooth transitions.

In the preprocessing of the audio data, band-pass filtering is tailored to the center frequency of the targeted 
fundamental or harmonic. Next, the ENR method is utilized to eliminate noise and electrical network interfer-
ence signals. The STFT algorithm is employed by the instantaneous ENF estimate technique. The data length 
N in the two different experimental scenarios in this study is uniformly set to 350. This implies that the audio 
data is segmented into N frames, with each frame yielding an individual instantaneous ENF frequency estimate. 
To ensure uniformity in input data length, signal padding is applied to signals shorter than N. In this study, the 
bit complement is chosen to be the precise center frequency value matching to the electric network signal. For 
example, for the existing second harmonic signal data whose length is L, (N − L) instances of 100 Hz need to be 
padded to achieve a consistent input signal length of N. Then, the feature matrix is constructed using the funda-
mental harmonic feature combination method, which is then fed into the 1D-CNN network model. The training 
and testing datasets in this study are evenly split into a ratio of 5:5 to enhance the accuracy of the results. After 
processing through the 1D-CNN model, the Softmax layer yields a probability distribution for each category, 
which helps to determine the type of audio tampering.

The hyperparameter configuration in the neural network can profoundly influence the detection outcomes. 
For example, critical parameters such as learning rate, convolution kernel size, number of filters, etc. In order 
to determine the best hyperparameter settings for the 1D-CNN network, this section evaluates the impact of 
these parameters using the basic wave feature component as an example. In both supervised learning and deep 
learning, the learning rate plays a crucial role in determining whether and how swiftly the objective function 

(5)Accuracy =
TP + TN

TP + FP + TN + FN
.

(6)Precision =
TP

TP + FP
.

(7)Recall =
TP

TP + FN
.

(8)F-Score = 2 ·
Precision · Recall

Precision + Recall
.

(9)NM =

∑
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′
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converges to its minimum value. Tables 4 and 5 respectively present the results of the detection indicators for 
four-class tampering detection and binary-class tampering detection under different learning rates.

The four-class tampering detection mainly uses the accuracy rate as the evaluation index. It can be seen from 
the Table 4 that the 1D-CNN model attains its peak accuracy at a learning rate of 0.05. In contrast, binary-class 
tampering detection, as detailed in Table 5, shows superior accuracy, precision, and F-Score relative to other 
parameter configurations when the learning rate is set to 0.1. Although the corresponding recall rate of the model 
is not the highest, the F-Score can better reflect the real situation of the model. According to the experimental 
results of the model under different learning rates, the learning rate in the four-class scenario is set to 0.05, and 
the learning rate in the two-class scenario is set to 0.1.

Figures 9 and 10 respectively illustrate the classification accuracy of four-class and binary tampering detec-
tion under different number of filters and different size of convolution kernel. The Figs. 9 and 10 indicate that 
both the kernel size and the number of filters significantly impact the model’s performance, with the locations 
marked by red dots representing the configurations that achieved the highest accuracy. It is observed that the 
smaller the convolution kernel size and the filter number, the poorer the accuracy, as such settings may limit the 
model’s capacity to learn and distinguish effectively between tampered and untampered features. Additionally, 

Table 4.  Single-feature component four-class tampering detection model results with different learning rates 
(feature selection 50 Hz).

Measure Accuracy (%)

0.1 82.9

0.05 85

0.01 84.75

0.005 81.25

0.001 81.75

0.0005 77.65

0.0001 79.6

Table 5.  Single-feature component binary classification tampering detection model results with different 
learning rates (feature selection 50 Hz).

Measure Accuracy (%) Precision (%) Recall (%) F-Score (%)

0.1 82.5 87.47 77.15 81.99

0.05 82.4 83.79 78.87 81.22

0.01 81.9 81.48 79.84 80.65

0.005 81.5 81.34 81.01 81.17

0.001 79.1 77.65 79.84 78.73

0.0005 76.6 76.37 75.91 76.14

0.0001 74.6 72.71 76.59 74.6

Figure 9.  The influence of the size of the convolution kernel and the number of filters of a single feature 
component on the accuracy of the model in the four-classification scenario.
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Fig. 9 reveals that an excess of filters can also deteriorate the model’s accuracy, as it will lead to complex model 
and overfitting issues. As a result, it’s important to select the appropriate convolution kernel size and number of 
filters. This work determines its size based on empirical experience and analytical evaluations. Optimal perfor-
mance is achieved for both binary and four-class tamper detection when the number of filters is set to 75 and the 
convolution kernel size is set to 130, according to testing results. Therefore, in these two classification scenarios, 
the 1D-CNN model is configured with 75 filters and a convolution kernel size of 130.

The configuration of the 1D-CNN model are summarized in Table 6. The model employs stochastic gradient 
descent (SGD) for optimization and incorporates the rectified linear unit (ReLU) as its activation function, a 
prevalent choice in neural network design. This work uses the cross-entropy function as its loss function, which 
will continuously optimize the network parameters and weights to refine the model. In the experimental section, 
the 1D-CNN model is contrasted with many other machine learning models, such as the Support Vector Machine 
(SVM), Neural Networks (NN), and Random Forest (RF), etc. The results of these comparative experiments 
show that the 1D-CNN model has more advantages in processing time series data. The parameter settings for 
the relevant models are also summarized in the Table 6.

Results and discussion
Results of the ENF noise reduction method
In this subsection, synthetic signal simulation experiments are designed to verify the noise reduction perfor-
mance of the algorithms in this chapter, with an audio length of 4 minutes. The detailed results of the synthetic 
signal experiments are shown in Figs. 11, 12, 13 and 14. The ENF signal extracted directly without noise reduction 
has an NM of 3321.723 and a CC of 0.024 compared with the reference ENF signal.

As can be seen in Fig. 12, the signal has been subjected to the VMD algorithm, which basically removes the 
originally observed pseudo-spikes from the signal. Due to the low noise interference in the synthesised signal, 

Figure 10.  The influence of the size of the convolution kernel and the number of filters of a single feature 
component on the accuracy of the model in the two-classification scenario.

Table 6.  Model training parameter setting table.

Model Parameter settings

1D-CNN

Activation function: Relu

Optimization: SGD

Loss function: Cross entropy

Epoch: 2000

Batch size: 32

Stride: 1

Pooling: Max pooling

Hidden layers: 128 dimensions

Random Forest

Trees: 30

Depth: 8

Sampling: With replacement

SVM Kernel: RBF

Neural network

Activation: Relu

Iterations: 5000

Hidden layers: 128 dimensions
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the overall characteristics of the ENF remain almost the same except for the removal of the pseudo-spikes in the 
signal. Compared with the reference ENF signal, the NM of the extracted ENF signal after the VMD algorithm 
is much reduced and the CC of the extracted ENF signal is also improved, which means the VMD algorithm can 
reduce the normalised standard deviation of the extracted ENF signal by a very large amount.

Figure 11.  Comparison of the uncancelled ENF signal with the reference ENF signal.

Figure 12.  Comparison of ENF signal after noise reduction by VMD algorithm with reference ENF signal.

Figure 13.  Comparison of ENF signal after noise reduction by RFA algorithm with reference ENF signal.
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The noise reduction results of the RFA algorithm are shown in Fig. 13. Compared with the reference ENF 
signal, the NM of the extracted ENF signal after the RFA algorithm is 0.968 and the CC is 0.628 and 0.024 
respectively, which shows that the RFA algorithm has an outstanding performance in noise reduction for the 
special signal of ENF.

The VMD algorithm firstly removes the noise interference from the ENF signal, and then the RFA algorithm 
is applied to the signal to remove the grid interference, in order to further reduce the noise of the grid signal. 
The results are shown in Fig. 14, where the NM is reduced to 0.783 and the CC is improved to 0.713. The results 
show that the combination of the RFA algorithm and the VMD algorithm achieves better noise reduction.

The results and discussion of four‑class tampering detection experiment
Single feature component experiment
First, the four-class tampering detection scenario proposed in this chapter is tested. This phase involves an 
examination where solely the fundamental or a specific harmonic component of the ENF signal is employed as 
the feature input for the model. The experimental component compares the 1D-CNN model with other machine 
learning models, such as SVM, NN, RF, etc., in order to demonstrate the high performance and efficacy of 
1D-CNN. Figure 15 presents the results of the four-class tampering detection accuracy results under the single 
feature component, Fig. 16 illustrates the average accuracy results derived from different feature components 
of the four models under the four-class scene. The average accuracy of 1D-CNN is 3.142% higher than that of 
RF. It can be seen from the experimental results that both models have demonstrated commendable results in 
this test, where the 1D-CNN model exhibits the best performance, followed by RF. This is because 1D-CNN 
has better performance on time series data, whereas RF on multi-dimensional data. Conversely, SVM and NN 
exhibit comparatively weaker outcomes. Table 7 provides a detailed view of the single-component feature audio 
tampering detection results based on the 1D-CNN model in the four-class scene.

Figure 17a,b respectively display the classification prediction accuracies of different models in the four-class 
scenario when the input features are 50 Hz and 100 Hz. The outcomes reveal that while the 1D-CNN does 
not achieve the highest prediction accuracy across all four categories, its performance is notably more stable, 

Figure 14.  Comparison of the ENF signal after combining the VMD and RFA algorithms for noise reduction 
with the reference ENF signal.

Figure 15.  Four-class tampering detection results under single feature component of different models.
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underscoring its robustness in handling time-domain sequences. In contrast, the predictions of the NN model 
tend to fluctuate significantly. A confusion matrix diagram of the four-class tampering detection is depicted in 
Fig. 17c to better illustrate the detection situation of the model for each class.

Multi-feature component experiment
In this experiment, the detection accuracy of ENF is improved by combining the fundamental harmonic features. 
Table 8 shows the four-class detection accuracies of audio tampering based on the 1D-CNN model, along with 
the specific feature combination methods and experimental results are shown in Table 8.

The experimental results demonstrate that there is no proportional enhancement in the model’s perfor-
mance with an increase in the number of feature components. This may attribute to certain damaged high-
order harmonic components that cannot be denoised, which will modify the general properties of the signal 

Figure 16.  Average accuracy rates of four-class tamper detection under single feature component of different 
models.

Table 7.  Single-component feature audio tampering detection results based on 1D-CNN model in four-
classification scenarios.

Feature selection (Hz) Accuray (%)

50 84.95

100 79.75

150 76.45

200 70.75

250 75.3

300 79.55

Average accuracy 77.79

(a) 50Hz (b) 100Hz (c) Confusion matrix

Figure 17.  The classification accuracy results of the single feature components of different models in the four-
classification scenario. (a) 50 Hz; (b) 100 Hz; (c) Confusion matrix.
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when combined. The outcomes of the experiments demonstrate that the most effective combination comprises 
the fundamental wave along with the second and third harmonics. In the four-class scenario, from the single-
feature component experiment to the one involving multi-feature components, the classification accuracy of the 
1D-CNN model increased from 77.79 to 93.75%. The experimental results of single and multi-feature compo-
nents demonstrate that, while the classification accuracy is high when each electric network frequency (ENF) 
harmonic component is processed as an individual input channel, the accuracy further increases when the ENF 
fundamental and harmonic components are integrated. This combination enables the network model to learn 
more nuanced features, thereby elevating the classification precision. The results of the experiment support the 
beneficial impact of the combination of multi-feature components.

The results and discussion of binary‑class tampering detection experiment
Single feature component experiment
This part of the experiment focuses on the general detection and binary classification of the tampered audio 
and original audio. In this experiment, only the fundamental signal of the ENF signal or a certain harmonic 
component serves as a feature input for other machine learning models such as SVM, neural network, and 
random forest. Figure 18 illustrates the two-class tampering detection accuracy result of each model under the 
single feature component, while Fig. 19 presents the average accuracy of binary classification utilizing different 
feature components across the four models, where, the average accuracy of 1D-CNN is 1% higher than that of 

Table 8.  Multi-component feature audio tampering detection results based on 1D-CNN model in four-
classification scenarios.

Feature selection (Hz) Accuray (%)

50 + 100 91.95

50 + 100 + 150 93.75

50 + 100 + 150 + 200 89.45

50 + 100 + 150 + 200 + 250 89.25

50 + 100 + 150 + 200 + 250 + 300 86.3

Table 9.  Single-component feature audio tampering detection results based on 1D-CNN model in binary 
classification scenarios.

Feature selection Accuray (%) Precision (%) Recall (%) F-Score (%)

50 88.8 90.35 86.79 88.53

100 90.3 88.39 92.01 90.16

150 88.5 89.82 87.55 88.67

200 84.8 86 83.99 84.98

250 86.4 85.52 86.9 86.2

300 85 85.83 83.79 84.8

Figure 18.  Binary classification tampering detection results under single feature component of different 
models.
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RF. From the experimental results, it can be seen that the results of 1D-CNN maintains superiority in the binary 
classification scene. Table 9 details the precision rate, recall rate, F1 value and other results of the 1D-CNN model 
under different feature components.

The Fig. 20a,b respectively represent the classification prediction accuracies of different models in the binary-
class scenario when the input feature is 50 Hz and 100 Hz. It can be seen from the results that although the 
accuracies of 1D-CNN for original audio and tampered audio are not always the highest, it is more stable, and 
the experimental results verify the 1D-CNN model’s proficiency in handling time-domain sequences.

This study also explores the impact of the sample size on the accuracy of the model. As shown in Fig. 20c, 
the 1D-CNN model is trained using 2000 samples and 200 samples, respectively. The experimental results show 
a direct correlation between increased data volume and enhanced model accuracy, revealing the advantages of 
deep learning.

Multi-feature component experiment
In this experiment, the feature input adopts the multi-component method of fundamental harmonic feature 
combination to improve the extraction accuracy of ENF. The details of the feature combination methods and 
the corresponding results are shown in Table 10.

It is also shown in Table 10 that the combination of the fundamental wave with the second and third harmon-
ics yields the best effect in this experiment. However, this combination method may not be universally optimal 
across various audio frequencies due to the differential destruction of high-order harmonic signals. In the binary-
class scenario, the accuracy of the 1D-CNN model saw a significant improvement, rising from 87.76 to 96.5%, 
when progressing from experiments with a single feature component to those incorporating multiple feature 
components. According to the experimental results, the network is able to learn more specific information from 
the combined input that contains the ENF fundamental and its harmonics. Although employing ENF harmonic 
component independently as a single-channel input achieved commendable detection accuracy, the synthesized 
input enriches the feature set, thereby further elevating precision and augmenting the model’s overall efficacy. The 
experiments in this chapter demonstrate the applicability and robustness of the 1D-CNN model for tampering 
detection scenarios as well as the advantage of the combination of multi-feature components.

Figure 19.  The average accuracy of binary tampering detection under different models with single feature 
component.

(a) (b) (c)

Figure 20.  The results of each classification accuracy of the single feature components of different models in 
the two-class scenario. (a) 50 Hz; (b) 100 Hz; (c) Detection results of single feature components with different 
sample numbers in binary tampering scenarios.
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Conclusions
This study presents a novel framework for audio tampering identification based on blind forensics technology 
utilizing ENF and deep learning. Moreover, it proposes an input method that combines the fundamental and 
harmonic features of the ENF signal. The proposed framework, termed Audio Tampering Detection (ATD), 
simplifies the process of audio forensics and identification by eliminating the need for manual threshold setting 
in signal classification. Instead, it utilizes ENF signal features extracted from the audio data itself as input for the 
model. Based on the differentiation of audio tampering types, the experiments evaluated the performance of the 
model respectively in binary-class and four-class tampering detection, where the ATD framework achieves an 
accuracy of over 93% in the four-class scenario and over 96% in the binary-class scenario. These experimental 
findings indicate that the proposed ATD framework can accurately identify the type of audio tampering and 
enhance the robustness of the classification model. In future studies, emphasis will be put on the application of 
blind forensics with ENF technology in video data, thereby expanding the scope of our research beyond audio 
analysis.
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