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Lissajous curves as aerial search 
patterns
J. Josiah Steckenrider 1*, Mitchell Miller 2, Rory Blankenship 2, Victor Trujillo 2 & 
James Bluman 2

Manned and unmanned systems are prevalent in a wide range of aerial searching applications. For 
aircraft whose trajectory is not or cannot be planned on-the-fly, optimal deterministic search pattern 
generation is a critical area of research. Lissajous curves have recently caught attention as excellent 
candidates for all kinds of aerial search applications, but little fundamental research has been done 
to understand how best to design Lissajous pattern (LP)s for this use. This paper examines the 
optimization of these search patterns from analytical, numerical, and data-driven perspectives to 
establish the state of the field in Lissajous curves for aerial search. From an analytical perspective, it 
was found that the average expected distance between a Lissajous searcher and a random target on a 
unit square approaches 0.586 as search time increases. Furthermore, an analytical approximation for 
the average searcher speed was found to guarantee error of no more than 22.1%. Important outcomes 
from the numerical optimization of Lissajous search patterns include the development of an intuitive 
evaluation criterion and the conclusion that irrational frequency ratios near 0.8 typically yield highest 
performance. Finally, while a robust predictive model for fast pattern optimization is yet out of reach, 
initial results indicate that such an approach shows promise.

Keywords Unmanned aerial systems, Lissajous curves, Search, Path optimization, Numerical simulation, 
Predictive modeling

Abbreviations
UAS  Unmanned aerial systems
UAV  Unmanned aerial vehicles
2D  Two-dimensional
LP  Lissajous pattern
CS  Circle search
SS  Sector search
PTS  Parallel track search
ES  Expanding square
FOV  Field of view
CDF  Cumulative density function
AUC   Area under the CDF
AAC   Area above the CDF
RMSE  Root-mean-squared-error
GAM  Generalized additive model

Background and motivation
The use of unmanned aerial systems (UAS) continues to proliferate, and thousands of new applications surface 
each year. The low cost of operating most UAS and the low barrier to entry has enabled operators to find uses 
for autonomous flying vehicles that are still relatively new and potentially disruptive to both commercial and 
government sectors. According to the International Civil Aviation Organization, there were over 2 million 
extant UAS in 2021 and this number is expected to rise to over 6.5 million in  20301. UAS have been successfully 
incorporated into a host of activities including agriculture, aerial photography and videography, construction, 
mining, mapping and surveying, delivery services, and emergency  response2.
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Utilizing UAS in search missions for emergency or disaster response is an obvious choice. Aerial vehicles have 
a particular advantage over grounded searchers since they can operate free from the restrictions of terrain and 
vegetation, and their sensors typically benefit from an elevated viewpoint. Search missions are often tedious and 
demanding, requiring significant endurance to be effective. Large UAS have much longer endurance than their 
comparable manned counterparts and can be fitted with state-of-the-art sensors and communication devices 
to aid in a search. Small UAS are also used increasingly in search and rescue missions due to their low cost and 
portability in scenarios as diverse as open ocean  search4 to mountain avalanche  scenarios5 to urban  terrain6,7 to 
forested  areas8. Additionally, as sensor technology continues to improve with higher resolution, lower weight, 
and lower power requirements, the benefits of using small UAS become increasingly amplified. Any means of 
leveraging the strengths of unmanned vehicles to make these missions more efficient and successful would be 
value-added.

Given the prevalence of UAS in technological solutions to modern search problems, research on how to most 
effectively implement aerial systems in such scenarios has become increasingly important. The solution space 
of a UAS for a given problem is largely dependent on the specific tasks at hand and the constraints imposed 
by the autonomous capabilities of the aerial system. The levels of UAS control and autonomy vary by platform 
and application. The National Institute of Standards and Technology (NIST) created the Autonomy Levels For 
Unmanned Systems (ALFUS)  framework9 which defines Modes of Operation from remote control to fully 
 autonomous10. Beer et al. reviewed decades of autonomy literature and proposed their own system of ten levels 
of autonomy with a focus on sensing, planning and  acting11. This paper focuses on systems that would be con-
sidered autonomous or semiautonomous according to the NIST guidelines and level 7 (share control) or higher 
within Beer’s framework.

Related work
Using UAS to assist in search and rescue has been an active area of research for over a decade. A key challenge 
for any autonomous or semi-autonomous system, especially in the context of aerial search, is path planning. 
Path planning can occur before or during missions, and can be updated in response to new information gained 
during the mission. Such information theoretic approaches to path planning are an area of active  research12,13, 
and although adapting a path in light of information gained during search sounds attractive, there can be 
several practical drawbacks. One of the most significant hindrances in aerial search contexts is the excessive 
computational cost of continuously updating the search pattern, especially for small UAS with limited onboard 
computational assets and power. Moreover these patterns can be ineffective when little information about the 
search domain is known or made available.

Many recent ideas have been proposed in the areas of path planning as well as maintaining control of multiple 
unmanned aerial vehicles (UAV) flying simultaneously in support of a search mission. In 2009, Lin and Goodrich 
proposed an intelligent path planning method for wilderness search and rescue, however their technique relies 
heavily on a pre-determined probability distribution map to drive the performance of their  search14. More 
recently Baker et al.15 introduced a coordinated Monte Carlo tree search algorithm which showed good perfor-
mance against more basic search methods, but the method relies on knowledge of the situation on the ground 
prior to the start of the search. Although appropriate for post-disaster scenarios such as after an earthquake 
event, it is less well-suited to more dynamic scenarios.

Hayat et al. proposed a multi-objective optimization algorithm to allocate tasks and plan paths for a team 
of  UAVs16. This work envisions a large search area where communications can only be assured through a mesh 
network of air vehicles which also utilize sensors to aid in their search. The flight paths are updated to maintain 
network integrity, but the path itself is not updated based on information from onboard sensors. San Juan and 
 colleagues17 introduce a discrete path planning technique using four separate strategies, all of which assumes 
some level of prior knowledge about the location of the subject of the search based on a Risk/Occupancy Map, 
terrain, or other data. Research by Rahmes et al.13 focuses on creating a probability map which is updated at each 
last known position to calculate the next position for the UAS which maximizes the likelihood of locating the 
target in order to avoid UAS spending too much time searching in low-probability areas.

Echeveste et al.12 propose a UAS planning method with a focus on mapping the concentration of ground 
contamination by using Kriging variance to estimate the concentration in the entire area of interest based on 
five random sample points. In order to achieve the greatest reduction in uncertainty with each additional sample 
point, the study uses Variance Driven Sampling (VDS) to sample subsequent points with the greatest variance. 
However, this method is computationally expensive and may require the UAS to travel the across the entire 
search space to reach its next sample point.

Finally Xing et al.18 developed a multi-UAV cooperative system for search and rescue based on the 5th Genera-
tion You Only Look Once (YOLO) algorithm. Their framework includes the ability to free-graft multiple UAVs, 
independent control of each UAV, real-time target detection, and monocular positioning. Although sophisticated 
and able to accommodate heterogeneous search agents, the algorithm relies on hand selected initial flight paths 
and does not perform real-time updates to the path itself in spite of agent-to-agent communication with search 
status updates. There remains a lack of investigation into deterministic patterns that are both effective and effi-
cient at finding targets in different scenarios.

Historically employed deterministic patterns are outlined by the International Aeronautical and Maritime 
Search and Rescue  Manual3. Figure 1 shows examples of the most common patterns that have proven to be 
effective for maritime applications. In general, deterministic search patterns can often be classified as either 
cyclical or comprehensive. Cyclical patterns are usually designed for contexts where a moving target might be 
intercepted, and as such, they commonly do not cover an entire search space. In contrast, comprehensive pat-
terns are designed to methodically search a whole area to guarantee the target will be located by the completion 
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of the search. A weakness of comprehensive patterns is that they trade a potentially faster detection time for 
higher confidence of overall mission success. The hybrid pattern proposed  in19 uses Lissajous curves to execute 
aerial search. This approach combines cross-domain sweeping motions with methodical area coverage to pro-
vide a thorough yet efficient interrogation of a search area. Search methods based on Lissajous curves can be 
both cyclical and comprehensive as demonstrated in Fig. 2, and they show significant promise as a potential 
alternative search method to those in current  use20. In particular, LPs have been shown to more quickly reach 
an 80% confidence threshold of mission completion when optimized for assumed target  size21 and are especially 
effective against canonical patterns when the target is modeled as  adversarial22. Lissajous flight patterns can be 
quickly generated, are easily tuned to accommodate a wide range of scenarios, and do not require oversight or 
input about target location probabilities.

Figure 1.  Four common deterministic search patterns prescribed in the International Aeronautical and 
Maritime Search and Rescue  Manual3. From upper-left to lower-right: circle search, sector search, parallel track 
search, and expanding square search.

Figure 2.  Assorted Lissajous curves. See section “Features of Lissajous curves” for a more detailed explanation.
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Original contributions
The primary objective of this research is to comprehensively investigate the design of Lissajous search patterns 
for maximum efficacy from analytical, numerical, and data-driven perspectives. Original contributions include 
not only insights into optimal LP design for UAS search, but also a few mathematical derivations that are more 
generally useful in their own right. These include: (1) generalized continuous and discrete formulations for a 
Lissajous curve arbitrarily located and rotated in two dimensions, (2) the expected distance between a known 
searcher location and a randomly located target uniformly distributed on a unit square, (3) a symmetric linear 
approximation of the Pythagorean theorem, and (4) an approximate relationship between the average speed of 
a Lissajous curve and the parameters that describe it. Section “Lissajous curves” first establishes what Lissajous 
curves are, including a few existing formulations and some discussion about their features. Everything that follows 
is put forward as novel work: section “Analysis of LPS for aerial search” addresses LPs from a purely analytical 
perspective, motivating the need for numerical methods which are detailed in section “Numerical assessment and 
design of Lissajous search patterns”. Section “Predictive modeling for Lissajous search pattern design” investigates 
the use of predictive models for more efficient hyperparametric pattern design, and section “Conclusions and 
future applications” conveys concluding thoughts and future directions of the research.

Traditional search patterns
While aerial vehicles can be controlled in a variety of ways, waypoint navigation is perhaps the most flexible and 
widely used. Waypoint navigation requires the generation of discrete locations in space which an agent must 
visit at specific times. The density of waypoints required to sufficiently construct a search pattern depends on the 
complexity and curvature of the pattern. The following subsections describe waypoint generation for the four 
canonical search patterns used almost exclusively in the field today, depicted in Fig. 1. It should be noted that all 
the patterns discussed here assume a constant searcher altitude. While three-dimensional search certainly has 
importance, we leave 3D considerations for future work.

Circle search
Because circle search (CS) patterns can only be well approximated by many straight line segments, they may 
require well over ten waypoints to adequately construct. The x and y coordinates for a circular search agent are 
obtained by the following:

where R is the radius of the search circle, v is the velocity of the agent, [x̄ ȳ]⊤ are the coordinates of the center of 
the circle, and �t is the time the searcher takes to move between waypoints. This time step parameter controls 
the resolution of the pattern.

Sector search
The sector search (SS) path uses a cyclical, overlapping pattern whose waypoints are most easily defined by a 
recurrence relation. The kth x (east) and y (north) coordinates and two-dimensonal (2D) heading θ of a search 
agent are given by:

where

and D is a distance determined by the breadth of the search region. This pattern repeats when k is a multiple of 
6, at which point an angular offset is often added.

Parallel track
The parallel track search (PTS) pattern methodically covers a rectangular search space by scanning the width 
or height of the space at regular offsets. The waypoints for a PTS moving from south to north can be generated 
as follows:
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W is the width of the search region, and �H is the desired distance increment in the y direction.

Expanding square
The expanding square (ES) begins at or near the center of a search domain and moves outward along a spiraling 
path. The critical waypoints for such a pattern are given by:

where

and l is a distance parameter governed by the size of the search space.

Lissajous curves
Continuous parametric formulation
Despite their potential for complexity, Lissajous curves have a relatively simple mathematical formulation in two 
dimensions. Equation (8) give the parametric representation of these curves in the x and y directions:

where Ax,y are the amplitudes (half-widths) of the pattern in the horizontal and vertical directions, ωx,y are the 
angular frequencies of the pattern, and φx,y are the phase shifts which dictate the starting coordinates of the 
curve. By tuning these six parameters, any rectangular Lissajous curve can be generated, though this formulation 
restricts the pattern to be centered at the origin and orthonormal with the x and y basis vectors.

Discrete recursive formulation
A simple version of the discrete linear recurrence relation describing 2D Lissajous curve waypoint generation 
was derived  in19. This linear discrete recursive formula is a useful representation of the curve which is amenable 
to linear estimation and control frameworks.

Define the discrete state vector xk as follows:

This state is propagated according to the following linear model with sample period �t:

where

The matrix A is a second-order approximation of the state transition matrix which precisely discretizes the 
Lissajous curve. The desired amplitudes and phases of the pattern are used to derive the initial state conditions:

Features of Lissajous curves
In addition to the formulations above, a qualitative description of Lissajous curves is beneficial to better convey 
their utility for aerial search. Figures 3-6 are included here to visually demonstrate the effect of varying each of 
the key parameters in Eq. (8).

As Fig. 3 demonstrates, the amplitude parameters Ax and Ay of Eq. (8) can be adjusted to match the width 
and length of a rectangular search space.

While the effect of the amplitude parameters on the shape of the curve is relatively straight-forward, the effect 
of the phase shifts φx and φy is more complex. These parameters determine the start point of the pattern and they 
also have an influence on the size of gaps in the curve. This is demonstrated by Fig. 4.

When the area of the smallest gap collapses to zero, the pattern takes on a lower order of complexity (this 
can be seen in Fig. 3, where φx approaches zero and φy approaches π/2 ). Furthermore, as Fig. 4 shows, a given 
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combination of φx and φy does not uniquely specify a Lissajous curve. For a fixed set of amplitudes and angular 
frequencies, there are infinitely many φx,y combinations that yield the same pattern, but there are infinitely more 
phase shifts which produce different curves. However, the number of intersections in a Lissajous curve (i.e. its 
level of complexity) can only be controlled by varying the frequency parameters ωx and ωy . More specifically, 
it is the ratio of the angular frequencies in the x and y directions that governs complexity, as the absolute value 
of these parameters affects only the “speed” of the pattern. Figure 5 demonstrates examples of three different 
frequency ratios.

It is worth noting that frequency ratios near one cover a space with higher rotational symmetry than smaller 
ratios: this is evident when comparing the 2/7 pattern with the 24/25 pattern. Finally, it can be shown without 

Figure 3.  Effect of varying Lissajous amplitude. ωx = 1 , ωy = 0.8 , φx = 0 , φy = π/2.

Figure 4.  Effect of varying Lissajous phase shift. Blue dots denote figure starting point. Ax = Ay = 0.3 , ωx = 1 , 
ωy = 0.8.

Figure 5.  Effect of varying Lissajous frequency ratio. Ax = Ay = 0.3 , φx = π/2 , φy = 0.
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much difficulty that irrational frequency ratios result in curves which never repeat. Figure 6 contrasts an irra-
tional frequency ratio with a nearly equal rational one.

Analysis of LPs for aerial search
Formula generalization
The first original contribution of this work is a generalization of the LP which allows the curve to be rotated and 
shifted in 2D space.

Continuous
The generalized continuous formula for a Lissajous curve is given below:

where X and Y  are the offsets of the pattern in the x and y directions, respectively, and θ is the angle by which the 
bounding rectangle of the pattern is oriented. This formulation offers more versatility in constructing Lissajous 
curves than Eq. (8).

Discrete
Rotating and translating a Lissajous curve using the discrete recursive representation is more challenging than 
in the continuous case. While a more thorough derivation can be found in “Appendix A”, the result is given here. 
Defining the state vector as in Eq. (9), the state is propagated by the following discrete linear model:

where � = RAR
⊤ , � = (I−�)x , x = [X 0 Y 0]⊤ , A is defined in Eq. (11), and

This also requires that the initial state be transformed according to:

This construction of Lissajous curves allows any pattern to be generated at any location and orientation in the 
plane.

Expected distance to a uniform random target
Designing an “optimal” Lissajous search pattern is an open-ended task. One must take into account many factors, 
including the assumed prior belief about the target, the dimensions of the search space, the maximum duration 
of the search, and so on. To begin to approach this problem analytically, several assumptions must be made 
about the circumstances of the search problem at hand. The developments of this section make the following 
assumptions about the search scenario: 

1. No prior knowledge is available about the target’s location, except that...
2. ...its distribution has 90◦ rotational symmetry, and...
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3. ...the target must be located within the confines of a rectangular search space...
4. ...whose dimensions are one unit by one unit, and...
5. ...the searcher starts from rest in the southeast corner.

For generality, all variables in the following developments are dimensionless. To further simplify, let θ = 0 and 
X = Y = 0 without loss of generality.

Assumption 3 is inherently compatible with a Lissajous curve, as these patterns are always inscribed by a 
rectangle. From assumption 4, the values of Ax and Ay in Eq. (13) must be 0.5. In order to enforce assumption 
5, x0 must be [0.5 0 − 0.5 0]⊤ . From this, it follows that φx ≡ π

2 (4n− 3) and φy ≡ −π
2 (4n− 3) , or for 

simplicity, φx ≡ π
2  and φy ≡ −π

2  . Finally, to simplify the problem formulation in keeping with assumption 2, let 
the frequency ratio rω ∈ R

∗
+ be introduced and defined as follows:

This is the single most critical parameter in varying the complexity of an LP, as described in section “Features 
of Lissajous curves”. The assumption that the target distribution has 90◦ rotational symmetry allows the range 
of values taken by rω to be truncated to the half-open interval (0, 1]. Thus, reflecting assumptions 2–5, the 
continuous Lissajous formulation of Eq. (13) can be reduced to the following:

(Note: the S subscripts on X and Y denote the x and y positions of the searcher.) Therefore, with only a few 
reasonable and nearly trivial assumptions, a nine-dimensional parametric optimization space is reduced to 
only two.

While assumptions 2–5 affect the parameters of the LP used in a search scenario, the first assumption relates to 
the assumed target distribution. If no information is available apart from the boundaries of the search domain, the 
distribution chosen to probabilistically represent the location of a target must maximize the differential entropy 
of the target. It can be  shown23, and is also fairly intuitive, that the uniform distribution accomplishes this. If the 
support of the target location is known, the boundaries of the search pattern should be made to match in order 
to maximize the efficiency of the search. Since assumption 4 restricts the dimensions of the Lissajous curve, the 
probability density function (PDF) of the target’s location XT , YT must be:

Analytically optimizing an LP subject to the above assumptions and constraints becomes a matter of determining 
which value(s) of rω result in the fastest completion of a search mission. Without inserting any additional 
information about the modality of target detection, it may be reasonably assumed that such an optimal pattern 
should be made to minimize the expected distance between the searcher and the target, averaged over all time. 
The distance between the searcher and the target in two dimensions is simply

(altitude is removed from the problem since it is assumed that the searcher can only identify the target when it 
is nearly directly above it). The expected value of this distance is:

This is a notoriously challenging integral. However, it may be noted that the integrand is more easily represented 
in polar coordinates, in which case the integral becomes:

where r =
√

(xS − xT )2 + (yS − yT )2 . While the operation is now simpler, the region of integration is no longer 
constant. It is useful to visualize the surface being integrated to gain insight about the integration limits; this 
visualization is provided in Fig. 7.
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This is worked out in “Appendix B”. Adding the result of this integration with those of the remaining three regions 
gives the following result for the expected distance E[d(xS , yS)] between a uniformly randomly distributed target 
location on the unit square and a given searcher location (xS, yS):

w h e r e  α(a, b) =
(
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)

 . This expected distance function is minimized to a value of 0.3826 when 

x = y = 0 , maximized to a value of 0.7639 when x = y = 1
2 , and is rotationally symmetric. The surface described 

by Eq. (24) is plotted in Fig. 8. This figure also depicts the surface visually decomposed into the α and β terms 
alone (It may be helpful to note that α and β are not significant functions themselves but are just defined here 
for compactness. They are plotted in the figure to show the relative contribution of each to the total expected 
distance.).

Let D(rω) represent the average expected distance from a searcher to a random target over a long period of 
time:

(24)
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[
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]

,

Figure 7.  Surface of integration for distance function d(xS , yS, xT , yT ).

Figure 8.  Expected distance between searcher and randomly located target.
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If a value of rω can be found which minimizes D(rω) , it may follow that an efficient Lissajous search pattern 
should be designed with that minimizing frequency ratio, as it guarantees that the searcher will be as near to the 
target (on average) as possible. However, combining Eqs. (13) and (24) is extremely unwieldy and the integral 
of Eq. (25) is intractable. Nevertheless, it is possible to evaluate D(rω) numerically. The average expected distance 
was computed over 10,000 irrational values of rω from 0 to 1 to ensure that the pattern never repeated. This was 
conducted for five values of T ranging from 10( 2π

ωy
) to 100( 2π

ωy
) as shown in Fig. 9 and summarized in Table 1. 

Though it cannot be proven analytically, it is clear from the figure that D(rω) converges to a value of approximately 
0.586 as T → ∞ . This is further supported by Table 1. Therefore, we conjecture that over a long time, the average 
distance between a Lissajous searcher and any target uniformly randomly located within a square region is the 
same regardless of the shape of the LP. This statement is further supported by the fact that the average expected 
squared distance can be proven to be a constant 512 on the support of the unit square (see “Appendix C”).

While it is an interesting and somewhat unintuitive result that the average expected distance to a randomly 
located target is independent of the searcher’s Lissajous path, it does not aid in the design of an optimal Lissajous 
search pattern. Furthermore, this approach cannot account for the technicalities of target detection (i.e. at what 
distance between a target and a searcher can the target be considered found?). For these reasons and others, 
practical Lissajous search pattern design must be done numerically. Before this is detailed in section “Numerical 
assessment and design of Lissajous search patterns”, it is critical to know the relationship between an LP’s 
parameters and its average speed in order to conduct fair and consistent numerical simulations. This can be 
thought of as a normalization of Lissajous patterns. For example, if numerical optimization shows that low values 
of rω appear to perform the best, yet those frequency ratios cause a searcher to travel much faster, on average, 
than other values of rω , the comparison would be misleading. Therefore, a derivation of the average speed of a 
Lissajous searcher is first appropriate.

Average speed of a Lissajous searcher
The instantaneous speed (i.e. the magnitude of the velocity vector) of a continuously formulated LP subject to 
the assumptions of section “Expected distance to a uniform random target” is given as follows:

where dots denote time derivatives. The average speed over some period T is then

(25)D(rω) = lim
T→∞

1

T

∫ T

0
E[d(xS(rω , t), yS(rω , t))]dt.

(26)
s(t) =

√

ẋ2(t)+ ẏ2(t)

=
√

(

0.5ωx sin (ωxt)
)2

+
(

− 0.5ωy sin (ωyt)
)2

,

Figure 9.  Average expected distance vs. frequency ratio for several search cycles.

Table 1.  Mean and standard deviation of D(rω) Over rω for varying search pattern lengths.

Number of y cycles

10 25 50 75 100

Mean 0.5861 0.5858 0.5860 0.5860 0.5860

S.D. 0.0061 0.0021 0.0011 0.00075 0.00057
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This integral is again intractable. However, approximations can be considered to varying degrees of accuracy. 
The alpha-max-plus-beta-min algorithm commonly used to speed up magnitude computations in digital signal 
 processing24–26 offers the following approximation for s(t):

where optimal values of α = 0.96 and β = 0.40 guarantee an error of less than 4%. However, this algorithm 
requires that the larger of ẋ(t) and ẏ(t) be known for all t—knowledge which cannot be guaranteed for a general 
Lissajous curve. Thus, a symmetric approximation is sought. “Appendix D” shows that the optimal symmetric 
linear approximation of the Pythagoream theorem is:

with error no greater than 22.1% . While it introduces a larger error margin, this approximation enables a much 
simpler estimate of the average speed of a Lissajous searcher.

The estimated average speed s is determined by

Let the interval T over which the speed is being averaged allow for a complete number of periods in both the x 
and y directions:

where m ∈ Z is the number of cycles in the x and n ∈ Z is the number of cycles in the y (While these developments 
are technically only valid for rational frequency ratios rω = m

n  , the errors induced when applying the result to 
irrational frequency ratios are negligible.). It can be shown without much difficulty that

and so,

 Solving for ωy (with ωx following from Eq. (17)) gives (More generally, for an LP with arbitrary amplitudes, 
s ≈ 1

π

[

− 1+
√
2− sinh−1 (1)+

√
2 tanh−1

(

1√
2

)](

Axωx + Ayωy

)

 .) 

Therefore, for a desired average Lissajous searcher speed of s and a frequency ratio of rω , it can be guaranteed 
that choosing ωy and ωx using Eqs. (34) will result in a true average searcher speed with an error of no more 
than ≈ 22% . To confirm this, 40,000 LPs were generated with random values of ωy ranging from 1 to 100 and 
frequency ratios ranging from 0 to 1. Equation (33) was applied to solve for the estimated path speed and this 
was compared to the “true” (numerical) measure. The percent-error surface is plotted in Fig. 10. Note that the 
upper limit of the error indeed approaches the theoretical limit as ωy → 0.

Numerical Assessment and design of Lissajous search patterns
Monte Carlo simulation
Given the analytical complexity of designing LPs, a Monte Carlo simulation technique was implemented to 
numerically achieve Lissajous flight path optimization. As described above, the goal of LP design is to choose 
a frequency ratio rω that produces the most effective search path subject to the assumptions and constraints 
of section “Expected distance to a uniform random target”. However, with a numerical/simulation approach, 
one can bypass the task’s analytical intractability to deliver waypoints for aerial vehicles conducting real-world 
search missions.

Multiple aerial searching scenarios can be simulated simultaneously by populating a unit square space with 
uniformly randomly generated targets, represented by their 2D Cartesian coordinates. Previous  work22 showed 
that 10,000 random targets are generally sufficient to achieve convergence of outcomes for the constraints of 
the scenarios addressed here. The Lissajous search path is then numerically represented by a sequence of dense 
waypoints generated by Eqs. (13) or (14). To ensure equitable search pattern comparison, waypoints were 
generated at resolutions that delivered constant average Lissajous speeds by calculating the appropriate values of 
ωx and ωy for each pattern. Although an approximate analytical approach for this was derived in section “Average 

(27)s =
ωy

2T

∫ T

0

√

r2ω sin2 (rωωyt)+ sin2 (ωyt)dt.

(28)s(t) ≈ α|max {ẋ(t), ẏ(t)}| + β|min {ẋ(t), ẏ(t)}|,

(29)s(t) ≈ 0.779
(

|ẋ(t)| + |ẏ(t)|
)

,

(30)s ≈
0.779

2T

∫ T

0

(

|ωx sin (ωxt)| + |ωy sin (ωyt)|
)

dt.

(31)T =
2πm

ωx
=

2πn

ωy
,

(32)
∫

2πp
ω

0
| sin (ωt)|dt = 2p

∫ π
ω

0
sin (ωt)dt =

4p

ω
, p = 1, 2, . . .

(33)s ≈
0.779

4πn
ωy(4n+ 4m) =

0.779

π
ωy(1+ rω).

(34a)ωy ≈
πs

0.779(1+ rω)
,

(34b)ωx = rωωy .
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speed of a Lissajous searcher”, a pre-processed numerical lookup table was instead used here to reduce potential 
maximum error from near 22% to only fractions of a percent. At each waypoint, the detection state of each target 
was evaluated. Unlike in the analytical case, it is possible in simulation to account for the modality of target 
detection when assessing the performance of a search pattern. The simulated detector checks which targets 
lie in a rectangular field of view (FOV) at each waypoint in order to emulate the detection of a small target by 
an optical sensor. To limit the number of additional parameters introduced in the optimization problem, we 
assume a square FOV as projected onto the ground plane with side length lf  . Detection is then accomplished 
efficiently in a two-step process. First, the Euclidean distance between the searcher and all targets is computed 
and targets whose distance from the searcher exceeds 

√
2lf  (the radius of the circle which circumscribes the FOV) 

are removed from further consideration. The much smaller subset of targets which lie near the agent at a given 
waypoint are determined to be in the FOV by first transforming their coordinates into the searcher’s reference 
frame. If the magnitude of any of these transformed coordinates is less than lf /2 , the corresponding target is 
considered to have been detected.

Figure 11 illustrates such a search scenario with uniform random target locations, searcher path, and FOV 
displayed. As one might expect, there is an important interplay between the maximum gap size in an LP and the 
size of the FOV. This relationship, investigated more thoroughly in the results  of22, is taken into account in the 
statistical modeling of section “Predictive modeling for Lissajous search pattern design”.

Even when a target lies in a UAS’s FOV, no real-world detector can deliver 100% certainty of finding it, as 
sensor-based detection is always ultimately stochastic. For this reason, a probabilistic model for detection was 
chosen based  on27 to transform the time td a target spends in the detectable region (i.e. FOV) of a searcher into 

Figure 10.  Percent error in estimated speed using Eq. (33) vs. numerical ground truth.

Figure 11.  Simulated UAS with square FOV navigating the search space along a rω = 0.3 Lissajous path.
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a probability of having been detected. The longer a particular target is inside the FOV, the more likely it is to be 
seen by the simulated UAS. This probability is modeled as

where τ is a scaling time constant which holistically models the sensitivity of the detector (a smaller time con-
stant corresponds to a more robust detector). At the conclusion of a simulation, each target has an associated 
probability of having been detected by the end of a search. Additional insight can be obtained by generating the 
cumulative density function (CDF) FT (t) which describes the probability that the time at which a uniformly 
randomly located target is found (detected) at a time T is less than t. Examples of Lissajous search pattern CDFs 
are shown in Fig. 12. While this figure is intended to serve primarily as a qualitative demonstration of how the 
performance of search patterns affects the shape of their CDFs, an accompanying quantification of this figure is 
provided in Table 2, which gives the CDFs’ means and final values.

The CDF is a helpful visual representation of a particular LP’s performance in the time domain, but it does 
not provide a single summative value to use as an objective function in the optimization problem. The mean or 
final value of the CDF may be reasonable evaluation metric candidates, but neither of these parameters captures 
much information about the early behavior of the pattern. For this reason, an evaluation criterion which reflects 
the insightful shape of the CDF is desired for comparison between LPs.

Evaluation criteria
Previous  work21 proposed the use of the area under the CDF (AUC) as a qualitative summary metric for charac-
terizing the effectiveness of a search pattern. If a pattern is particularly robust, its CDF will demonstrate a steep 
rise early on, contributing to a large overall AUC. However, the challenge introduced by this metric is the arbi-
trariness of the upper limit of integration. It was formerly proposed that this limit should be chosen as the time 

(35)p(td) = 1− exp
(

−
td

τ

)

,

Figure 12.  Monte Carlo simulation results showing examples of search CDFs and their corresponding Lissajous 
curves over a range frequency ratios. Curves should be read in increasing order from upper-left to lower-right. 
For these simulations, τ = 20.

Table 2.  Mean and final value of CDFs for example Lissajous patterns.

rω 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

CDF mean value 0.877 0.873 0.380 0.888 0.898 0.908 0.914 0.443 0.926 0.928

CDF final value 0.984 0.968 0.394 0.980 0.986 0.991 0.996 0.458 0.999 1.000
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at which a certain acceptable threshold for the probability of detecting a target has been achieved. Maximizing 
the AUC has practical utility in providing an optimization objective, but it lacks a clear underlying mathematical 
interpretation relating to the stochastic problem at hand. In this work, we instead propose to use the area above 
the CDF (AAC) as an objective function. Maximizing the AUC and minimizing the AAC achieve the same goal, 
but using the AAC has two distinct advantages over using the AUC: (1) the arbitrariness of a cutoff for integra-
tion is eliminated since a CDF always converges to one (This is always true if there are no gaps when the FOV is 
swept out over the search pattern.), and (2) the area above a CDF which is defined strictly over a non-negative 
domain is in fact equal to the mean of the distribution. This gives meaning and mathematical significance to the 
AAC as a criterion for evaluating a Lissajous search pattern.

The area above the CDF, or the mean of the distribution, can be  shown28 to be:

where E[T] is the time at which a uniformly randomly located target can be expected to be found by a UAS 
searcher flying on a prescribed Lissajous path. Therefore, smaller E[T] values are associated with more effective 
frequency ratios for pattern design. It is noteworthy that the upper integral bound in Eq. (36) need not necessarily 
be ∞ . If a mission highly prioritizes the speed with which a target is located over the certainty of finding the 
target at all, a lower certainty threshold may be acceptable in which case the upper bound of the integral would 
change. If the desired certainty level for mission success is α , Eq. (36) becomes

where now E[Tα] can be described as “the expected time at which a search mission for a uniformly randomly 
located target is successful”. Figure 13 demonstrates this concept for α = 0.85 , a typical certainty threshold 
for urgent search missions. Previous work has shown that Lissajous curves are particularly advantageous over 
traditional deterministic patterns in such scenarios when 100% certainty of locating the target is not  required22.

Key findings
Monte Carlo simulations were conducted as described above. Given the assumed 90◦ rotational symmetry of 
the assumed target distribution, only frequency ratios spanning the interval (0, 1] require investigation, thus 
increasing the resolution of numerical optimization without introducing unnecessary computational burden. 
Figure 14 shows the dependency of LP performance on frequency ratio for α = 0.85.

The absolute minimum E[Tα] over this range naturally corresponds to the most effective frequency ratio for an 
LP, where any local minimum is a well-designed pattern and any local maximum is poorly suited for aerial search. 
One key finding from this approach is the recurring poor performance of Lissajous paths with near-rational 
frequency ratios. The large spikes at rational intervals imply that a higher degree of irrationality in frequency ratio 
is indicative of higher-performing LPs. This is an intuitive result in light of the fact that irrational patterns will 
never repeat, so “more rational” patterns will wastefully overlap themselves more often. Furthermore, rational 
frequencies are prone to leaving more unsearched areas in the search space as shown in Fig. 6, thus resulting 
in higher mission completion times. With these results, the task of designing a Lissajous search path becomes 
simply selecting the frequency ratio corresponding to the optimal minimum E[Tα] value. This pattern will be 
the most effective flight path given the parameters of the search scenario that was simulated.

While the simulation method yields important design results, it is not without drawbacks. The numerical 
optimization process is computationally intensive, discouraging real-world implementation where deployment 

(36)E[T] =
∫ ∞

0
(1− FT (t)) dt,

(37)E[Tα] =
∫ F−1

T (α)

0
(α − FT (t)) dt,

Figure 13.  A CDF evaluation where the mission’s desired certainty threshold is 85% rather than 100%.
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speed is of high priority. For this reason, a predictive modeling technique was considered for frequency ratio 
selection which bears the bulk of the computational cost up-front at model fitting, but almost entirely eliminates 
the burden at the implementation stage.

Predictive modeling for Lissajous search pattern design
Data and methodology
As Fig. 14 shows, under most conditions there are several ranges of nearly-optimal frequency ratios for which 
search performance varies only minimally. In fact, most values of rω result in moderately acceptable performance 
as compared with the assorted outlier “spikes”. Thus, an alternate approach to Lissajous search pattern design 
may ask not the question, “What frequency ratio is optimal?” but rather “What range(s) of frequency ratios 
should be avoided?” When a rigorously exact globally optimal solution is not required, data-driven approaches 
can provide an adequate solution much faster than pure simulation alone. This is afforded by the fact that such 
a predictive modeling approach bears the computational burden of simulation in offline training during model 
generation rather than online querying.

The frequency ratio rω is an explanatory feature which only partially explains the response variable E[Tα] , but 
there are several other features (subject to the assumptions of section “Expected distance to a uniform random 
target”) that also affect the response. In particular, these include: (1) the size of the agent’s FOV as a percentage 
of the area of the search space, (2) the time constant τ from Eq. 35, and (3) the certainty threshold α from Eq. 37. 
To build the predictive models, 86,999 simulations were executed with each explanatory variable being randomly 
generated and the response variable recorded. Ten percent of these trials were retained as a testing set, while 
the rest were used to train predictive models. Table 3 summarizes the statistics of the simulations. The range of 
values for %FOV, α , and τ were chosen to roughly represent realistic scenarios.

Modeling
To begin, a basic linear regression was used to predict the expected mission completion time from the four simu-
lation input variables. After building and testing the linear model, only 35.74% ( R2 = 0.3574 ) of the variation 
in the data was explained, and the root-mean-squared-error (RMSE) in predicting the test set was 1573.542 as 
shown in Table 4. Including the interaction terms between each of the four explanatory features only marginally 
improved model performance, increasing the R2 to 0.3929 and decreasing the RMSE to 1519.414, still a poor 
model. However, linear regression inherently assumes a normal distribution of the response, and as Fig. 15 shows, 
the distribution of E[Tα] is much more resemblant of a gamma distribution.

Taking this clue, the linear model was generalized to use a logarithmic link function and assume an underlying 
gamma distribution of the response. The resulting gamma regression model provided improved results with 

Figure 14.  Frequency ratio decision plot showing the expected time to complete a search mission for every 
simulated LP (1000 frequency ratios tested). Optimal rω shown at ∼ 0.779 with E[Tα] = 564.926.

Table 3.  Training set summary statistics.

E[Tα] rω %FOV α τ

Min. 67.2 0.0025 0.0010 0.5000 1.00

1st Qu. 585.0 0.2551 0.0142 0.6213 10.53

Median 967.2 0.5043 0.0263 0.7444 20.03

Mean 1637.4 0.5025 0.0262 0.7459 20.22

3rd Qu. 1834.0 0.7536 0.0382 0.8702 29.83

Max 19904.0 0.9999 0.0499 1.0000 40.00
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a pseudo-R2 ( R2
L ) of 0.5609 and RMSE of 1437.222. The R2

L measure relies on a likelihood ratio, hence the “L” 
subscript, and is calculated by

where D0 is the model’s null deviance and Dk is the residual deviance with k degrees of  freedom29.
While gamma modeling is the most appropriate regression generalization for the problem at hand, basic 

regression is still fundamentally insufficient to adequately model the Lissajous simulation data. Traditional 
gamma modeling with a logarithmic link function assumes a linear relationship between the explanatory features 
and the logarithm of the response, but Fig. 16 shows clear evidence of a nonlinear relationship.

However, a generalized additive model (GAM) provides a more flexible method that can characterize 
nonlinear regression  effects30. While a basic linear model assigns to each predictor an associated coefficient βi:

a generalized additive model fits a non-parametric function fi (natural cubic splines in this case) to each predictor 
as shown in Eq. (40):

A GAM allows the modeling of nonlinear effects while still leveraging an underlying gamma distribution 
to achieve better results than either previous technique. A GAM using natural splines has an additional 
hyperparameter for each non-parametric function it fits, realized as the number of “knots” for each spline. 
Using five knots for each function yields an R2

L of 0.7052 and an RMSE of 1270.333. Increasing the number of 
knots can increase R2

L , apparently improving the model, but this also increases the RMSE, which is a sign of 
over-fitting. Thus, five knots were heuristically chosen for the results delivered here. A summary of the applied 
statistial models is given in Table 4.

(38)R2
L =

D0 − Dk

D0
,

(39)
E(Y |X1,X2,X2,X4,X5) = β0 + β1X1 + β2X2

& + β3X3 + β4X4,

(40)
E(Y |X1,X2,X2,X4,X5) = β0 + f1(X1)+ f2(X2)

+ f3(X3)+ f4(X4).

Figure 15.  Distribution of the independent response variable E[Tα].

Figure 16.  Strongly nonlinear relationship between frequency ratio rω and the logarithm of the response E[Tα].
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Discussion and future work
While even the GAM is still unlikely to deliver optimal LP parameters as reliably as an entirely numerical 
approach, this investigation shows that predictive modeling for path design has promise for the future. Follow-on 
work will build on these findings to develop a model that rivals other methods in accuracy and delivers near-
optimal Lissajous flight paths more efficiently. A first step for future work is to generate more training data. 
While nearly 80, 000 training observations is no insignificant amount for most low-dimensional linear modeling 
problems, even a modest resolution of each parameter dimension in the problem at hand yields almost 300 
trillion required data points to fully fill out the feature space. More data would also benefit machine learning 
models outside the scope of this paper (e.g. neural networks, random forests, or ensemble methods) which could 
be a good fit for the nonlinear nature of this problem. Another possibility for handling linearity issues could be a 
form of complex feature engineering, or perhaps more complex simulations that account for more information 
and variables that are predictive of E[Tα].

Conclusions and future applications
Using Lissajous curves as deterministic search patterns for aerial vehicles is a venture which shows promise, and 
thus designing optimal Lissajous paths is an important task. While many interesting and perhaps unintuitive 
findings can be gleaned through an analytical exploration of the problem, it is a problem so complex that a 
full solution is simply unattainable through purely analytical means. A numerical approach circumvents this 
intractability, providing a means of designing effective Lissajous search paths, but this comes at the cost of a high 
computational burden. Predictive modeling shows promise as an alternative, offering quick on-the-fly LP design, 
but a more accurate data-driven model is still required before the approach can be applied to real aerial systems.

When deterministic search patterns are sought, the need for immediate online path generation is generally 
lower than the need for a pattern that quickly and successfully completes a mission. Thus, the next phase of 
work will focus on improving the fidelity of the numerical simulator in order to better handle a more diverse 
set of missions. A satisfactory end-state of this research would be a multi-purpose software platform, driven by 
simulation and machine learning, which provides the user with an optimal path for any specified aerial search 
scenario. Such a platform would appropriately account for any contextual information provided by the user to 
generate waypoints for a manned or unmanned aircraft.

Data availibility
All data generated or analyzed during this study are included in this published article’s supplementary informa-
tion files or can be obtained by request from the corresponding author.

Appendix
A. Generalized discrete Lissajous formulation
Deriving the generalized recursive model for a Lissajous curve is accomplished by repeatedly transforming and 
de-transforming the state vector at each time step. The linear transformation Rx + x rotates and shifts the vector 
x . The initial state vector given by Eq. (12) is first transformed in this way, mapping the first coordinate in the 
Lissajous curve to the desired location in the plane. Before the state propagation of Eq. (10) can be applied to 
obtain x1 , the state must first be de-transformed according to x′0 = R

−1(x0 − x) . After applying Eq. (10), the 
state vector is again transformed to deliver the desired rotation and shift: x1 = R(Ax′0)+ x . Combining these 
operations yields the following expression:

Noting that the rotation matrix is orthogonal and generalizing the time steps, this becomes:

or

Equation (14) follows directly from this result.

B. Evaluating the distance integral
Evaluating the inner integral of Eq. (23) gives:

(41)x1 = R(AR−1(x0 − x))+ x.

(42)xk = RAR
⊤
xk−1 −RAR

⊤
x + x,

(43)xk = RAR
⊤
xk−1 + (I−RAR

⊤)x.

Table 4.  Model performance metrics.

Model     R2
(L)

  RMSE

Linear Regression     0.3574   1573.542

Linear Regression (w/interactions)     0.3929   1519.414

Gamma Regression     0.5609   1437.222

Generalized Additive Model     0.7052   1270.333
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The final integral gives:

After substitution, rearrangement, and algebraic/trigonometric simplifications, this becomes:

This is obtained for each of the other three regions of integration by appropriately changing the integration limits. 
Once completed, the combined integral simplifies to the result given in Eq. (24).

C. Average expected squared distance
Consider the expected value of the squared distance between a searcher and a target:

Enacting the assumptions of section “Expected distance to a uniform random target”, this can be written for an 
LP:

The average expected squared distance over a period of time T is then:

It can then be shown without much difficulty that the average expected squared distance over a long time is

when the search domain is the unit square. It is worth noting that D(rω)  =
√

D
2
(rω) since the square root is not 

a linear operation. Indeed, 
√

5
12  = 0.585.

D. Proof of the optimal symmetric linear approximation of the Pythagoream theorem
We seek a value for α which optimizes the approximation α

(

|x| + |y|
)

 to 
√

x2 + y2 . Since x and y should be 
interchangeable, let � = y

x such that � ∈ (0, 1) and formulate an objective function as:

(44)
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)

− tan−1
(

1/2+yS
1/2−xS

).

(46)

(1/2− xS)
3

6

[

( 1/2− yS

1/2− xS

)

√

( 1/2− yS

1/2− xS

)2
+ 1

+
( 1/2+ yS

1/2− xS

)

√

( 1/2+ yS

1/2− xS

)2
+ 1

+ 2 tanh−1

(

√

(

1/2−yS
1/2−xS

)2
+ 1− 1

(

1/2−yS
1/2−xS

)

)

+ 2 tanh−1

(

√

(

1/2+yS
1/2−xS

)2
+ 1− 1

(

1/2+yS
1/2−xS

)

)]

.

(47)

E[d2(xS , yS)] =
∫

D

fXT ,YT (xT , yT )d
2(xS , yS, xT , yT )dA

=
∫ 0.5

−0.5

∫ 0.5

−0.5

(

(xS − xT )
2 + (yS − yT )

2
)

dxTdyT

= x2S + y2S +
1

6
.

(48)E[d2(xS , yS)] =
1

4
cos2 (rωωyt)+

1

4
cos2 (ωyt)+

1

6
.

(49)
D
2
(rω ,T) =

1

T

∫ T

0

(1

4
cos2 (rωωyt)+

1

4
cos2 (ωyt)+

1

6
)dt

=
1

8

(

sinc (2rωωyT)+ sinc (2ωyT)
)

+
5

12
.

(50)D
2
(rω) = lim

T→∞
D
2
(rω ,T) =

5

12
,
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Clearly, this is minimized when 
√
1+ �2 − α

(

1+ �
)

= 0 , or

If the ratio of x and y is known, the optimizing value of α can be determined from the above. However, we wish 
to obtain α which minimizes the average O over the full range of � . This average value is

The percent error in this estimate is given by:

Over the range of possible � , ǫ takes on a maximum value when � = 0:
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