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Prediction of treatment response 
after stereotactic radiosurgery 
of brain metastasis using 
deep learning and radiomics 
on longitudinal MRI data
Se Jin Cho 1,7, Wonwoo Cho 2,3,7, Dongmin Choi 2,3, Gyuhyeon Sim 2,3, So Yeong Jeong 1, 
Sung Hyun Baik 1, Yun Jung Bae 1, Byung Se Choi 1, Jae Hyoung Kim 1, Sooyoung Yoo 4, 
Jung Ho Han 5, Chae‑Yong Kim 5, Jaegul Choo 2,3,7* & Leonard Sunwoo 1,6,7*

We developed artificial intelligence models to predict the brain metastasis (BM) treatment response 
after stereotactic radiosurgery (SRS) using longitudinal magnetic resonance imaging (MRI) data and 
evaluated prediction accuracy changes according to the number of sequential MRI scans. We included 
four sequential MRI scans for 194 patients with BM and 369 target lesions for the Developmental 
dataset. The data were randomly split (8:2 ratio) for training and testing. For external validation, 172 
MRI scans from 43 patients with BM and 62 target lesions were additionally enrolled. The maximum 
axial diameter (Dmax), radiomics, and deep learning (DL) models were generated for comparison. 
We evaluated the simple convolutional neural network (CNN) model and a gated recurrent unit 
(Conv‑GRU)‑based CNN model in the DL arm. The Conv‑GRU model performed superior to the simple 
CNN models. For both datasets, the area under the curve (AUC) was significantly higher for the two‑
dimensional (2D) Conv‑GRU model than for the 3D Conv‑GRU, Dmax, and radiomics models. The 
accuracy of the 2D Conv‑GRU model increased with the number of follow‑up studies. In conclusion, 
using longitudinal MRI data, the 2D Conv‑GRU model outperformed all other models in predicting the 
treatment response after SRS of BM.
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The incidence of brain metastasis (BM) ranges from 10 to 40% in adult patients with  cancer1,2. Traditionally, 
whole-brain radiation therapy (WBRT) has been the primary treatment for patients with multiple BMs. However, 
because of the risk of cognitive decline associated with WBRT and the improved detection rate of small BMs 
using three-dimensional (3D) magnetic resonance imaging (MRI), stereotactic radiosurgery (SRS) has become 
more prevalent in patients with  oligometastases3–5.

The treatment response of BM is typically evaluated based on changes in the sum of the longest diameter 
of the enhancing lesions using the Response Assessment in Neuro-Oncology Brain Metastasis (RANO-BM) 
 criteria6. However, after SRS, clinicians often encounter an increase in the tumour size or the appearance of new 

OPEN

1Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College 
of Medicine, 82, Gumi-Ro 173Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi 13620, Republic of Korea. 2Kim 
Jaechul Graduate School of Artificial Intelligence, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic 
of Korea. 3Letsur Inc, 180 Yeoksam-Ro, Gangnam-Gu, Seoul 06248, Republic of Korea. 4Office of eHealth 
Research and Business, Seoul National University Bundang Hospital, 82, Gumi-Ro 173Beon-Gil, Bundang-Gu, 
Seongnam, Gyeonggi 13620, Republic of Korea. 5Department of Neurosurgery, Seoul National University 
Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-Ro 173Beon-Gil, Bundang-Gu, 
Seongnam, Gyeonggi 13620, Republic of Korea. 6Center for Artificial Intelligence in Healthcare, Seoul National 
University Bundang Hospital, 82, Gumi-Ro 173Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi 13620, Republic of 
Korea. 7These authors contributed equally: Se Jin Cho, Wonwoo Cho, Jaegul Choo and Leonard Sunwoo. *email: 
jchoo@kaist.ac.kr; leonard.sunwoo@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-60781-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11085  | https://doi.org/10.1038/s41598-024-60781-5

www.nature.com/scientificreports/

contrast-enhancing lesions. In such cases, it may be impossible to differentiate between post-treatment changes 
and tumour progression using the RANO-BM criteria because of this transient increase in size. In addition, 
radiation necrosis may develop, and the size of the lesion may continue to increase, further complicating the 
problem. This phenomenon puts clinicians in a great dilemma, as it can be difficult to distinguish precisely 
between two radiologically similar but distinct conditions—radiation necrosis and tumour progression—in the 
early post-treatment  period7. Therefore, confirming the treatment response may require a long-term follow-up 
period, which can delay early  intervention8.

To address this issue, researchers have attempted to differentiate the two conditions by utilising advanced MRI 
techniques and/or artificial intelligence (AI); however, they have been unsuccessful thus  far8–17. Moreover, most 
AI studies examining this issue have employed radiomics as a  method18, with only a few studies applying deep 
learning (DL) based on MR images from a single time point, which only demonstrated modest  performance17. 
No previous studies have utilised MR images from multiple time points to assess the treatment response of BM.

Hence, we aimed to develop AI models for predicting the treatment response after SRS using longitudinal 
data. We developed three different models (maximum axial diameter [Dmax], radiomics, and DL) based on 
MR images from four sequential time points (one pre-treatment and three post-treatment) and compared their 
performances. Additionally, we aimed to evaluate the change in prediction accuracy according to the number of 
sequential MRI scans to identify the optimal number of follow-up scans. Furthermore, we conducted an external 
validation using an independent dataset to assess the generalisability of our model.

Methods
This retrospective study was reviewed and approved by our institutional review board (Seoul National Uni-
versity Bundang Hospital IRB No. B-2012-652-109), which waived the requirement for informed consent for 
data evaluation. We ensured that all images were anonymised prior to download. Furthermore, any extraneous 
patient information was blinded and managed using a unique research identifier to uphold patient privacy and 
data security. The results are reported in accordance with the relevant reporting guidelines or recommendations 
specified for AI research using medical  data19–21. All MRI Digital Imaging and Communications in Medicine 
files were anonymised and de-identified before the analysis.

Patient selection
We retrospectively reviewed the medical data of patients with BM between January 2015 and October 2020 for 
the Developmental dataset. The patients were selected based on the following inclusion criteria: (a) age > 19 years; 
(b) patients with proven underlying malignancy as a primary source; (c) patients diagnosed with BM with a 
high likelihood using brain MRI; (d) presence of a precise date of SRS for the BM; (e) underwent baseline MRI 
on the same date as SRS (pre-SRS); (f) underwent follow-up MRI at least three times after SRS with intervals 
of > 30 days (first to third post-SRS follow-up); (g) and were followed-up clinically and radiologically after the 
third follow-up MRI to assess the treatment response of SRS. The exclusion criteria were as follows: (a) history of 
brain surgery before SRS, (b) history of WBRT before SRS, (c) absent 3D post-contrast T1-weighted images with 
1-mm slice thickness from pre-SRS or follow-up MRI, or (d) visible BM nodules < 5 mm on pre-SRS MR images.

For external validation, we additionally enrolled patients with BM between November 2020 and December 
2022, adhering to the same inclusion and exclusion criteria established for the Developmental dataset. Given the 
temporal separation in MRI acquisition dates relative to the Developmental dataset, we designated this dataset 
as the Temporal test set.

MRI examination
MRI examinations were performed using a 1.5-T (Intera, Philips Healthcare, Best, Netherlands; and Magnetom 
Amira, Siemens, Germany) or 3.0-T scanner (Achieva, Ingenia, or Elition, Philips Healthcare; and Vida, Siemens) 
with an 8- or 32-channel head coil. The MRI parameters for the 3D gradient echo sequence were as follows: 
field of view (FOV), 240 × 240  mm2; acquisition matrix, 240 × 240; slice thickness, 1 mm; number of excitations, 
1; repetition time (TR), 8–10.6 ms; echo time (TE), 3.7–5.7 ms; and flip angle, 8°. The MRI parameters for the 
3D turbo spin-echo sequence with the black blood technique were as follows: FOV, 240 × 240  mm2; acquisition 
matrix, 240 × 240; slice thickness, 1 mm; number of excitations, 1; TR, 500 ms; TE, 30 ms; and flip angle, 90°. 
For contrast enhancement, gadobutrol  (Gadovist®, Bayer Schering Pharma AG, Berlin, Germany; 0.1 mmol/kg) 
was injected intravenously.

MRI analysis
For the Developmental dataset, we included 194 patients with 369 target BM lesions from 776 MRI examina-
tions (four MRI scans per patient, including one pre-SRS and three post-SRS MRI scans). The data were divided 
randomly into training and testing datasets in a ratio of 8:2. For the training set, we used 616 MRI scans from 
154 patients. For the testing set, we used 160 MRI scans from 40 patients. For the Temporal test set, we included 
43 patients with 62 target BM lesions from 172 MRI examinations. We defined measurable disease as a contrast-
enhancing lesion that could be measured accurately in at least one dimension with a minimum size of 5 mm 
(modified RANO-BM criteria). The size threshold of the modified RANO-BM criteria is smaller than that of 
the RANO-BM criteria (10 mm). This modification was suggested by the RANO-BM working group only in the 
setting of brain MRI with a slice thickness ≤ 1.5  mm6. Otherwise, the modified RANO-BM criteria follow the 
RANO-BM  criteria6. The maximum diameter of each BM was measured on the representative axial plane. Two 
neuroradiologists (S.J.C. and L.S. with 9 and 12 years of experience in neuroradiology, respectively) assessed 
the ground truth for treatment response according to the modified RANO-BM criteria by consensus. Upon 
determining the ground truth, the reviewers had access to all clinical information and follow-up MRI scans after 
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the third post-SRS MRI. The histopathological results were used to establish ground truths for BM nodules veri-
fied through surgery. The treatment response was dichotomised into progressive disease (PD) versus non-PD; 
complete response, partial response, and stable disease were classified as non-PD6. The regions of interest in all 
BM nodules were semi-automatically drawn along the enhancing tumour margin by two neuroradiologists by 
consensus using AI-based commercial software (MediLabel®, Ingradient, Republic of Korea)22.

Model development for comparison
We developed three arms to compare the performance of treatment response prediction: Dmax, radiomics, and 
DL. The common processes for arm development included pre-processing, BM segmentation, feature extraction, 
and sequential modelling. In sequential modelling, we employed machine learning algorithms, capable of captur-
ing significant temporal patterns and feature importance without manual feature engineering. We performed 
end-to-end prediction modelling for the DL arm, sequential feature extraction and analysis modelling for the 
radiomics arm, and modelling for the Dmax arm (Fig. 1).

In the pre-processing step, each voxel’s spacing and signal intensity on the MR image varied based on the 
scan parameters. Thus, we resampled the image to obtain a voxel spacing of 0.5 × 0.5 × 0.5  mm3. Subsequently, 
we normalised the image by resampling its signal, excluding the background, which ranged from -1 to 1 based 
on the signal intensity of the position manually selected in the grey matter. To extract the subregions containing 
a single BM, we cropped the image into 3D patches with a size of 64 × 96 × 96 voxels based on the BM segmenta-
tion labels provided by the mentioned neuroradiologists.

An NVIDIA GeForce GTX 1080 Ti graphics processing unit (NVIDIA, Santa Clara, CA, USA) was used 
for DL. Furthermore, DL training was conducted using Python 3.8.10 and the PyTorch 1.6.0 framework in the 
Ubuntu 16.04.6 operating system. We used the PyCharm (JetBrains s.r.o., Prague, Czech Republic) and Visual 
Studio Code (Microsoft Corp., Redmond, WA, USA) softwares.

Because we obtained four times of 3D volumes for each BM (pre-SRS and first to third post-SRS follow-ups), 
we extracted the image features of each volume initially and modelled the four features for treatment response 
prediction sequentially. For the feature extraction of each volume, we utilised a convolutional neural network 
(CNN) model with randomly initialised ResNet-34 as the backbone. As an independent comparison arm of the 
3D CNN, we used a two-dimensional (2D) CNN for the image analysis, in which 2D patches were derived from 
three orthogonal slices of each 3D patch.

We used two sequential modelling methods suitable for high-dimensional feature analysis for the preliminary 
model selection in the DL arm using the four image features from the CNN, each consisting of a 512-dimensional 
vector. First, we concatenated the four features and applied a fully connected layer, taking a 2048-dimensional 
vector as its input (simple CNN). Second, we used a gated recurrent unit (Conv-GRU) (Fig. 2)23, a deep neural 
network specialised in sequential modelling of high-dimensional deep features. The two models were trained in 
an end-to-end manner. Each simple CNN and Conv-GRU model for 10 distinct dataset splits (training:test = 8:2) 
was trained for the statistical analysis. We selected the model with the best accuracy after applying statistical 
analysis between the simple CNN and Conv-GRU. In addition, we conducted an ablation study by replacing the 
CNN and GRU components with other backbones in the 2D Conv-GRU model.

We applied data augmentation that comprised random rotation from -30° to + 30°, random scaling from 
0.85 × to 1.15 × , random horizontal flip with 0.5 probability, and random translation from − 10 px to + 10 px for 

Figure 1.  Flowchart of the proposed deep learning-based computer-aided detection system. BM brain 
metastasis, CNN convolutional neural network, RNN recurrent neural network, 2D two-dimensional, 3D three-
dimensional.
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each axis. We used the Adam optimiser and the focal loss function for the learning hyperparameters and set the 
epoch, batch size, and learning rate to 20, 8, and 1 ×  10−4, respectively. For cases where the epoch ranged between 
10 and 15, we set the learning rate at 1 ×  10−5. For cases in which the epoch was > 15, the learning rate was set at 
1 ×  10−6 to accommodate the higher epoch number.

To enhance the interpretability of the DL models, we conducted a post hoc analysis using a class activation 
map (CAM). This analysis highlighted the specific subregions of the input images from which the feature vector 
was extracted predominantly. Specifically, we utilised the Eigen-CAM algorithm, which improves the clarity of 
the CNN predictions by visualising the principal components of the learned representations from the convolu-
tional  layers24. For instance, a distinct activation pattern in an enhancing BM nodule boundary between PD and 
non-PD cases could reveal insights into the model’s classification ability.

As we sequentially modelled the CNN-extracted features with GRU, the Dmax and radiomics features of 
four different time points were analysed by the XGBoost  models25. Specifically, the radiomics features, which 
consisted of the first-order statistics, shape, grey level co-occurrence, run length, and size zone matrices, were 
extracted using the PyRadiomics  library26. Four Dmax and radiomics features of each patient were concatenated 
sequentially to formulate the input of the XGBoost models: input vectors were constructed by sequentially con-
catenating features (e.g. feature1 of time 1 to feature1 of time 4, or Dmax of time 1 to Dmax of time 4). By using 
all the features from four distinct time points, these approaches allowed models to assess feature importance 
and select relevant features automatically. The code for the implemented models in this study can be found in: 
https:// github. com/w- cho/ mri_ convg ru.

Evaluation of model performance
First, we assessed the performance of each model in predicting binary treatment responses (PD versus non-PD). 
The prediction accuracies were obtained by training all four time points of the serial MRI scans (pre-SRS and 
first to third post-SRS follow-ups).

To identify the optimal number of follow-up MRI studies for predicting the treatment response after SRS, we 
evaluated the changes in prediction accuracy according to the number of serial (pre-SRS, pre-SRS to first post-
SRS, pre-SRS to second post-SRS, and pre-SRS to third post-SRS) MRI scans for the best-performing model. 
We modified our Conv-GRU model architecture by increasing the number of sequential inputs from one to four 
while maintaining consistent experimental settings for dataset splitting, data augmentation, optimisation, loss 
function, epochs, batch size, and learning rate. The optimal hyperparameter for the focal loss was investigated 
for each fold using a grid search.

Figure 2.  Model architecture of the proposed 2D convolutional neural network with a gated recurrent unit 
(Conv-GRU) model. 2D, two-dimensional, Conv-GRU  convolutional neural network with a gated recurrent 
unit.

https://github.com/w-cho/mri_convgru


5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11085  | https://doi.org/10.1038/s41598-024-60781-5

www.nature.com/scientificreports/

Statistical analyses
The area under the curve (AUC), specificity, and sensitivity were assessed for each model. We derived the opti-
mal cut-off values for the receiver-operating characteristic analysis from Youden’s J statistic. Post hoc tests were 
performed using the Bonferroni correction for multiple comparisons. We calculated the P-values of the predic-
tion accuracy comparison using a paired t-test performed on the results of the individual splits in each model.

Results
Patient characteristics
Table 1 summarises the characteristics of the enrolled patients, primary cancer types, follow-up intervals between 
MRI examinations, maximum axial diameter of the BM nodules, and treatment responses as the ground truth. In 
the Developmental dataset, the enrolled patients (103 men, 91 women) had a mean age of 64.8 years. The mean 
number of BM nodules was two per patient. The predominant primary cancer types were lung cancer (74.2%), 
breast cancer (28%), kidney cancer (3.6%), colon cancer (3.6%), and ovarian cancer (1.5%). Furthermore, the 
bladder, oesophagus, pancreas, peritoneum, and ureter were primary cancer origin sites in only one case each. 
The mean intervals from the pre-SRS MRI to the first post-SRS MRI, first post-SRS MRI to the second post-SRS 
MRI, and second post-SRS MRI to the third post-SRS MRI were 2.6, 2.8, and 2.9 months, respectively. The total 
mean interval from the pre-SRS MRI to the third post-SRS MRI was 8.3 months. Among the 369 enrolled target 
BM nodules, 88 (23.8%) were classified as PD and 281 (76.2%) were assessed as non-PD, which consisted of 

Table 1.  Demographic characteristics of included patients. CI confidence interval, MRI magnetic resonance 
imaging, NSCLC non-small cell lung cancer, PD progressive disease, SCLC small cell lung cancer, SD standard 
deviation, SRS stereotactic radiosurgery.

Characteristics

Developmental dataset Temporal test set

Patients (n = 194) Patients (n = 43)

Female: Male, number (%) 103 (53.1): 91 (46.9) 20 (46.5): 22 (51.2)

Mean age at diagnosis ± SD, years 64.8 ± 11.1 (range, 27–95) 64 ± 10 (range, 38–85)

Number of BM nodules 2 (range, 1–10) 1 (range, 1–5)

Primary cancer type

 Lung, number (%) 144 (74.2, NSCLC: SCLC = 132:12) 31 (72.1, NSCLC: SCLC = 28:3)

 Breast, number (%) 28 (14.4) 2 (4.7)

 Kidney, number (%) 7 (3.6) 4 (9.3)

 Colon, number (%) 7 (3.6) 3 (7)

 Ovary, number (%) 3 (1.5) NA

 Ureter, number (%) 1 (0.5) 1 (2.3)

 Bladder, number (%) 1 (0.5) Others 3 (7; GB, Liver, Melanoma)

 Oesophagus, number (%) 1 (0.5) NA

 Pancreas, number (%) 1 (0.5) NA

 Peritoneum, number (%) 1 (0.5) NA

Follow up Intervals of MRIs, Mean F/U ± SD, months

 Pre-SRS–1st post-SRS 2.6 ± 0.66 (95% CI, 2.5–2.6) 2.9 ± 0.6 (95% CI, 2.8–3)

 1st post-SRS–2nd post-SRS, 2.8 ± 1.3 (95% CI, 2.7–2.9) 2.9 ± 1.1 (95% CI, 2.7–3.1)

 2nd post-SRS–3rd post-SRS 2.9 ± 1.2 (95% CI, 2.8–3) 3.1 ± 2 (95% CI, 2.8–3.4)

 Pre-SRS–3rd post-SRS 8.3 ± 2.2 (95% CI, 8.1–8.5) 8.9 ± 2.7 (95% CI, 8.5–9.3)

1.5 T: 3 T number of MRIs

 On Pre-SRS 194: 0 43: 0

 On 1st post-SRS 76: 118 19: 24

 On 2nd post-SRS 75: 119 15: 28

 On 3rd post-SRS 79: 115 17: 26

Nodular diameter, Mean ± SD, mm

 On Pre-SRS MRIs 14.1 ± 9 (range, 5–58) 12 ± 7 (range, 5–31)

 On 1st post-SRS mris 9.3 ± 8 (range, 0–47) 7 ± 6 (range, 0–29)

 On 2nd post-SRS mris 8.6 ± 8.6 (range, 0–52) 7 ± 7 (range, 0–24)

 On 3rd post-SRS mris 8.5 ± 9.2 (range, 0–59) 7 ± 7 (range, 0–27)

Ground truth of treatment response Nodules (n = 369) Nodules (n = 62)

 PD, number (%) 88 (23.8) 15 (24.2)

 Non-PD, number (%) 281 (76.2) 47 (75.8)

 Complete response 140 (37.9) 17 (27.4)

 Partial response 103 (27.9) 22 (35.5)

 Stable disease 38 (10.3) 8 (12.9)
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140 (37.9%) complete responses, 103 (27.9%) partial responses, and 38 (10.3%) stable disease according to the 
modified RANO-BM criteria.

In the Temporal test set, the enrolled patients (22 men, 20 women) had a mean age of 64 years. The predomi-
nant primary cancer type was lung cancer (72.1%). The mean intervals from the pre-SRS MRI to the first post-SRS 
MRI, first post-SRS MRI to the second post-SRS MRI, and second post-SRS MRI to the third post-SRS MRI were 
2.9, 2.9, and 3.1 months, respectively. The total mean interval from the pre-SRS MRI to the third post-SRS MRI 
was 8.9 months. Among the 62 enrolled target BM nodules, 15 (24.2%) were classified as PD and 47 (75.8%) 
were assessed as non-PD according to the modified RANO-BM criteria.

In both datasets, all patients underwent pre-SRS MRI using a 1.5-T MR scanner. The subsequent three MRI 
scans were chosen randomly from either a 1.5-T or 3-T MR scanner. The proportion of 1.5-T scans was consist-
ent across both datasets, with a ratio of 0.55 (424/776 in the Developmental dataset and 94/172 in the Temporal 
test set).

Performance comparison between the models
At the preliminary model selection level in the DL arm, the AUC of the Conv-GRU was superior to that of the 
simple CNN in 2D (0.8782 versus 0.8344; P < 0.001) and 3D (0.8311 versus 0.7918; P = 0.007) (Supplementary 
Tables 1 and 2). The results of ablation study for substituting CNN and GRU components with alternative archi-
tectures in the 2D Conv-GRU model are presented in Supplementary Table 3. For the Developmental dataset, 
the mean AUCs from the 10 distinct dataset splits were 0.8782, 0.8311, 0.8228, and 0.7483 for 2D Conv-GRU, 3D 
Conv-GRU, Dmax, and radiomics, respectively (Table 2). For the Temporal test set, the mean AUCs were 0.8341, 
0.7836, 0.7516, and 0.7779 for 2D Conv-GRU, 3D Conv-GRU, Dmax, and radiomics, respectively (Supplementary 
Table 4). For the Developmental dataset, the mean AUC of the 2D Conv-GRU model was significantly higher than 
that of the 3D Conv-GRU, Dmax, and radiomics model (P = 0.0028, P < 0.0001, and P < 0.0001, respectively). The 
mean AUC of the 3D Conv-GRU model was significantly higher than that of the radiomics model (P = 0.0003). 
Finally, the mean AUC of the radiomics model was inferior to that of the Dmax model (P = 0.0015). For the 
Temporal test set, the mean AUC of the 2D Conv-GRU model was significantly higher than that of the 3D Conv-
GRU, Dmax, and radiomics model (P = 0.0005, P < 0.0001, and P = 0.0002, respectively), similar to the finding of 
the Developmental dataset. The mean AUC of the radiomics model was also inferior to that of the Dmax model 
(P = 0.0086) (Table 3). In the representative case, the DL model accurately predicted the PD and non-PD cases, 
despite the temporal changes in solidity and diameter (Fig. 3). In cases where predictions were accurate, the 
model consistently concentrated on the enhancing BM nodule across all four MRI scans. Conversely, in cases of 
incorrect predictions, the model often shifted its attention away from the BM nodule. Additionally, viable tumour 
regions tended to show stronger activation, while areas of post-treatment change showed weaker activation.

Model performance comparison among the follow‑up periods
For the Developmental dataset, the AUC pattern of the 2D Conv-GRU model displayed a gradual increment cor-
responding to the follow-up periods (AUC of 0.6715, 0.6777, 0.777, and 0.878; only pre-SRS MRI, plus 1, 2, and 
3 post-SRS MRI(s), respectively). The AUC from the pre-SRS to the third post-SRS follow-up was significantly 
higher than that of the remaining periods (P < 0.0001). Additionally, the AUC from the pre-SRS to the second 
post-SRS follow-up was significantly higher than that from the pre-SRS only or from the pre-SRS to the first 
post-SRS follow-up (P < 0.0001). For the Temporal test set, the AUC of the 2D Conv-GRU model also improved 
incrementally with the addition of follow-up MRI scans (AUC of 0.5945, 0.6190, 0.7810, and 0.8341; only pre-SRS 

Table 2.  Predictive accuracy of models for assessing treatment response after stereotactic radiosurgery of 
brain metastasis. AUC  area under the receiver-operating characteristic curves, Conv-GRU  convolutional neural 
network with a gated recurrent unit, Dmax prediction model based on maximum axial diameter, SD standard 
deviation, Sens sensitivity, Spec specificity, 2D two-dimensional, 3D three-dimensional.

Model 2D Conv-GRU 3D Conv-GRU Dmax Radiomics

Split AUC Spec Sens AUC Spec AUC Spec Sens AUC Spec Sens

1 0.8597 0.8256 0.8125 0.8241 0.8256 0.75 0.7972 0.5233 0.9375 0.7078 0.6047 0.8125

2 0.8845 0.9286 0.7059 0.8445 0.8214 0.7647 0.8466 0.625 0.9412 0.7805 0.6529 0.8235

3 0.8781 0.7636 0.8824 0.7968 0.6545 0.8235 0.7995 0.7818 0.7059 0.7743 0.4727 0.9412

4 0.8496 0.6809 0.8667 0.8 0.7872 0.7333 0.7915 0.9362 0.4667 0.7043 0.7021 0.6667

5 0.8355 0.9266 0.5714 0.801 0.625 0.8571 0.8099 0.75 0.7857 0.6511 0.6786 0.5714

6 0.8356 0.6275 0.8462 0.7994 0.4902 0.9231 0.7421 0.8431 0.5385 0.6757 0.8824 0.4615

7 0.9535 0.8837 0.9286 0.9269 0.814 0.9286 0.9286 0.8605 0.8571 0.799 0.6744 0.8571

8 0.8929 0.8182 0.8667 0.8202 0.7121 0.8 0.8485 0.7424 0.8 0.7793 0.7727 0.7333

9 0.8786 0.8571 0.75 0.7636 0.6286 0.85 0.8179 0.7286 0.75 0.7321 0.7286 0.75

10 0.9135 0.7714 0.9474 0.9346 0.7286 0.9474 0.8462 0.7286 0.7895 0.8793 0.7857 0.8421

Mean 0.8782 0.8083 0.8178 0.8311 0.7087 0.8378 0.8228 0.752 0.7572 0.7483 0.6955 0.7459

SD 0.0365 0.0996 0.1139 0.0566 0.1096 0.0772 0.0493 0.1176 0.1545 0.0675 0.1109 0.1445
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MRI, plus 1, 2, and 3 post-SRS MRI(s), respectively). Likewise, the utilisation of all four MRI scans resulted in a 
significantly higher AUC compared to analyses with fewer scans (P < 0.0001) (Fig. 4, Table 4).

Discussion
This study used longitudinal MRI data to demonstrate the prediction performance for the treatment response 
after SRS of BM of the DL (2D versus 3D), radiomics, and Dmax models. The 2D Conv-GRU model displayed 
superior performance relative to that of the 3D Conv-GRU, radiomics, and Dmax models. Moreover, upon 
evaluating the 2D Conv-GRU model with varying follow-up periods, the prediction accuracy tended to increase 
with the number of follow-up MRIs.

Clinicians should consider the possibility of tumour progression and radiation necrosis upon observing an 
initial increase in tumour size or new contrast-enhancing lesions in the treated area after SRS. Despite their vastly 
different long-term outcomes, it can be challenging to distinguish between the two conditions in the early post-
SRS period using conventional  MRI6. This aspect is primarily attributed to early tumour size changes after SRS 
that do not always correlate with the long-term response. Several factors, including genetics, age, performance 
status, radiation dose or regimen, tumour number or size, and histopathology, may contribute to confusion while 
assessing the treatment  response5,27,28, thereby delaying confirmative assessment and timely  treatment8. Whereas 
advanced MRI techniques, such as diffusion-weighted imaging, perfusion-weighted imaging, and spectroscopy, 
as well as positron emission tomography, have been evaluated to supplement conventional MRI, they have not yet 
demonstrated promising  results29–32. As such, the RANO-BM working group recommends a multidisciplinary 
team decision-making process to assess the treatment response instead of relying on a single  modality6.

A recent systematic review and meta-analysis suggested that the performance of AI-assisted MRI in clas-
sifying tumour progression and radiation necrosis after radiotherapy of BM is inadequate for clinical  use18. The 
authors identified several issues, such as the need for extensive DL research, consecutive data recruitment that 
reflects real-world clinical settings, larger sample sizes for robustness, and research using MRI data from multiple 
time points. Only a limited number of studies have been published on this topic, and the reported performance 
remains insufficient. Specifically, one study demonstrated AUCs of 0.72 for DL alone and 0.80 for combined DL 
and radiomics  models17, highlighting the need for further improvement. Additionally, BM is the most common 
brain malignancy in adults, and it is relatively easy to obtain a large sample size; therefore, DL research may be 
a more suitable methodology than radiomics. Multiparametric evaluation is another research trend, which has 
presented predictive AUCs from 0.71 to 0.8615,16. These researchers co-registered multiple MRI sequences into 
a single template to combine the information, thus enhancing predictive accuracy. However, they typically use 
single time point MRI data, which are not representative of daily clinical practice.

In addition, few studies have investigated the use of longitudinal MRI analysis to assess the treatment response 
of  BM33,34. This phenomenon is primarily attributed to the difficulty in obtaining longitudinal datasets for BM 
because the size of the dataset is multiplied by the length of the follow-up period. Nevertheless, the treatment 
response is assessed based on the serial follow-up MRI scans; accordingly, the model should use data from 
multiple time points for accurate prediction, rather than relying on that from a single time point. Cho et al.33 
developed and validated a DL model to assess automated treatment response using the RANO-BM criteria; 
however, the model was designed to provide the current treatment response rather than to predict the future 
treatment response. Lee et al.34 conducted a tumour habitat analysis using longitudinal MRI data to predict 
tumour recurrence after SRS. Using a k-means clustering algorithm, they classified each tumour tissue on physi-
ologic MR images (composed of apparent diffusion coefficient and cerebral blood volume images) into nonviable 
tissue, hypovascular cellular, and hypervascular cellular habitats. Based on the differences between the first and 
second follow-up MRI scans, an increase in the hypovascular cellular habitat was the most strongly associated 
with tumour recurrence.

In this novel study, we applied DL models to analyse longitudinal MRI data from more than two time points 
to predict the BM treatment response. The 2D Conv-GRU model outperformed the radiomics and Dmax models 
using four-point sequential MRI data from both the Developmental dataset and Temporal test set. This result 
suggests that CNN encoders can extract more comprehensive information from MRI than handcrafted feature 
extraction methods, such as Dmax and radiomics, can. In other words, DL models can automatically extract the 
most relevant features from MRI scans for treatment response prediction. Moreover, the GRU-based decoder 
in our DL model, which sequentially acquires multiple inputs, effectively handles sequential data, leading to 
superior results in the longitudinal MRI analysis.

Table 3.  P-values of comparison between predictive accuracies of models for assessing treatment response 
after stereotactic radiosurgery of brain metastasis. *P-values less than 0.0125 indicated a statistically significant 
difference after Bonferroni correction for 4-axis multiple comparison.

Developmental dataset Temporal test set

2D Conv-GRU 3D Conv-GRU Dmax Radiomics 2D Conv-GRU 3D Conv-GRU Dmax Radiomics

2D ConvGRU – 0.0028*  < 0.0001*  < 0.0001* – 0.0005*  < 0.0001* 0.0002*

3D ConvGRU – – 0.5364 0.0003 * – – 0.272 0.5423

Dmax – – – 0.0015 * – – – 0.0086

Radiomics – – – – – – – –



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11085  | https://doi.org/10.1038/s41598-024-60781-5

www.nature.com/scientificreports/

Figure 3.  Representative cases that were correctly predicted (A,B) and incorrectly predicted (C,D) by the 2D Conv-GRU 
model. Each image consists of four sequential MRI scans, their corresponding Eigen-CAM images, and the most recent 
follow-up MRI scans used for establishing ground truth. (A) A PD case histopathologically confirmed via surgery 18 months 
post-SRS exhibited no significant change in the size between the second and third post-SRS follow-up MRIs. However, the 
corresponding Eigen-CAM image revealed stronger activation. The 2D Conv-GRU model correctly predicted PD. (B) A 
non-PD case showed stable disease on 12 months post-SRS. While the size remained stable on the third post-SRS follow-up 
MRI, the corresponding Eigen-CAM image displayed weaker activation than the second post-SRS follow-up MRI. The 2D 
Conv-GRU model accurately predicted non-PD. (C) A PD case, confirmed through surgery 17 months post-SRS, showed 
a decrease in size by the third post-SRS follow-up MRI. The corresponding Eigen-CAM image exhibited weaker activation, 
leading the 2D Conv-GRU model to mispredict non-PD. (D) A non-PD case remained stable up to 80 months post-SRS. The 
Eigen-CAM image for the second post-SRS follow-up MRI lost focus on the tumour, resulting in an incorrect PD prediction 
by the 2D Conv-GRU model. 2D two-dimensional, Conv-GRU  convolutional neural network with a gated recurrent unit, MRI 
magnetic resonance imaging, CAM class activation map, PD progressive disease, SRS stereotactic radiosurgery.
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The accuracy of the DL model increased gradually as the number of follow-up studies increased, highlighting 
the importance of longitudinal assessments. However, the trend of the performance increment did not reach a 
plateau even when using all four time points (Fig. 4).Therefore, extending the observation period beyond four 
time points may further improve the prediction accuracy, which warrants further investigation.

In this study, we used a modified version of the RANO-BM criteria, which permitted the consideration of 
BM nodules as small as 5 mm as measurable lesions, which was suggested by the RANO-BM working  group6. 
Advances in MRI hardware have facilitated using thin section images (≤ 1.5 mm) for BM evaluation. This modi-
fication increases the number of measurable lesions, potentially resulting in greater reliability of the treatment 
response assessment. Previous computer-aided detection studies using MRI data reported a mean maximum 
diameter of < 1 cm (5–9 mm) of the BM  nodules35–39. Hence, adopting a size threshold of 5 mm is reasonable.

This study had some limitations. First, while we conducted an external validation with temporally separated 
data, we did not utilise data from other institutions. In addition, the relatively small sample size for model training 
may not sufficiently capture the temporal dynamics of the data. Consequently, we plan to conduct a follow-up 
multicentre study to evaluate the generalisability of our model. Second, the ground truth was based principally 
on clinical and radiological information, with only a few cases confirmed by histopathological evaluation. Despite 
being a common limitation in similar retrospective studies, it may have affected the accuracy of our results. 
The retrospective design of our study also may have introduced selection bias. Third, this study included MRI 
scans obtained from both 1.5-T and 3-T scanners, which introduces potential biases due to the inherent differ-
ences in image quality and characteristics. However, we noted an even distribution of patient scans across each 

Figure 4.  The area under the receiver-operating characteristic curves of the 2D Conv-GRU model with varying 
number of follow-up MRI scans. *Indicates a statistically significant difference. 2D two-dimensional, Conv-GRU  
convolutional neural network with a gated recurrent unit, MRI magnetic resonance imaging.
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dataset, which might have neutralised and mitigated the potential biases by a randomisation effect. Fourth, the 
effect of the follow-up interval between the MRI scans on the results cannot be entirely excluded, despite the 
small standard deviations of the intervals. Finally, the requirement for pre-processing and segmentation poses a 
significant challenge to its clinical applicability. Streamlining this process through integration with our picture 
archiving and communication system could offer substantial benefits.

In conclusion, using longitudinal MRI data, the 2D Conv-GRU model outperformed the 3D Conv-GRU, 
radiomics, and Dmax models in predicting the treatment response after SRS of BM. Our results suggest that 
using three post-SRS MRI examinations can achieve the best performance.

Data availability
The code for the implemented models in this study can be found in: https:// github. com/w- cho/ mri_ convg ru. 
The datasets presented in this article are not readily available because they are subject to the permission of the 
Institutional Review Board of the participating institution. Requests to access the datasets should be directed to 
leonard.sunwoo@gmail.com.
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