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The Goldilocks principle of learning 
unitaries by interlacing fixed 
operators with programmable 
phase shifters on a photonic chip
Kevin Zelaya 1,3, Matthew Markowitz 1,2,3 & Mohammad‑Ali Miri 1,2,3*

Programmable photonic integrated circuits represent an emerging technology that amalgamates 
photonics and electronics, paving the way for light‑based information processing at high speeds 
and low power consumption. Programmable photonics provides a flexible platform that can be 
reconfigured to perform multiple tasks, thereby holding great promise for revolutionizing future 
optical networks and quantum computing systems. Over the past decade, there has been constant 
progress in developing several different architectures for realizing programmable photonic circuits 
that allow for realizing arbitrary discrete unitary operations with light. Here, we systematically 
investigate a general family of photonic circuits for realizing arbitrary unitaries based on a simple 
architecture that interlaces a fixed intervening layer with programmable phase shifter layers. We 
introduce a criterion for the intervening operator that guarantees the universality of this architecture 
for representing arbitrary N × N unitary operators with N + 1 phase layers. We explore this criterion 
for different photonic components, including photonic waveguide lattices and meshes of directional 
couplers, which allows the identification of several families of photonic components that can serve 
as the intervening layers in the interlacing architecture. Our findings pave the way for efficiently 
designing and realizing novel families of programmable photonic integrated circuits for multipurpose 
analog information processing.

Keywords On-chip photonic unit, Unitary programmable unit, Random matrices, Waveguide arrays, 
Coupled mode theory, Interlaced architectures

Levering the unique properties of light to perform computations in novel ways is a subject with a long  history1,2. 
Although an all-optical processor for universal computing seems to be a far reach goal, photonics can provide 
exciting opportunities for unconventional computing building on analog logic and with novel information pro-
cessing configurations. What makes photonics an intriguing option for unconventional computing are exotic 
potentials such as the intrinsically high speed and low energy consumption, the capabilities for massive paral-
lelization, and long-range interactions. Nevertheless, a significant challenge in optical computing lies in the 
absence of appropriate computing paradigms, methods, and algorithms that harness the unique capabilities of 
this technology to develop efficient and application-specific photonic processors. In particular, matrix-by-vector 
multiplication is one of the most basic mathematical operations that lies at the core of various tasks ranging 
from optical convolution  schemes3,4 and matrix eigenvalue  solver5 to novel optical  memristors6,7 and optical 
artificial neural  networks8,9. In the past decade, with rapid technological progress, there has been a resurrection 
in efforts devoted to developing such programmable photonic integrated circuit that performs matrix-vector 
 multiplication10–12. The utility of such a device as an energy-efficient photonic accelerator in conjunction with 
electronic processors appears to be a distant possibility, considering the inherent difficulties associated with scal-
ing and precision. However, there is no doubt that an on-chip programmable photonic matrix-vector multiplier 
can create exciting opportunities in classical and quantum computing through various applications that range 
from quantum information and quantum transport  simulations13–15, to optical signal  processing16, neuromorphic 
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 computing17, and optical neural  networks3,18,19, as well as putting forward a platform for rapid prototyping of 
linear multiport photonic  devices20,21.

Indeed, the optical realization of arbitrary unitary operations has been known since the seminal paper of Reck 
et al.22, which originally concerned free space optics but successfully translated to photonic integrated circuits by 
 Miller23–25. This architecture builds on breaking down unitary matrices of any order into lower-dimension unitary 
matrices, which ensures the existence of an optical realization through two fundamental building blocks that are 
beam splitters (couplers) and phase shifters. Despite its generality, this method uses a pyramid-shaped array of 
Mach-Zehnder interferometers (MZI), which is impractical for larger implementations because the number of 
beam splitters grows quadratically with the number of ports. In turn, Clements et al.26 introduced an alternative 
and symmetric rectangular-shaped array, resulting in a device with half the total optical depth and, consequently, 
more loss-tolerant. Such a rectangular array has been proved robust enough to create photonic realizations of 
Haar-random  matrices27. Further unitary realizations related to other mesh geometries have been explored  in28,29, 
as well as topological photonic lattices with hexagonal-shaped arrays of  MZI30,31. In turn, free-space propagation 
setups have been devised based on plane-light  conversion32,33 and using diffractive surface  layers34.

While the latter devices originally consisted of bulky optical components, the principle has recently been 
applied to on-chip structures as well. Recent studies have explored the use of particular transfer matrices (hence-
forth called F) alternating with phase mask layers to obtain an arbitrary unitary  transformation10,12,35–37. Pastor 
et al.12 considers wave propagation in multimode slab waveguides to implement a Discrete Fourier transform 
(DFT) as their transformation F. They showed that an arbitrary transformation could be performed when 6N + 1 
phase layers and 6N DFT elements, where N is the number of ports. Tanomura et al.35 interleave the phase masks 
with multimode interference couplers connected with single-mode waveguides and use simulated annealing 
optimization to argue for well-approximated conversions when M ≈ N . Fully functional unitary four-, eight-, 
ten-, and twelve-port devices have been proposed and  manufactured38–41. Moreover, an alternative device using 
polarization and multiple wavelength degrees of freedom has been considered  in42. Markowitz and  Miri37 have 
explored similar structures and have found rigorous numerical evidence that interleaved phase arrays and discrete 
fractional Fourier transform (DFrFT) are indeed universal, whereas the use of Haar-random unitary matrices 
has been proved to lead to the desired  universality10. A further waveguide array with varying propagation 
constants with step-like profiles has been  reported43. The interlacing architecture appears to exhibit interesting 
auto-calibrating properties, which makes it resilient to fabrication  errors44. Furthermore, we recently have shown 
that the intervening structure can go beyond implementing unitaries to directly implementing arbitrary non-
unitary operations when the diagonal matrices are relaxed to leave the unitary circle in the complex  domain45. 
In this sense, by utilizing both amplitude and phase modulations, one can realize a fully programmable device 
for arbitrary matrix  operations45. This shows an important generalization of the previous results that show by 
itself an advantage of the interlacing architecture over the mesh geometries.

This manuscript discusses a broad class of universal on-chip photonic architectures based on a layered con-
figuration of phase mask layers as programmable units interlaced with a passive random matrix F. It is shown 
that the proposed interlaced architecture is far more flexible by showing that broad families of matrices F can 
serve as the fixed intervening operator. The phases are steered to reconstruct a unitary target matrix, provided 
that F has well-posed properties. Numerical evidence based on rigorous optimization algorithms reveals that 
universality is reached for dense matrices F, while a phase transition in the accuracy of reconstructed N × N 
targets occurs at M = N + 1 , with M the total number of phase mask layers. Tests using the discrete Fourier 
transform (DFT) and discrete fractional Fourier transform (DFrFT) confirm the latter claim, and Haar-random 
matrices also show outstanding convergence. To generalize the domain of the valid intervening operators, a 
density criterion is derived so that matrices F can be classified according to their elements to ensure universality. 
To demonstrate this result, photonic lattices with uniform, nonuniform, and disordered coupling coefficients 
are considered as photonic realizations for the matrix F, while using the proposed density criterion, it is shown 
that universality is reached for specific length intervals. Furthermore, we explore waveguide coupler meshes as 
an alternative intervening unit F and determine the minimum number of coupler layers required to guarantee 
the universality of the interlacing architecture.

Results
Architecture and mathematical foundation
Let us consider an arbitrary unitary matrix U ∈ U(N) , with U(N) the group of N × N unitary matrices. Our goal 
is to implement a proper factorization of U in terms of another unitary matrix F to be defined and a set {Pk}Mk=1

 
composed of phase matrices Pk = eiDk , with Dk = diag(φ

(k)
1 , . . . ,φ

(k)
N ) a diagonal matrix and φ(k)

n ∈ (0, 2π ] , 
where n ∈ {1 . . . ,N} and k ∈ {1, . . . ,M ∈ N} . The factorization proposed here is such that it intercalates F with 
a phase matrix Pk through the relation

which is resourceful as it allows for optical implementations. The phase matrices can be implemented through 
layers of phase shifters (active optical elements), and the matrix F (passive optical element) has to be selected 
so that arbitrary unitary target matrices Ut can be reconstructed with minimal error by adequately tuning the 
phase shifters φ(k)

n  . If the latter is achieved, it is said that the universality property has been met. An arbitrary 
matrix U ∈ U(N) requires N2 real parameters to be fully defined. Therefore, while performing the factoriza-
tion, it is vital to consider at least the same number of parameters. For the device proposed in (1), we have MN 
free parameters in total and expect that M ≥ N in order to achieve the desired universality. Although there are 
some cases where U has a particular symmetry that reduces the number of parameters, we aim for the general 

(1)U = FPMF . . . FP1F,
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case. The proposed architecture (1) and its optical implementation are sketched in Fig. 1. On the one hand, 
the mathematical structure of the passive unitary F (see top panels of Fig. 1) can be that of the discrete Fourier 
transform (DFT), discrete fractional Fourier  transform37, or simply a Haar-random matrix. On the other hand, 
the photonic implementation of F can be performed through different optical realizations involving a unitary 
wave evolution (see bottom panels of Fig. 1), such as waveguide  arrays45,46, meshes of directional  coupler26,28,29, 
and multimode interference (MMI)12,47. Particularly, MMI couplers have been shown to be suitable to represent 
the DFT  matrix12,48, whereas waveguide arrays lead to simple representations of the  DFrFT46.

Here, we focus on architectures based on the first two solutions, the numerical analysis and universality of 
which are discussed below. Layered architectures akin to Eq. (1) have been numerically validated in previous 
works using different optical arrays and MZI meshes, where different optimization algorithms such as gradient-
descent, stochastic gradient descent, simulated annealing, and basin-hopping have been implemented. See for 
 instance10,40,43,49. In order to demonstrate the universality of this device, we optimize the NM phases for a variety 
of randomly chosen target matrices Ut generated in accordance with the Haar  measure50. The objective function 
to be minimized, also called error norm, is defined by

Figure 1.  Universal architecture scheme. The proposed architecture involving alternating layers of random 
unitary matrices F and diagonal phase shifts layers (PL) {φ(p)

n } , with p = 1, . . . ,N + 1 . The upper insets depict 
the modulus and argument of the potential candidates for the unitary matrix F, which have been selected as the 
DFT, DFrFT, and a random unitary matrix. The lower insets illustrate potential photonic implementations to 
perform the unitary matrix F.
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where � · � stands for the Frobenius definition of the norm, Ut is the target matrix being tested, and U is the 
reconstructed matrix using the factorization (1). The Levenberg-Marquardt (LM)  algorithm51,52 is used to find 
the minimum of this function. For a given target Ut , the phases are randomly initialized between 0 and 2π . 
The optimization was performed in MATLAB. In Fig. 2a, the norm for 100 target unitary matrices is shown 
for various cases, fixing the default tolerance values to 10−10 . A phase transition occurs between the M = N 
and M = N + 1 layers, which is unsurprising given the system becomes over-determined by N parameters. 
These jumps are larger than reported by Tang et al.53 due to their usage of a probabilistic algorithm (Simulated 
Annealing) rather than a gradient-based one such as LMA. A downside of gradient-based approaches is they may 
require many runs with different starting conditions. We can decrease the overhead by using a stopping criteria 
for the norm along with a maximum iteration for each run of LMA. Using a maximum iteration of 50, we find 
that we rarely need more than 100 runs in the case N = 8 , M = 9 to achieve norms less than 10−10 (Fig. 2b). For 
systems with a lower number of ports N, the distribution skews towards lower values. To more confidently label 
choices of F which are not Haar-random generated as “bad” mixing layers, we set the maximum number of runs 
somewhat higher to 250 or 500 as found appropriate.

The density criterion and the Goldilocks principle
Our preliminary numerical results suggest that Haar random matrices F also possess the required properties to 
render a universal architecture from (1). Random matrices drawn from the Haar measure are typically dense 
matrices whose sparsity is low, suggesting that density might be a criterion to classify F matrices as good candi-
dates. To test this idea, it is thus desirable to find a proper measure to quantify the density for unitary matrices. 
Indeed, random matrix theory establishes robust criteria for studying random complex-valued matrices at the 
limit of large size N based on the singular value decomposition (SVD)54. On the one hand, in the current setup, 
we focus on unitary matrices of relatively small size, as the number of ports in our architecture is not necessar-
ily long enough to take into account the asymptotic analysis of random matrix theory. On the other hand, the 
singular value decomposition is not particularly helpful when dealing with unitary matrices, as for a complex-
valued matrix A, the SVD requires the computation of the spectral properties of AA† and A†A , which for unitary 
matrices is always equal to the identity matrix. For these reasons, the density criterion discussed below suits 
better for the interlaced architectures here constructed.

To better understand the importance of dense matrices in our universal architecture, let us further inspect 
the factorization in (1). By fixing F = diag(eiξ1 , . . . , eiξN ) as a diagonal unitary matrix, for ξj ∈ (0, 2π] for 
j = 1, . . . ,N  , it is straightforward to notice that (1) reduces to a diagonal unitary matrix as well, which is far 
from representing a universal device. That is, diagonal F matrices can only reconstruct diagonal unitary matri-
ces. This behavior extends to any of the N !2 different permutations allowed to the diagonal matrix F, as the 

(2)L = 1

N2
||U −Ut ||2

Figure 2.  Numerical universality test. (a) Architecture depiction (left column) and optimization objective 
function (right column) for 100 target matrices at various values of M and N. Black boxes denote any possible 
realization for the F matrix. (b) Multiple trials for N = 8 and M = 9 using 250 random F matrices were 
considered; 250 targets were used for each matrix F. Shown is the distribution of the number of LMA runs to 
achieve a norm lower than the stopping norm of 10−10 , with a maximum of 50 iterations per run. (c) Norm 
(log10 ) in terms of the number of iterations for the run with the best norm. Using 100 random matrices F, each 
with a single target matrix.
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factorized matrix U acquires the same structure as that of the permuted F matrix. Now, let us consider the set 
of unitary matrices {Vnj }kj=1 , where Vnj ∈ U(nj) and 

∑k
j=1 nj = N  , such that F = diag(Vn1 , . . . ,Vnk ) is an 

N-dimensional block-diagonal unitary matrix. This particular selection for F leads to a unitary operator with 
the same structure, lacking the required universality property. Although block-diagonal matrices F lose their 
structure when randomly rearranged, anti-diagonal block matrices will always result in either block-diagonal 
or anti-block-diagonal matrices, neither of which are universal.

Thus, we have identified a particular class of bad-performing interlacing matrices F, which are useful to trace 
a suitable Goldilocks region where the passive F matrices have the required density property. To this end, let 
us first remark that any N-dimensional unitary matrix can be written as V = (�v1, . . . , �vN ) , where �vj ∈ C

N are 
complex-valued column vectors that form an orthogonal set through the Euclidean inner product in CN , i.e., 
�vj1 · �vj2 ≡ �v†j1�vj2 = δj1,j2 . From the orthogonality condition, we can simply focus on the columns (or equivalently 
the rows) of V , whereas the normalization imposes a constraint on elements across the columns (rows). Since 
the elements of V are complex numbers, we alternative work with the matrix Ṽ  , composed of the modulus 
of the elements of V . Let us define vp;q as the q-th element of the p-th column vector �vp , with p, q = 1, . . . ,N , 
so that Ṽp;q = |vp;q| . From the unitarity of V , it follows that 

∑N
q=1 |vp;q|2 =

∑N
p=1 |vp;q|2 = 1 for all p, q, so 

that we can focus on the density of either the columns or rows of Ṽ  . Without loss of generality, we work with 
the columns. Since we are interested in how the elements are sparse across each column, we compute the cor-
responding variance

for each column p.
Following the normalization condition, it is straightforward to prove that the variance is a bounded quantity 

in the closed interval Sp =
[
0, N−1

N2

]
 , where the lower bound corresponds to the case where all the elements of 

�̃vp are equal, i.e., �̃up is maximally spread. The upper bound corresponds to the case where �̃vp is one of the canoni-
cal basis vectors, (0, . . . , 1, . . . , 0)T . Thus, a given column p of V is said to be denser if its corresponding variance 
Sp approaches (N − 1)/N2 . The more sparse the elements of the column p, the more Sp approaches 0. These are 
the key ideas we use henceforth to characterize density across the full matrix V . Let S = {Sp}Np=1 be the set of 
variances associated with each column of Ṽ  . We define the mean µ̃ and standard deviation σ̃ associated with 
the elements of S , so that the density of a given unitary matrix V can be characterized by defining the point

Since row permutation leaves Sp invariant and column permutation only permutes the index p, the quantities µ̃ 
and σ̃ , and consequently the point �R , are permutation invariant.

There are two note-worthy extremal cases, namely the maximally dense and the diagonal cases (sparsest cases) 
unitary matrices. In the former case, V is composed of column vectors so that the variances vanish, Sp = 0 , for 
all p = 0, . . . ,N . The DFT matrix of dimension N is such an example, leading to µ̃ = σ = 0 , which we consider 
as the ideal case. For the second case, the variances are maximal per each column, Sp = (N − 1)/N2 , for all 
p = 1, . . . ,N , and the statistical information of the matrix reduces to µ̃ = (N − 1)/N2 and σ̃ = 0 . We thus have 
two comparison points, from which we find the bounded interval Nµ̃ ∈ [0, (N − 1)/N] . Additional reference 
points can be traced out if we take the block-diagonal matrices F = diag(Vn1 , . . . ,Vnk ) , with Vnj ∈ U(nj) 
unitary and maximally dense (DFT) matrices of dimension nj for j = 1, . . . , k , 1 ≤ k ≤ N  , and 

∑k
j=1 nj = N , 

so that bad-performing matrices are generated (see discussion above). Particularly, let us consider the case 
k = 2 so that F = diag(Vn1 ,Vn2) , with n1 + n2 = N . One can assign the indexes n1 = ℓ and n2 = N − ℓ , with 
ℓ = 1, . . . , ⌊N/2⌋ nonequivalent ways to define the two block-diagonal matrices F that leads to the k2 reference 
points

Although further reference points exist for k ≥ 3 , those points are farther from the ideal (maximally dense) case 
�R0 ≡ �Rk=1 = (0, 0) than those marked with k = 2 , and are thus disregarded.

In this form, we can just focus on the area spanned by the points marked between k = 1 and k = 2 . Interest-
ingly, for k = 2 and ℓ = ⌊N/2⌋ , one obtains the reference points with smaller standard deviation, which are 
�Rk=2,ℓ= N

2
=

(
1
2
, 0
)
 and �Rk=2,ℓ= N−1

2
=

(
1
2
− 1

2N2 ,

√
N2−1

2N2

)
 for even and odd N, respectively. Note that in the limit 

N → ∞ , the mean converges to the non-vanishing value 1/2. In turn, the maximum standard deviation is 
determined by minimizing N σ̃ in terms of ℓ , from which one obtains the critical value ℓc = N

2
√
2
(
√
2− 1) and 

the maximum standard deviation N σ̃ |ℓc = 1/4 . That is, the standard deviation is bounded to the interval 
N σ̃ ∈ [0, 1/4] , where the upper bound is independent of N and is given by max

(
N σ̃ |⌊ℓc⌋,N σ̃ |⌈ℓc⌉

)
 . The latter 

allows us forming a polygon with vertices at �Rk=1 = (0, 0) and �Rk=2 , the area of which is non-null and finite even 
for N → ∞ (see Fig. 3). We focus on unitary matrices whose vector �R lies inside the latter polygon while 

Sp =
1

N
− µ2

p, µp =
∑N

q=1 |vp;q|
N

≥ 1

N
,

(3)�R := (Nµ̃,N σ̃ )).

�Rk=2 =
(
2ℓ(N − ℓ)

N2
,

√
ℓ(N − ℓ)(N − 2ℓ)

N2

)
, ℓ = 1, . . . , ⌊N

2
⌋.
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avoiding the vertices, as the latter are the well-known bad-performing cases (with the exception of �R0 ). We can 
go a step further and make a better prediction of unitary matrices by reducing the area of the polygon and impos-
ing a threshold to N σ̃ and N �µ . For the former, we already know that the standard deviation reaches its maximum 

Figure 3.  Density estimation and performance test. (a) Points �R associated with density criterion for the set of 
unitary matrices {eAj , eDj }50j=1 (left column) and {eBj , eCj }50j=1 (right column). The shaded blue area denotes the 
Goldilocks region where universality is expected for N = 6 . In turn, the blue heat maps denote the modulus 
of some particular choices of the unitary F = eiXj matrices, with X ∈ {A,B,C,D} . (b) Error norm (log10 ) L 
in (2) for each unitary matrix under consideration with fifty testing targets per matrix. (c) Mean and standard 
deviation Nµ̃ and N σ̃ , respectively, related to the density estimation for each unitary matrix in (a). The 
horizontal blue and red lines denote the universality threshold for Nµ̃ and N σ̃ , respectively.
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value at N σ̃ |k=2,ℓσ = 1/4 for all N. We thus implement the threshold at half of the maximum allowed standard 
deviation, i.e., N σ̃th = 1/8 . For even N, the reference points �Rk=2,ℓ≥ℓσ are above such a threshold for 
ℓσ = N

2
− ⌈N

4

√
2−

√
3⌉ . Likewise, we fix the threshold for the mean at Nµ̃th = Nµ̃|k=2,ℓ=ℓσ = 2ℓσ (N − ℓσ )/N

2

.
Therefore, the Goldilocks region is defined as the region spanned by the interception of the polygon spanned 

by the set of points {�R0} ∪ {�Rk=2}
⌊ N
2
⌋

ℓ=1 and the thresholds Nµ̃th and N σ̃th . This region is illustrated in Fig. 3a by 
the blue-shaded area. Any unitary matrix F whose associated vector �R lies inside the Goldilocks region is said 
to fulfill the Goldilocks principle; i.e., the components of F have the statistical properties to be deemed as dense 
enough to render a universal factorization in (1).

Random matrices and performance test
To test the performance of the Goldilocks principle, we generate sets of random 6× 6 unitary matrices (not neces-
sarily Haar random) and determine the corresponding �R in the plane (Nµ̃,N σ̃ ) . To ensure control over the testing 
matrices, we generate random matrices using the decomposition FX = eiX , with X† = X a Hermitian matrix 
in CN×N to be defined. Furthermore, we introduce the four non-symmetric matrices XA = ( �χ1;A, �0, �0, �0, �0, �0) , 
XB = ( �χ1;B, �χ2;B, �0, �0, �0, �0) , XC = ( �χ1;C , �χ2;c , �χ3;C , �0, �0, �0) , and D = ( �χ1;D , �χ2;D , �χ3,D , �χ4;D , �0, �0) , with �0 the col-
umn null-vector in CN . The column vectors �χj;℘ are composed of zeros in the first j inputs and random num-
bers elsewhere, with ℘ ∈ {A,B,C,D} . We thus consider the Hermitian construction as X = X℘ + X†

℘ , with 
℘ ∈ {A,B,C,D} . In this form, the number of random parameters increases in each case as additional non-null 
columns are included, rendering random unitary matrices defined by higher number of random parameters. In 
other words, the density of the random matrices is expected to be higher for D than A, B, C.

In this form, we establish a controlled benchmark for the Goldilocks principle and the subsequent universality 
of the matrix under consideration. Here, 50 target unitary matrices are considered for each testing unitary matrix 
FXj so that the relative error of the optimized targets from (1) and the corresponding vector �RXj can be analyzed 
for a broad number of cases. Particularly, Fig. 3a depicts the reference points �Rk (filled-circles) and the points 
�RXj associated with the sets of random unitary matrices FXj for X ∈ {A,B,C,D} and j ∈ {1, . . . , 50} . This allows 

determining which unitary matrices have points �Rxj lying inside the Goldilocks region. One may notice that, for 
the random unitary matrices FA , only the points A4 and A7 are expected to fulfill the Goldilocks principle. In turn, 
we expect more well-behaved matrices FD , with only D9 outside of the Goldilocks region. This is corroborated 
in Fig. 3b, where the optimization routine using the LMA has been implemented for each testing target matrix. 
Indeed, the error norm for the matrices A4 and A7 render values within the preestablished tolerance values, as 
predicted in Fig. 3a. On the other hand, the numerical optimization also reveals that A10 and D9 should be good 
candidates, whereas the density criterion has ruled them out. This is an example of false-negative outcomes. As 
seen from both Fig. 3b,c, this is usually the case for matrices F with �RF lying in the vicinity of the Goldilocks 
region. Due to the existence of false-negative results, we deem the density criterion as only a sufficient condition. 
Likewise, a similar analysis can be carried out for the testing matrices FBj and FCj . To complement the analysis, 
and to better visualize and assess the Goldilocks region, we put forward an alternative representation in Fig. 3c, 
where we depict both Nµ̃ and N σ̃ separately. Here, the Goldilocks principle is established if both quantities lie 
below their respective thresholds Nµ̃ and N σ̃ . In this form, it is no longer required to draw the universality 
region, and one can assess the Goldilocks principle in a simple plot.

As previously discussed, the the computational time required to optimize (1) and test the corresponding g 
universality for a given choice of F increases with the total number of ports N. In turn, the identification of the 
Goldilocks region and the associated vector �R for a specific matrix F enables a quick classification for preselecting 
the feasibility of the matrix. Furthermore, the Goldilocks region spanned in the �R-space is finite and non-null 
for N → ∞ , making it a suitable measure for architectures with an arbitrary number of ports.

Photonic platform and feasible realizations
So far, the universality of the proposed architecture has been numerically established using different choices of 
the intervening matrix F as the passive mixing layer possessing the required density criterion. In the following, 
we will discuss potential candidates for creating F matrices using photonic systems, with a specific emphasis 
on photonic lattices and meshes of directional couplers. Such systems can be readily implemented with silicon 
photonics. One can build such structures, e.g., using buried silicon waveguides at the telecommunication wave-
length of 1550nm. The waveguide system comprises a silicon (Si) core surrounded by a silica (SiO2) cladding 
and substrate with refractive indices nSi = 3.47 and nSiO2 = 1.47 , respectively. The core dimensions are 500nm in 
width and 220nm in height. Such a geometry renders the fundamental quasi-TE01 mode with an effective mode 
index of n(eff)

mode
= 2.4456 , which is the operational mode used for the unitary devices discussed in the following. 

This applies to passive F matrix solutions based on both waveguide arrays and directional coupler meshes. For 
the active layers, phase shifters based on thermo-optical effects can be considered. This might include solutions 
based on metal  heaters55,56, which are widely implemented by open-access foundries and occupy an approximate 
area of 370 µm× 30 µm . Alternatively, one can consider ultra-compact phase shifters based on phase-change 
materials (PCMs)7, achieving phase shifts of approximately π/11 radians per one-micron  length57. Although the 
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latter is not as broadly implemented as metal-heater solutions in foundries, it lights up the path for the future of 
dense programmable photonic chips.

Waveguide lattices
Waveguide arrays can be modeled with high precision using coupled-mode  theory58. The latter takes into account 
the coupling of evanescent waves from one waveguide interacting with its nearest neighbor while neglecting 
farther neighbors due to their weak coupling. In this form, the effective Hamiltonian describing an array of N 
waveguides is characterized by a tridiagonal and symmetric matrix Hamiltonian H of dimension N. The wave 
evolution through the lattice is ruled by the dynamical law i ddz �u(z) = H · �u(z) , where �u(z) ∈ C

N is the mode field 
amplitude at each waveguide at the propagation distance z. Since H  = H(z) , the wave evolution is determined 
through the unitary evolution operator F(z) = e−izH as �u(z) = F(z)�u(z = 0).

We can thus implement waveguide arrays in the universal architecture, provided they fulfill the desired 
universality. To this end, we can test the behavior of a given lattice evolution operator for specific lengths using 
the Goldilocks principle. Particularly, we consider the photonic Jx  lattice46, the homogeneous  lattice59, and the 
disordered homogeneous  lattice60 as the physical waveguide arrays under consideration described by the respec-
tive Hamiltonians H(Jx) , H(h) , and H(h,d) . The matrix elements of the latter are explicitly given by

with p, q ∈ {1, . . . ,N} . Here, κ(p) = κ0
2

√
(N − p)p stands for the coupling parameter between nearest waveguide 

neighbors in the Jx lattice, where κ0 is a design scaling factor, and �κp ∈ N(µ, σ) are random numbers taken 
from the normal distribution N(µ, σ) characterizing the disorder effects. The coupled waveguide implementation 
for each Hamiltonian is depicted in Fig. 4.

The corresponding unitary evolution operators are simply given by F(Jx)(z) = eizH
(Jx ) and F(h)(z) = eizH

(h) . 
Although both are functions of the lattice length z, the Jx lattice (Fig. 4a) has equidistant eigenvalues that lead 
to a periodic unitary evolution operator F(Jx)(z) in z, so that we can simply focus on the interval z ∈ [0, 2π) . 
We first estimate the lengths that induce universality in our architecture, which is depicted in Fig. 4b. In the 
latter, we mark the particular lengths z(m)

j  and z(M)
j  that denote the local minima and maxima of the standard 

deviation N σ̃ , the exact values of which have been determined numerically and presented in Table 1. In turn, 
the black-thick line in Fig. 4b denotes the lengths where both Nµ̃ and N σ̃ are below the universality threshold; 
i.e., the lengths where universality is expected. Without any prior performance test, one can see that the lengths 

(4)

H
(Jx)
p,q := κ(p)δp+1,q + κ(p− 1)δp−1,q,

H
(h)
p,q := κ0δp+1,q + κ0δp−1,q,

H
(h,d)
p,q := (κ0 +�κp)δp+1,q + (κ0 +�κp−1)δp−1,q,

Figure 4.  Photonic platform and lattice universality. Sketch for the waveguide array associated with the Jx 
lattice (a), homogeneous lattice (d), and homogenous lattice with disorder effects (e). Density criterion as a 
function of the lattice length ℓ for N = 10 considering the Jx (b), homogeneous (e), and disordered (h) lattices. 
The corresponding numerical performance test for N = 10 at the reference lengths ℓ(m)

j  and ℓ(M)
j  for the Jx (c), 

homogeneous (f), and disordered (i) lattices.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10950  | https://doi.org/10.1038/s41598-024-60700-8

www.nature.com/scientificreports/

z
(m)
1  , z(M)

1  , and z(M)
2  may fail in obtaining the desired universality. Recall that our estimation criterion is only a 

sufficient condition and may rule out positive cases. Nevertheless, all the other marked points can be considered 
candidates for the matrix F in our architecture, as no false positive cases will be included. This is indeed veri-
fied in the performance test portrayed in Fig. 4c, where, for each point, we have used fifty randomly generated 
unitary matrices as targets. The latter confirms our predictions, where the only bad-performing length is found 
at z(M)

1  , reinforcing the fact that only two positive cases were discarded, but no false positives were included. In 
this form, we can confidently conclude that a universal architecture can be built using Jx lattices with lengths as 
small as z = π/4 for N = 10.

We alternatively consider the homogeneous lattice, which contains waveguide arrays homogeneously dis-
tributed (Fig. 4d). The eigenvalues accordingly distributed as �(h)n = 2κ0 cos(

nπ
N+1

) , and no periodic behavior 
is expected. We thus focus on the interval ℓ ∈ [0, 4π ] for this particular lattice. The density criterion shown in 
Fig. 4e reveals that lattice lengths in the interval z/κ0 ∈ (2.4098, 5.9595) are suitable for our universal architecture. 
Particularly, note that the interval z/κ0 ∈ [ℓ(m)

4 , ℓ
(m)
6 ] contains lengths so that Nµ̃ and N σ̃ remain mostly constant 

with minor variations. Thus, the performance test in this interval is expected to perform well. In the Goldilocks 
region, there is a local minimum ℓ(m)

2  isolated and associated with a shorter lattice length. This reference point 
may be useful for reducing the size of the universal structure. Figure 4f displays the corresponding performance 
test, which supports our previous statements. As expected, the performance for lattices with length ℓ(m)

1  and 
ℓ
(M)
8  is particularly poor. However, the length ℓ(M)

1  has a generally good performance, with only two test targets 
displaying slightly higher errors than the other well-performing cases.

We additionally take into account the effects of disorder on the homogeneous lattice, which may be caused 
by impurities or imperfections during the manufacturing process, resulting in waveguides not being in their 
ideal positions or displaying deviations in their sizes (see Fig. 4g). The defects here considered are such that the 
nearest-neighbor interactions deviate from the ideal homogeneous lattice by a factor of twenty percent; i.e., the 
disorder couplings in (4) take values from the normal distribution as �κp ∈ N(µ = 0, σ = 0.2κ0) . Although 
the lattice structure is modified in the latter disorder, the estimation of density does not differ significantly from 
the ideal case, as shown in Fig. 4h–i.

Directional coupler mesh
Alternatively, the matrix F can be optically realized through proper mesh arrays of directional couplers. Particu-
larly, we consider a construction based on two-port passive elements, which act as a power divider (3-dB direc-
tional coupler) equivalent, up to a global phase, to the unitary matrix U(2) ∋ T0 = 1√

2
(σ0 − iσ1) , with σj the 

conventional Pauli matrices for j ∈ {1, 2, 3} and σ0 the 2× 2 identity matrix. The latter can be used as a building 
block to construct other U(2)  matrices61 as well as higher dimensional unitary matrices U(N) through appropriate 
Kronecker  products22. The silicon photonics platform discussed above allows the implementation of each 3-dB 
directional coupler through a coupling length and waveguide separation of 29.35 µ m and 630 nm, respectively. 
In this section, we consider the symmetric 10-port array portrayed in Fig. 5a, composed of power dividers T0 
interconnected through different layers L1 and L2 . Here, each layer is described by the U(10) matrices 
L1 = I5 ⊗T0 and L2 = I1 ⊕ (I4 ⊗T0)⊕ I1 , with ⊗ and ⊕ the Kronecker product and Kronecker sum (Such 
operations are also known as direct product and direct sum.), respectively, and In the n× n identity matrix. The 
p-layered unitary matrix describing the power divider array is thus given by

where we have truncated the maximum number of layers to ten.

(5)Fp = Lp̃ . . .L1L2L1︸ ︷︷ ︸
p-times

, p̃ =
{
1, p ∈ {1, 3, 5, 7, 9}
2, p ∈ {2, 4, 6, 8, 10} ,

Table 1.  Lattice lengths at the local minima ℓ(m)
j  and local maxima ℓ(M)

j  of the density criterion N σ̃ for the Jx 
and homogeneous lattice.

z Jx Homogeneous z Jx Homogeneous

ℓ
(m)
1

0.48781 1.1968 ℓ
(M)
1

0.6579 1.6099

ℓ
(m)
2

0.78735 1.9211 ℓ
(M)
2

0.9256 2.2285

ℓ
(m)
3

1.11393 2.8088 ℓ
(M)
3

1.2227 2.9441

ℓ
(m)
4

1.32647 3.3290 ℓ
(M)
4

1.4293 3.5156

ℓ
(m)
5

1.52812 4.1988 ℓ
(M)
5

π/2 4.3984

ℓ
(m)
6

5.1835 ℓ
(M)
6

4.8832

ℓ
(m)
7

5.6182 ℓ
(M)
7

5.4811

ℓ
(M)
8

6.1544
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It is not mandatory to truncate these layers, and the procedure can involve additional layers if needed. 
However, for practical physical implementations and to reduce the device footprint, we aim for devices with a 
minimal number of layers. To this end, we estimate the Goldilocks region in Fig. 5b as a function of the number 
of layers p, revealing that p = 7, 8, 10 , are indeed good candidates. This is further corroborated through the LMA 
optimization results shown in Fig. 5c, which indeed shows that p = 7, 8, 10 layers render a well-performing F 
layer. Notably, the latter also indicates that p = 6 is also a valid choice. The case p = 6 was originally deemed 
inadequate from the Goldilocks principle, but Fig. 5b shows that N σ̃ is in the vicinity of the threshold, which, 
as discussed above, usually renders false negative outcomes. Despite the latter, no false positives were detected 
during the analysis; that is, the Goldilocks principle did not show good-performing cases that contained high 
error norms L. This is strictly necessary to avoid faulty designs in the final architecture.

Conclusions
We have introduced the design for a lossless universal photonic architecture based on a layered scheme of 
interlaced active phase shifter layers and passive random matrices. Numerical results obtained from the LMA 
optimization revealed that generating Haar random matrices F leads, in a vast majority of cases, to the desired 
universal architecture. It is observed that well-behaved matrices F show a phase transition on the error norm L of 
the reconstructed target at M = N + 1 , with M the total number of phase shifter layers. In such a layer number, 
the error drops significantly to numerical noise values. While this is not proof that the factorization is exact, 
the error involved in the reconstruction process lies in the numerical error regime, and it is thus low enough to 
ensure that any unitary matrix is reconstructed with the desired accuracy.

Despite the accuracy of the LMA optimization, the computational time required for testing the universal-
ity of the random matrices F scales with the total number of ports, which becomes impractical for particularly 
large architectures. Numerical evidence shows that denser matrices perform better than sparse ones, usually 
involving relatively large errors. Therefore, a density criterion has been devised and introduced to classify the 
candidates for the matrix F used in the architecture. This criterion is built on preliminary knowledge of bad-
performing matrices, such as diagonal and block diagonal matrices, which are analytically known to fail but 
serve as reference points to look for good-performing matrices, such as the DFT case. In this form, instead of 
performing a long optimization routine on the candidate for F, we simply analyze the standard deviation of the 
modulus of its columns or rows, which provides information about its density. This allows defining a mapping 
�R : U(N) → R

2 , which renders a vector that estimates whether F is suitable for the architecture. We thus pos-
sess a tool to preselect matrices F beforehand, making the design process more practical than generating and 
testing several random matrices.

Our tests using randomly generated unitary matrices showed that matrices within the threshold marked by 
the density criterion led to the required universality. Thus, universality is not limited to a specific realization of 
F; as shown in the results, infinitely many unitary matrices can meet our requirements. This paves the way for 
more efficient construction and optimization of compact devices that are simultaneously resilient to random 
defects. Particularly, the photonic Jx lattice was found suitable for this task at lengths different than the previously 
reported critical value ℓ = π/237. This defines intervals in the lattice length for which the architecture is universal, 
leading to more flexibility in the manufacturing process so that one can allow for deviations in lattice length. 

Figure 5.  Geometric array for the passive matrix F using power dividers (3-dB directional coupler). (a) 
Power divider array composed of p layers as defined in (5). Light-shaded and dark-shaded layers denote 
L1 = I5 ⊗T0 and L2 = I1 ⊕ (I4 ⊗T0)⊕ I1 , respectively. Density criterion (b) and error norm (log10L ) (c) 
of the mesh architecture in (a) as a function of the number of layers p.
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This fact is further supported in the context of homogeneous lattices, which are also suitable for our architecture 
and robust against disorder effects due to waveguide impurities or mismatching sizes. The latter was tested by 
introducing deviations of up to 20% into the homogeneous lattice, from which the density estimation showed no 
significant difference in the universality performance for the lattice lengths considered. Further constructions 
for the F matrices are indeed allowed, and an alternative construction based on a layered array of power dividers 
was shown to be efficient for our purposes, the analysis of which allowed us to determine the optimal number 
of passive elements required for the architecture.

The universality of the interlaced architecture in (1) can be further assessed using the density criterion for 
optical implementations of the passive matrix F beyond the waveguide arrays and directional coupler mesh dis-
cussed in the manuscript, as long as F is described by a unitary matrix. For instance, the DFT can be implemented 
using MMI couplers using the self-image  property48. The MMI construction of the DFT has been used to develop 
an interlaced unitary akin to (1), but in such a construction, it was analytically proved that 6N + 1 phase layers 
are required using a DFT as the intervening  layer12. Our results in Fig. 2b provide numerical evidence that such 
a construction can be realized with only N + 1 phase layers with the prescribed accuracy. Furthermore, a micro-
wave implementation of the DFrFT has been theoretically and experimentally  validated62, offering an alternative 
approach for the interlaced architecture. The latter helps facilitate the design of the passive layer to reduce the 
overall architecture size, account for potential manufacturing errors, and diminish the device footprint. This is 
particularly handy when deploying more complex optical circuits.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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