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Temporal and fertilizer‑dependent 
dynamics of soil bacterial 
communities in buckwheat fields 
under long‑term management
Susumu Morigasaki 1,7, Motomu Matsui 2,7, Iwao Ohtsu 1,3, Yuki Doi 1,3, Yusuke Kawano 1,3, 
Ryosuke Nakai 4, Wataru Iwasaki 2,5, Hisayoshi Hayashi 1,6 & Naoki Takaya 1,3*

This study integrated bacterial community and soil chemicals to characterize the soil ecosystem in 
an open upland field managed by six controlled fertilizer programs using the minimum amount of 
pesticides. Amplicon sequencing the 16S rRNA gene revealed that inorganic nitrogen fertilizer and 
compost altered the diversity and structure of the soil bacterial community throughout buckwheat 
(Fagopyrum esculentum Moench ‘Hitachiakisoba’) cultivation. The bacterial community comprised 
three clusters that contained bacteria that are prevalent in soils fertilized with nitrogen (cluster 1, 
340 taxa), without nitrogen and compost (cluster 2, 234 taxa), and with compost‑fertilized (cluster 3, 
296 taxa). Cluster 2 contained more taxa in Actinobacteriota and less in Acidobacteriota, and cluster 3 
contained more taxa in Gemmatimonadota compared with the other clusters. The most frequent taxa 
in cluster 1 were within the Chloroflexi phylum. The bacterial community structure correlated with soil 
chemical properties including pH, total organic carbon,  SO4

2−, soluble  Ca2+. A co‑occurrence network 
of bacterial taxa and chemicals identified key bacterial groups comprising the center of a community 
network that determined topology and dynamics of the network. Temporal dynamics of the bacterial 
community structure indicated that Burkholderiales were associated with buckwheat ripening, 
indicating plant‑bacteria interaction in the ecosystem.

Biogeochemical activities of soil microbes decompose organic matter and contribute to carbon and nitrogen 
cycles in  ecosystems1,2, and in anthropogenically-established agricultural fields. Farmer-friendly inorganic 
fertilizers have been supplying missing nutrients and increased crop productivity at low cost without being 
labor-intensive for over a  century3. However, the intensive or long-term application of the inorganic fertilizers 
disturbs microbial communication in soil ecosystems, and adversely affects crop yield and  quality4,5. Although no 
technology is yet available to isolate and characterize all the soil microorganisms involved in these phenomena, 
analysis of bacterial communities based on sequencing 16S ribosomal RNA (rRNA) genes in soil ecosystems 
has identified numerous uncultivated  microbes6 and revealed a global diversity of soil microbial  communities7. 
Therefore, a better understanding the structure and function of the soil microbial community and its relation-
ships with crops and soil nutrients is required to develop sustainable agricultural practices.

Agricultural fields that have been systematically managed over the long term are stable ecosystems that 
can serve as models, because interactions among a vigorous microbial community, soils, and crops should be 
 reproducible8,9. The purpose of this study was to determine the temporal and fertilizer-dependent dynamics of 
soil bacterial communities in buckwheat fields under long-term management. In our target field, systematic 
management over three decades with minimum pesticides has resulted in stable crop production, indicating 
stable control of the bacterial community structure and soil properties. The open upland ecosystem is another 
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unique feature of the test field and a promising model that fills the gap between actual farmland and systematic 
bacterial community studies in laboratories and/or greenhouses. Therefore, analysis of these test fields should 
reveal the dynamics of soil microbial communities in upland agricultural fields that depend on fertilization 
protocols and crop growing periods.

This study investigated six test plots under different fertilization conditions in a test field during a single 
season of buckwheat (Fagopyrum esculentum) cultivation. Buckwheat is a popular crop from which edible seed 
flour is derived. We analyzed extensive datasets of bacterial community structures, soil chemical properties, 
and crop phenotypic traits indicative of changes caused by fertilizer programs and cultivation stages in a test 
field. Network analyses indicated that pH, total organic carbon (TOC) and  SO4

2− are core factors of the bacterial 
community structure. The network comprises a center and three groups, in which distinct bacteria maintain 
specific topologies and dynamics.

Results
Soil and crop data of six plots in fertilizer test field
We targeted a fertilizer test field that comprised one plot without fertilizer (plot 0), and one each fertilized with 
phosphate (P) and potassium (K; plot PK), nitrogen (N) and potassium (plot NK), nitrogen and phosphate 
(plot NP), three macronutrients (plot NPK), and compost (plot C) (Fig. 1a–c)10. Soils in the plots were col-
lected throughout buckwheat cultivation before (B) and after (A) fertilization, flowering (F), ripening (R), and 
post-harvest (H) (Fig. 1d). Supplementary Table S1 includes the data along with information about the applied 
fertilizers and cultivation stages. Weather parameters, such as temperature, rainfall, humidity, and solar radiation 
were monitored in real time (Supplementary Fig. S2).

The averaged coefficients of variation (CV) for chemical component and bacterial abundance were 0.26 and 
0.59, respectively (Supplementary Fig. S1). This reflected the homogeneity of the soil in each plot, stable soil 
properties during long-term agricultural management, and the reproducibility of the results. Chemical fertilizers 
increased crop growth estimated as stem height, plant biomass and seed yield (Fig. 1e). Poor plant growth in plot 
NK could be explained by the limited availability of phosphate for buckwheat in an andosol that adsorbs > 23 g 
phosphate/kg10. Compost had little effect on crop growth, suggesting its role as a soil conditioner rather than a 
fertilizer.

Cultivation and fertilization alter chemical components of soils
We systemically monitored the following chemical components of soils at the cultivation stages; total organic 
carbon (TOC),  NO3

−,  NH4
+,  Na+,  Cl−,  SO4

2−, soluble (s)  K+,  sCa2+, and  sMg2+ and exchangeable (e)  K+,  eCa2+, 
 eMg2+, and available (a)  PO4

3−, and pH (Fig. 2a and Supplementary Fig. S3). Concentrations of nitrate nitrogen 
 (NO3–N) in the NK, NP, and NPK plots were high (p < 0.003) in stage A soon after fertilization. These values 
decreased during stages F, R, and H accompanied by crop growth (p < 0.05). The concentrations of  NH4

+ were 
below the limits of detection (< 0.07 mg/kg dry soil, CV = 1.5) in soils from the six test plots (Fig. 2a and Supple-
mentary Figs. S1 and S3), indicating rapid nitrification and nutritionalization of the  NH4

+. The nitrogen fertilizer 
also supplied its counter anion  SO4

2− to the soils. However, the  SO4
2− level did not increase after fertilization 

(p > 0.12) but increased 1.5- to 1.9-fold (p < 0.05) at the flowering stage (24 days after fertilization). The pH was 
lower in soil from plots NK, NP, and NPK than in the other plots (5.4 ± 0.1 vs. 6.0 ± 0.1, p < 0.0001), which agrees 
with the fact that inorganic nitrogen fertilizers acidify many types of  soils11. Levels of  eK+ were higher in soils 
from plots PK, NK, NPK and C than plots 0 and NP (~ 35 vs. ~ 3 mg/kg dry soil, p < 0.05). Most soil samples 
contained < 10 mg/kg of  aPO4

3− dry soil (CV = 1.4) which was below the limits of quantitation (Supplementary 
Figs. S1 and S3). Adding phosphate did not affect the soil  aPO4

3− level much. More TOC was found in the NP and 
NPK plots and C soils than in the other plots (30 ± 1 vs. 23 ± 1 g/kg dry soil, p < 0.001). We compared soil chemi-
cal properties using principal component analysis (PCA) (Fig. 2b,c). Soils in the PC1‒PC3 scatter plot differed 
between before and after fertilization (Fig. 2c; B and A in blue area), compared with the flowering, ripening and 
after-harvest stages (Fig. 2c; F, R, and H in red area) (p = 0.001). These results suggested that crop growth altered 
soil chemical properties that manifested mostly as decreased levels of soluble  Na+,  sK+,  sCa2+,  sMg2+,  NO3

−, and 
 Cl− ions (Fig. 2a and Supplementary Fig. S3).

Fertilizer‑linked bacterial community structures throughout all crop cultivation stages
We sequenced 3,222,131 (26,851 ± 6974/sample) gene amplicons and Qiime 2 analysis identified 870 taxonomic 
units (taxa) that were grouped into 33 phyla, 86 classes, 150 orders, 207 families, and 274 genera (Fig. 3a–d). 
Actinobacteriota, Proteobacteria, Acidobacteriota, Bacteroidota, Chloroflexi, and Myxococcota were the most 
diverse phyla in the plots, accounting for 86% and 78% of the total number of sequenced amplicons (Fig. 3e 
top) and identified taxa (Fig. 3f), respectively. Nineteen genera were distributed in the six test plots at a high 
frequency (z-score > 1.96) and corresponded to 50% of the total number of sequenced amplicons (Fig. 3e bottom, 
Supplementary Table S2). These include 15 genera identified metagenome analyses and without physiological 
characterization, and four genera characterized as Afipia, Conexibacter, Sphingobium, and Gaiella. These genera 
occupied the test plots at different ratio (p < 0.05, Tukey–Kramer test), indicating that the fertilizer program 
differentiates taxa at genus level (Supplementary Table S2). The frequency of these genera did not significantly 
differ among the cultivation stages except for one uncultured genus of the phylum Proteobacteria, which dif-
fered between cultivation stages A and F (p < 0.05) (Supplementary Table S2). The numbers of taxa did not 
differ among the cultivation stages (Fig. 3c). The Shannon index (H′) was larger for the six test plots than the 
individual plots (5.05 vs. 4.54–4.96), implying different bacterial community structures among them (Table 1). 
The H′ was larger in soil from plots PK and C (4.88 ± 0.04 and 4.93 ± 0.02) than soils from plots 0, NK, and NPK 
(4.75 ± 0.06, 4.66 ± 0.07, and 4.77 ± 0.03; p < 0.002, Tukey–Kramer test). These results indicated a more diverse 
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Figure 1.  Fertilizer test field and experimental design. (a) Location of T-PIRC in Tsukuba, Japan. (b) Four-
year rotation cycle of crop cultivation managed since 1986. Buckwheat cultivation season is colored red. (c) 
Aerial view of fertilizer test field during buckwheat cultivation. Effects of fertilizers N, nitrogen; P, phosphate; 
K, potassium; and C, compost were assessed in plots 1–5 and 11. (d) Buckwheat cultivation and experiment 
schedule. Dashed line indicates interval between potato harvesting and buckwheat cultivation. Buckwheat seeds 
were sown on 8/20 in 2019. Soil was sampled before fertilization (B, 8/9), after fertilization (pre-sowing, A, 
8/20), flowering (F, 9/12), ripening (R, 10/11), and post-harvest (H, 11/1). Plant traits were measured on 9/12 
and 10/30. Faxai and Hagibis are typhoons that attacked the area. (e) Above-ground height of buckwheat on 
9/12 and 10/30 and yields of harvested stems, leaves, and seeds. *Values with same letters do not significantly 
differ (p ≥ 0.05, Tukey–Kramer test). DAS days after sowing, 0 DAS day of sowing, −11 DAS 11 days before 
sowing.
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bacterial community structure in plot C, which was supported by finding more taxa in soil from this plot than 
those supplemented with nitrogen fertilizer over the long term (Fig. 3d). The prevalence of bacteria in the phylum 
Gemmatimonadota was also higher in soil from plot C (n = 5; p < 1 ×  10–7, Tukey–Kramer test) (Fig. 3e; yellow), 
which also contained far more specific taxa (n = 101) than the other plots (Fig. 3f).

Similarity among the bacterial community structures in plot soils evaluated by PCA of bacterial abundance 
revealed a relationship between soil bacterial community structures and fertilizers (Fig. 4a‒c). The PC1-PC2 
scatter plot classified soils into groups with added compost, nitrogen fertilizer, or neither (p <  10–4 (PC1), p <  10–6 
(PC2), Tukey–Kramer test) (Fig. 4a). The third component (PC3) phosphate fertilization-dependently discrimi-
nated the plots (Fig. 4b). Soils containing abundant TOC (NP, NPK, and C) were segregated from the other 
soils in the PC2–PC3 scatter plot (Fig. 4c). The PC scores for the respective test plots at the various cultivation 
stages were similar. The fertilizer program established plot-specific bacterial community structures that were 
significantly conserved throughout the cultivation stages.

Bacterial community structures are associated with chemical components in soils
The PCA results of the 16S rRNA amplicons classified soils into 3 groups, and thus bacterial taxa were hierarchi-
cally clustered and sorted into three clusters (Fig. 4a,h and Supplementary Table S3). Cluster 1 comprised taxa 
that were prevalent in the NK, NP and NPK plots fertilized with nitrogen (Fig. 4h), whereas phylum diversity 
was similar between cluster 1 and the total profile (Fig. 3f). Bacteria in cluster 2 were prevalent in plots 0 and PK 
(Fig. 4h). The number of taxa belonging to the phylum Actinobacteriota accounted for 30% of cluster 2 compared 
with 18% and 19% of clusters 1 and 3 (Fig. 3f), and no taxa belonging to the phylum Chloroflexi were prevalent 
in cluster 2 (Supplementary Table S4). Cluster 3 comprised bacteria that were prevalent in plot C (Fig. 4h). The 
phylum Gemmatimonadota was more diverse in cluster 3 (10 taxa) than in clusters 1 and 2 with two and three 
taxa, respectively (Fig. 3f) and more frequent in plot C (Fig. 3e, top). The most frequent taxa in the phylum 
Gemmatimonadota belonged to cluster 3 (Supplementary Table S4). Cluster 3 did not contain a frequent taxon 
belonging to the phylum Actinobacteriota (Supplementary Table S4).

We investigated correlations between chemical components and bacterial community structures that have 
remained  debatable12. The profiles of pH,  SO4

2−, TOC and  sCa2+ in soils under fertilization management at the 
cultivation stages correlated with those of 175, 49, 42, and 37 taxa, respectively, with some overlap (|r|> 0.6) (Sup-
plementary Fig. S4 and Supplementary Table S3). Ordination analysis projected vectors on the PC1–PC2 scatter 
plot (Fig. 4a) to elucidate correlations between the chemical components and bacterial community structures. 
The coefficients of determination (r2) that reflect vector lengths for pH, TOC,  SO4

2−, and  sCa2+ were 0.94, 0.67, 
0.38, and 0.32, respectively (p < 0.01). The results indicated that pH, TOC,  SO4

2− and  sCa2+ correlate with, and 
are predictors of the bacterial community structure in soil.

Bacterial correlations with crop phenotypic traits
The correlation coefficients of seed weight among components of clusters 1, 2, and 3 were 0.25 (p = 1.30 ×  10–30), 
− 11 (p = 2.81 ×  10–6), and − 0.10 (p = 1.81 ×  10–4), respectively, indicating that cluster 1 weakly correlates, whereas 
clusters 2 and 3 do not correlate with seed weight. The PC3 score in the PCA of bacterial abundance were higher 

Figure 2.  Soil chemical components that correlated with cultivation and fertilization. (a) Heatmap of soil 
chemical components. Median values of chemical components obtained from four batches of soil samples per 
plot and cultivation stage were standardized to create Supplementary Dataset 2 online, and processed using 
heatmap.2 in R. Soil was sampled before (B) and after (A) fertilization, flowering (F), ripening (R) and harvest 
(H). (b,c) Scatter plots obtained by PCA of chemical components in Supplementary Dataset 2. Proportions of 
variance (%) of principle components are shown in parentheses on axis labels. Plot color codes: 0 (blue), PK 
(orange), NK (grey), NP (yellow), NPK (black), and C (green). Blue and red areas in panel C grouped soils 
sampled before (B and A) and after (F, R, and H) sowing, respectively (p = 0.001, PERMANOVA).
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for the phosphate-fertilized PK, NP, and NPK, than the other test plots (Fig. 4b). Considering that phosphate 
fertilization increased the buckwheat biomass (Fig. 1e), we compared PC3 scores and the buckwheat phenotypic 
traits. The results showed that they closely correlated (r = 0.84 ± 0.06, p = 2.2 ×  10–7) (Fig. 4d). The load quantity 
(LQ) for the PC3 score (LQ3) evaluated bacterial taxa that contributed to PC3 scores. Taxa that contributed the 
most to the PC3 score (|z-LQ3|> 2.33), accounting for 10% of the cumulative contribution score contained 17 
positive contributors among which were the four taxa, Rhodococcus and Gaiellales of the phylum Actinobacte-
riota, CCD24, and the Diplorickettsiaceae of the phylum Proteobacteria (Supplementary Table S5). The taxa also 
contained 10 negative contributors including the two taxa, mle1-27 and P2-11E of Myxococcota and Chloroflexi 
phyla, respectively. The frequencies of these six taxa correlated with buckwheat seed yields (|r|> 0.6) (Fig. 4e,f; 
filled symbols; Supplementary Table S5). The 27 taxa also correlated with biomass (height and weight) with a 
slightly weak correlation in the latter (Supplementary Fig. S5), while the extent of their correlation was appar-
ently higher than the remaining 843 taxa (p < 0.01 and p <  10–7 for positive and negative contributors, respectively 
(Fig. 4g). These results indicated that the 27 taxa, especially the six taxa that correlate with buckwheat traits 
(|r|> 0.6, bold in Supplementary Table S5), are associated with maintaining the ecosystem in phosphate-fertilized 
fields and increasing buckwheat biomass.

Pivotal components in network topology determined by co‑occurrence analysis
Co-occurrence among bacteria and chemical components in soils were visualized as network diagrams (Fig. 5). 
The three bacterial clusters (Fig. 4h) were also separated within the network (Fig. 5a). In addition to most chemi-
cal components at the network periphery, pH, TOC,  SO4

2−,  sCa2+, and  sMg2+ were located inside the network, 
indicating strong links with the bacterial community structure in soils from the six test plots. These findings 
agreed with the ordination results (Fig. 4a), and further indicated a correlation between  sMg2+ and the soil 
bacterial community structure.

The topological analysis identified two complete graphs that contained over 45 nodes (> 5% of total nodes) in 
the network. The larger of the two complete graphs show pH (red square) and 58 taxa in clusters 1 and 3 (Fig. 5a; 
solid circles). This group conceivably represents the center of the network, and thus is hereinafter referred to as 
group 0. Groups 1 and 3 were defined by eliminating the components of group 0 from clusters 1‒3, and group 
2 comprised components that perfectly overlapped cluster 2. Another complete graph comprised 56 taxa exclu-
sively in group 3 and were thus considered to comprise the center of group 3 (Fig. 5a; dashed circle). The nested 
network topology of group 3 was responsible for a unique community structure established by composting, 
which strongly affects soil bacteria.

Topological property parameters of the network were summarized (6 test plots in Supplementary Fig. S6). 
Betweenness centrality represents the degree to which a given node falls on the shortest paths toward other nodes. 
It is used to evaluate the potential for a node to control a network structure as  hubs13–15. This study focused on 
38 nodes with high betweenness centrality (z-scores > 2.24) to define network hubs (Supplementary Table S6). 
The network in Fig. 5b was recreated so that node size was proportional to the betweenness centrality values and 
color-coded by their involved groups. Furthermore, standardized within-group degrees and participation coef-
ficients (degrees of contribution to intergroup linkage) classified 25 nodes into intergroup and intragroup hubs 
(Fig. 5c and Supplementary Table S6)15,16. The results are shown as a model schema (Fig. 5d), indicating that five 
nodes in group 0 are intergroup hubs that link group 0 to groups 1 and 3. Groups 1 and 2 are linked to group 0 by 
10 (D, J, O, R, W, AA, AC, AD, AE and AF) and five (F, S, V, AG, and AH) intergroup hubs in the respective groups 
(Supplementary Table S6). The Nocardioides of Actinobacteriota (V) and the uncultured OLB14 of Chloroflexi 
(AE) had additional intergroup linkages between groups 2 and 1 and between groups 1 and 3, respectively. A 
few hub linkages and a few overall edges indicated a looser correlation between groups 2 and 3. The uncultured 
Desulfobacterota (AB) and the proteobacterial Kordiimonadales (I) resided in group 3 and were intragroup hubs. 
The Subgroup 25 of the Acidobacteriota (Q) was an intragroup hub of group 3 and also functioned an intergroup 
hub between groups 0 and 3. Hub Q residing in the center of group 3 played an important role in maintaining 
the structures of this group and the entire network through an intergroup connection. Kitasatospora_sp. of the 
phylum Actinobacteriota (L) and uncultured_Desulfuromonadale of the phylum RCP2-54 (Z) were also PC3-
contributors and belonged to group 2 (Supplementary Tables S6 and S7). The frequency of Sphingobium of the 
phylum Proteobacteria (AG) in group 2 increased at the flowering stage (Fig. 6d). In addition,  SO4

2− (M) was the 
sole hub of the soil chemical components and mediated linkages between groups 0 and 1, which concurs with 
its close relationship with the bacterial community structure (Fig. 4a). Sulfate is a key chemical component in 
the establishment of a bacterial community network.

Co-occurrences of taxa and chemicals in respective test plots and cultivation stages were shown in Supple-
mentary Fig. S6. Degree and closeness centralities were significantly different among test plots except for degree 
centrality between plots 0 and NP. Betweenness centrality of plots PK and C was higher than those of the other 
plots. Average path length of plot C was significantly higher than that of plot NK. None of the centralities and 
average path lengths differed among the cultivation stages except for degree centrality of stage B, closeness cen-
trality between stages A and F and stages F and R, and average path lengths between stages F and R and stages R 
and H. Differences in the topological parameters were larger among the plots than among the cultivation stages.

Soil bacteria associated with buckwheat growth
We investigated bacterial responses to crop cultivation by calculating differences in bacterial frequency between 
before and at defined cultivation stages (Δf) (Supplementary Fig. S7). The PCA scatter plots of Δf indicated 
similar temporal changes in soil profiles among the test plots except plot C, where the bacterial community 
structure obviously changed during cultivation stage transitions (Fig. 6a,b). These findings agreed with the 
notion that compost established a unique bacterial community structure (Fig. 4). The PC1–PC3 scatter plot 
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of Δf distinguished R (Fig. 6c) from other stages, indicating specific changes in the soil bacterial community 
structures as buckwheat seeds ripen (p < 0.002, PERMANOVA). The Δf values of nine taxa were positive at the 
ripening stage, Δf(R) in the six test plots, and this was probably associated with the transition from the F stage 
(Fig. 6d; “F < R”). Seven of the nine taxa belonged to the phyla Actinobacteriota, Bacteroidota, Myxococcota, and 
Proteobacteria, which dominated in the six test plots (Fig. 3f). The others were affiliated with the phylum Nitro-
spirota and the Candidatus phylum Ca. GAL15, which includes rarely cultivated bacterial lineages. Two of the 
proteobacteria belonged to the order Burkholderiales, which agreed with their enrichment in the  rhizosphere17. 
Three taxa were frequent at the flowering stage: the Candidatus class TK10 of the phylum Chloroflexi and two 
of the class Alphaproteobacteria (Fig. 6d; “A < F”). Many R- and F-associated bacteria were notably located close 
to the center of the ecosystem network (Supplementary Fig. S7), implying their importance in establishing the 
bacterial community network via plant-bacterium interaction. The mle1-27 of the phylum Myxococcota as a 
PC3-contributor and Sphingobium of the phylum Proteobacteria as a network hub were notable taxa.

Discussion
Accumulating evidence emphasizes the importance of microbiomes in controlling crop productivity that is a 
consequence of complex associations among microbiomes, plants, and abiotic factors. We investigated these 
associations in a unique upland fertilizer test field that has been stably managed for over 30 years. This allowed 
the generation of datasets of bacterial abundance and chemical components in soil. Soil properties clearly dif-
fered among the six test plots according to fertilizer protocols. Phosphate increased buckwheat growth (Fig. 1c,e), 
which confirmed previous results derived from the same field between 1992 and  199910. Bacterial communities 
that were altered by crop cultivation periods became apparent. These findings revealed bacterial communities 
that participate in upland soil fertility and crop nutrition.

Hierarchical clustering sorted soil bacteria into three clusters in the manner dependent on nitrogen fertilizer 
and compost (Fig. 4). Three groups determined by co-occurrence network analyses largely overlapped with the 
clusters (Fig. 5). Composting was associated with more diverse microbial taxa than other soils (Table 1, Fig. 3d) 
and included 101 taxa that were specific to test plot C (Fig. 3f). The frequency of the phylum Gemmatimonadota 
was high in plot C soil (Fig. 3e, top) and that of taxa identified in this phylum belonged to cluster 3 (Supplemen-
tary Table S4). The paucity of taxa in plots NK, NP, and NPK suggested that nitrogen fertilizer affects bacterial 
diversity (Fig. 3d,f). The bacterial community structure correlates with inorganic nitrogen and organic fertilizers 
in other  fields8,18. Taxa in the phylum Actinobacteriota were more diverse in cluster 2 than in the other clusters 
(Fig. 3f). Five of eight predominant taxa in cluster 2 belonged to Actinobacteriota (Supplementary Table S4), 
indicating that these bacteria dominated soil without either nitrogen fertilizer or compost. Taxa in the phylum 
Chloroflexi were more prevalent in cluster 1 (Fig. 3f and Supplementary Table S4), indicating that Chloroflexi 
dominated when soil was fertilized with nitrogen. Bacterial network hubs connecting the intra-and inter-groups 
were shared in all groups with Acidobacteriota and Proteobacteria, and specifically in groups 0, 1, and 2 with 
Actinobacteriota and Chloroflexi (Fig. 5d and Supplementary Table S6). These phyla were diverse and ubiquitous 
not only in soils from the test plots (Fig. 3f) but also in other types of  soils7. Consequently, nitrogen fertilizer and 
compost were major determinants of the bacterial community structure in soils from the six test plots.

This study revealed linkage between bacterial community structure and pH in PCA and co-occurrence 
networks. The significance of pH to the soil bacterial community structure in the test plot soils indicates that it 
is an important predictor of bacterial community  structure19,20. Our finding of lower soil pH in the nitrogen-
supplemented NK, NP, and NPK plots is consistent with that fact that nitrogen fertilizer decreases the pH of 
various types of  soils11. The results of the clustering analysis indicated that bacterial communities differed between 
soils fertilized with and without nitrogen fertilizer (Fig. 4h and Supplementary Table S3). This indicates that the 
link between pH and soil bacterial community structures is a consequence of nitrogen fertilization. Buckwheat 
tolerates acidic soils (pH 5.5‒6.0), in which plant biomass and seed yield  increase21,22. The increased plant bio-
mass might be linked to bacterial community structures in acidic soil. However, further investigation is required 
to identify specific bacteria that are associated with soil pH.

Topological analysis located group 0 at the center of the co-occurrence network (Fig. 5). The betweenness cen-
trality parameter identified 25 nodes as intergroup or intragroup hubs in the network. The sole hub of chemical 
components was  SO4

2− (Fig. 5c,d; “M”), which is a counter ion of the nitrogen fertilizer  (NH4)2SO4. This is con-
sistent with the indirect function of  SO4

2− as a consequence of nitrogen/sulfate fertilizers. Sulfates derived from 
inorganic nitrogen fertilizers might have lowered the soil pH in the test plots. By contrast,  SO4

2− can specifically 

Figure 3.  Bacterial community structures in test plots. (a–d) Box plots summarize 16S rRNA gene amplicon 
sequencing. Sequenced amplicons in Supplementary Table S1 were counted for each cultivation stage (a) and 
test plot (b). Taxa at species level in Supplementary Dataset 1 were counted for each cultivation stage (c) and 
test plot (d). Results were visualized using boxplot function in R. Thick line in box, median; top of box, third 
quartile (Q3); bottom of box, first quartile (Q1); upper whisker, maximum value (< Q3 + 1.5 × [Q3 − Q1]); 
lower whisker, minimum value (> Q1 − 1.5 × [Q3 − Q1]). Unfilled circles indicate outliers. Thin lines indicate 
significant differences (p-values determined by Tukey–Kramer test). (e) Bar plots show relative frequencies 
per phylum (top) or per genus (bottom) that were calculated using Supplementary Dataset 1. Genus names 
of 12 frequent genera were described with phylum names in parentheses. *Taxa with no description of genus. 
†Latescibacteraceae (Latescibacterota). (f) Bar plots show diversity of test plots and taxon clusters (see Fig. 4h). 
The numbers of taxa per phylum were counted using Supplementary Dataset 1. The total numbers of taxa in 
test plots are shown at bottom of bars with the numbers of plot-specific taxa in parentheses. Abbreviations of 
cultivation stages: before (B) and after (A) fertilization, flowering (F), ripening (R) and harvest (H).

▸
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maintain soil ecosystems through microbial activities that immobilize it to organic  matter23. Such immobiliza-
tion prevented an immediate increase in soil  SO4

2− levels after nitrogen application and this induced them to 
increase later at the F stage (Figs. 2a, 6d and Supplementary Fig. S3). This agrees with the findings that the NP 
and NPK plots supplemented with nitrogen accumulated high levels of TOCs and changed the  SO4

2− contents 
more dynamically.

The stage-dependent difference during cultivation revealed nine bacteria that were prevalent at the ripen-
ing stage (Fig. 6d). The frequencies of only three bacteria increased at the flowering stage, suggesting a unique 
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plant-bacteria interaction in soils where buckwheat ripens. Two bacteria associated with ripening belonged to 
the large Comamonadaceae and Burkholderiaceae families. The order Burkholderiales is a dominant component of 
many soil ecosystems and includes species that promote plant growth, are  endophytic24, and solubilize phosphate 
to a plant-available  form25. These mechanisms potentially explain the association between ripening buckwheat 
and bacteria. This notion has attracted much attention in terms of understanding soil ecosystems in the field, 
especially in test plots consisting of andisols with an extremely high capacity to adsorb phosphoric acid. Another 
ripening-associated bacterium belongs to the genus Nitrospira that includes nitrogen dissimilatory and nitrite-
oxidizing bacteria, as well as complete ammonia oxidizers (comammox)26, suggesting a relationship with plants 
via nitrogen dynamics in soil. The soils in the six test plots should be active in terms of nitrification because they 
accumulated little ammonium even on the second day of  (NH4)2SO4 application (Supplementary Fig. S3). These 
results suggested a correlation between nitrifying bacteria and ripening buckwheat. However, their direct role in 
ripening awaits further investigation because nitrification is the result of complex interactions among available 
ammonium, plant root exudates, soil properties, comammox, and  archaea2.

This study determined the impact of fertilizers on plant growth, soil bacterial community structure and 
chemical properties. Long-term fertilizer programs differentiated soil properties in the six test plots, gener-
ated bacteria that are key for a community structure, and promoted their temporal interactions with plants. A 
pioneer study in an open field system in Rothamsted, UK started in 1843 to investigate wheat production with 
rotations of potato, oats, beans, and other  crops9,27. Buckwheat, rye, sweet potato, ground nuts, wheat and potato 
are uniquely rotated in the test field assessed herein. Among these crops, we focused on buckwheat, of which 1.6 
million tons were produced globally during 2019 (FAOSTAT)28. Our findings will guide the development of future 
agricultural technology to control bacterial community structures and improve buckwheat productivity. We 
plan to investigate ecosystems in the test plots rotating the six crops. The data should reveal unique ecosystems 

Table 1.  Alpha-diversity of soil bacteria in test plots. Bacterial community data were rarefied in coverage-
based manner using rareslope, unlist, lapply and rrarefy functions in R. Shannon index (H′) was determined 
using the diversity function. aH′ was tested by Tukey–Kramer test using the TukeyHSD function (n = 5). 
bValues with the same letter are not significantly different (p > 0.05). cAlpha-diversity of 6 tested plots is shown 
as H′ for all rarefied bacterial community data.

Plot Stage H’ Mean SD TKa

0

B 4.77

4.75 0.06 a,  cb

A 4.72

F 4.66

R 4.83

H 4.75

PK

B 4.83

4.88 0.04 b

A 4.93

F 4.86

R 4.92

H 4.88

NK

B 4.71

4.66 0.07 a

A 4.68

F 4.54

R 4.73

H 4.65

NP

B 4.72

4.84 0.09 b, c

A 4.84

F 4.86

R 4.97

H 4.82

NPK

B 4.75

4.77 0.03 a, c

A 4.72

F 4.77

R 4.80

H 4.79

C

B 4.90

4.93 0.02 b

A 4.93

F 4.95

R 4.93

H 4.96

6 test  plotsc 5.05
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associated with stably managed crop rotations and facilitate the development of practical strategies to design 
and control bacterial community structures and plant cultivation.

Materials and methods
Fertilizer test field and soil sampling
The fertilizer test field is located at T-PIRC, University of Tsukuba, Japan (36° 07′ 07″ N, 140° 05′ 44″ E) (https:// 
farm.t- pirc. tsuku ba. ac. jp/ en/), where the climate is classified by Köppen–Geiger as temperate. The soil type is an 
 andosol29 derived from volcanic tephra and accumulated  humus29. The field is separated into 12 plots (10 × 4 m 
each) that have been managed under continuous fertilizer programs since 1986 (Fig. 1)10. Ground nut, fallow, 
potato, buckwheat, rye, sweet potato, wheat, buckwheat, and rye are rotated every four years (Fig. 1b). The six 
plots used in this study were fertilized one day before sowing without (plot 0), or with potassium chloride and 
calcium dihydrogen phosphate (KP), ammonium sulfate (N) and potassium chloride (NK), ammonium sulfate 
and calcium dihydrogen phosphate (NP), three macronutrients (NPK), and rice straw compost matured with 
water for ~ 2 years (C). The plots were treated with 1.5 g/m2 each of chemical fertilizers and compost. Buckwheat 
(Fagopyrum esculentum Moench ’Hitachiakisoba’) was cultivated with a ridge width of 30 cm at a sowing density 
of 5 g/m2. Buckwheat seeds were purchased from (Public Interest Incorporated Association) Ibaraki Prefectural 
Agriculture and Forestry Promotion Corporation (Mito, Japan). Soils in the plots were collected at the following 
stages throughout buckwheat cultivation: before fertilization (B, − 11 days after sowing; DAS), after fertilization 
(A, 0 DAS), flowering (F, 23 DAS), ripening (R, 52 DAS), and post-harvest (H, 72 DAS) (Fig. 1d). Stage B cor-
responds to the interval between potato harvesting and buckwheat cultivation. Soil at stage A soil was collected 
on the day before sowing (0 DAS). Four batches of soil were simultaneously sampled once at a depth of 2–15 cm 
for the tillage layer from each test plot (Supplementary Fig. S1).The samples were passed through a 2-mm mesh, 
dispensed into ~ 1 g portions, and stored at − 80 °C. Residual bulk soils were stored at 10 °C. We analyzed the 
chemical components and amplicon sequences of the four batches sampled from each plot at each cultivation 
stage (n = 4 per plot).

Measurement of soil chemical components
Soils (5 g) were dried at 120 °C for 15 min to determine the water content using an MOC63c moisture analyzer 
(Shimadzu Co., Kyoto, Japan) as described by the manufacturer. Plant materials and stones were removed, then 
soils (6 g wet weight) suspended in 30 mL of  H2O were reciprocally shaken at 160 rpm for 1 h at room tempera-
ture. The supernatant (15 mL) was obtained after solid matter settled for 1 h. The pH was measured in 5-mL por-
tions. Aliquots (4 mL) were filtered through a 0.45-µm porous membrane (Millex HP, Merck KGaA, Darmstadt, 
Germany). Thereafter,  Na+,  sK+,  NH4

+,  sCa2+,  sMg2+,  Cl−,  NO3
−, and  SO4

2− were compared with Multication and 
Multianion Standard Solutions III (Fujifilm Wako Pure Chemical Co., Osaka, Japan) using an HIC-20A Super 
ion chromatograph (Shimadzu Co.).

Soils (1.5 g) were suspended in 30 mL of Component Extracting Solution (pH 3.4) (EW-T201J, Air Water Inc., 
Osaka, Japan), vortex-mixed for 3 min, then reciprocally shaken for 20 min. After settling for 7 min, supernatants 
were passed through a GA-55, glass fiber filter (Toyo Roshi Kaisha, Ltd., Tokyo, Japan). Insoluble materials in the 
filtrate were removed by passage through a 0.45-µm porous membrane if necessary. Levels of  aPO4

3−,  eK+,  eCa2+, 
and  eMg2+ were colorimetrically determined using EW-THA1J and EW-T102J soil analyzers as described by 
the manufacturer (Air Water Inc.). Soil carbon contents were quantified using a TOC-L CPN analyzer equipped 
with an SSM-5000 solid sample module (Shimadzu Co.). Soil samples (0.3 g) were dispensed onto a sample 
boat (638-92099, Shimadzu Co.) and combusted at 900 °C. Total carbon (TC) was monitored to determine the 
amount of  CO2 produced. The amount of generated  CO2 was also quantified to determine inorganic carbon 
(IC) by heating 0.3 g of soils in phosphoric acid at 200 °C. The TOC was calculated by subtracting IC from TC.

Crop and meteorological data collection
Twenty individual plants were collected from each plot. Shoot height was measured on 23 and 71 DAS. Yields 
of stems, leaves, and seeds in two areas 3.6  m2 each (4 rows × 3 m) in each plot were measured. Seed weight 
(yield) and biomass of stems and leaves were measured after harvest. A HOBO U30-NRC weather station (Onset 
Computer Co., Bourne, MA, USA) was installed near the fertilizer test field and activated on 26th August 2019 
to measure air, ground temperatures at a depth of 15 cm, humidity, solar radiation, photosynthetically active 
radiation, rainfall, wind speed, and wind direction every 5 min. Graphs of these parameters were created using 
Excel for Microsoft 365 MSO v. 2112 (Microsoft Corp., Redmond, WA, USA).

Sequencing 16S rRNA gene amplicons
We extracted DNA from soil using DNeasy Power Soil Pro Kits (Qiagen Sciences Co., Hilden, Germany) as 
described by the manufacturer except for adding 40 mg/g soil of skim milk (Nakalai Tesque Inc., Kyoto, Japan) 
to the extraction buffer. An amplicon library of the V1–V2 region of the 16S rRNA gene was constructed using 
the (5′ → 3′) primer  set30: 16S_27Fmod: TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG AGR GTT TGA 
TYMTGG CTC AG

and 16S_338R: GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GTG CTG CCT CCC GTA GGAGT. 
Nucleotides were pair-end sequenced using the MiSeq system (Illumina Inc., San Diego, CA, USA). Raw sequenc-
ing reads were processed and low-quality reads were eliminated using Qiime2 v. 2020.11. Amplicon sequence 
variants (ASVs) were produced using  DADA231 and a naïve Bayesian  classifier32, then their taxonomies were 
assigned using SILVA v.138.133,34.

https://farm.t-pirc.tsukuba.ac.jp/en/
https://farm.t-pirc.tsukuba.ac.jp/en/


10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9896  | https://doi.org/10.1038/s41598-024-60655-w

www.nature.com/scientificreports/

Dataset construction
Supplementary Table S1 shows the original amounts of chemical components and bacterial ASVs in four soil 
batches per plot and cultivation stage. No data are available for soil sample 28 because the abundance of extracted 
DNA was insufficient to analyze sequences. Supplementary Dataset 1 lists the median values of each of the four 
batches shown in Supplementary Table S1, and eliminated 753 taxa missing at all cultivation stages in all test 
plots. Values for the relative frequency of the remaining 870 taxa and 14 chemical components were standardized 
using the scale function of R v. 3.6.235 to obtain Supplementary Dataset 2. Statistics were analyzed and graphs 
were prepared using both Supplementary Datasets.

Statistical analysis of soil chemicals
A heatmap of soil chemical components was prepared using Supplementary Dataset 2 and the heatmap.2 func-
tion in the gplots  package36 in R to visualize changes that depended on each plot and cultivation stage. Principal 
components were analyzed using the prcomp function in R and chemical component data in Supplementary 
Dataset 2. Significance was tested between two soil groups using permutational multivariate analysis of variance 
(PERMANOVA). Ratios of standard deviation to average (CV) (Supplementary Fig. S1) were calculated from 
the data in Supplementary Table S1. Soil chemical properties were visualized (Supplementary Fig. S3) using the 
boxplot function in R and data in Supplementary Table S1.

Bacterial community analysis
Box plots were created based on the numbers of 16S rRNA gene amplicon reads (Supplementary Table S1) and 
taxa in Supplementary Dataset 1 in R and visualized using the barplot function in R. Supplementary Dataset 
1 was used to determine the relative frequency of taxa that appeared in the soil samples. The numbers of taxa 
within each phylum were counted with reference to Supplementary Dataset 1. We determined the Shannon 
 index37 of soil bacterial communities in each test plot per cultivation stage using rarefied data from Supplemen-
tary Dataset 1.

Analysis of correlations between bacterial communities and chemical components
Principle components were analyzed using the prcomp function in R and bacterial community data in Supple-
mentary Dataset 2. Ordination vectors of the chemical components determined using envfit function in the vegan 
 package38 and the chemical component information in Supplementary Dataset 2 that correlated with variations 
of bacterial community (p < 0.01) were projected onto the PC1–PC2 scatter plot. Correlations between bacterial 
taxa and PC3 scores were evaluated as load quantity (LQ3) defined as:

where i is taxon, l3 is variation (eigenvalue) of third principle component, h3i is the third component of eigen-
vector of taxon i. Load quantity 3 was obtained using the sweep function, and standardized using the scale 
function in R (z-LQ3). Heatmaps and dendrograms of bacterial community (Fig. 4h) were created by complete 
linkage using Supplementary Dataset 2 and the heatmap.2 function in the gplots package and the dist and hclust 
functions in R. Taxa were sorted into three clusters using the cutree function (k = 3) in R. A Venn diagram was 
created using a list of taxa correlating with chemical components (absolute value of r was higher than 0.6) and 
the venn function.

LQ3i =
√

l3 × h3i ,

Figure 4.  Bacterial community structures associated with soil chemical properties and crop traits. (a‒c) Scatter 
plots show PCA of soil bacterial community. Bacterial community data in Supplementary Dataset 2 were 
analyzed using prcomp in R. Plots 0 (blue), PK (orange), NK (grey), NP (yellow), NPK (black), and C (green). 
Five dots in each plot correspond to five cultivation stages. Parentheses on axis labels show proportions of 
variances. Significance in PC1 and PC2 scores among the three groups was analyzed using Tukey–Kramer test 
(p <  10–4 and p <  10–6, respectively). (a) PC1-PC2. Ordination vectors of pH, TOC,  sCa2+, and  SO4

2− (blue arrows, 
p < 0.01) projected using envfit and standardized chemical component data in Supplementary Dataset 2. (b) 
PC1–PC3. (c) PC2–PC3. (d) Correlations between PC3 scores and agronomically important buckwheat traits, 
namely height at 23 (unfilled squares) and 71 (filled squares) DAS, yield of stems and leaves (unfilled circles), 
and seed yield (filled triangles). (e,f) Correlations between bacterial taxa and seed weight. Taxa that positively 
contributed to PC3 scores were evaluated according to load quantity scores (z-LQ3) and their correlations with 
seed weight were analyzed. Test plots with same letters do not significantly differ (p ≥ 0.05, Tukey–Kramer test). 
(e) Taxa with positive contributions to PC3 scores (z-LQ3 > 2.33) and seed weight. Filled symbols, taxa with 
high r values; squares, Rhodococcus of Actinobacteriota; circles, CCD24 of Proteobacteria; triangles, Gaiellales 
of Actinobacteriota; diamonds, Diplorickettsiaceae of Proteobacteria. Unfilled circles indicate 13 other taxa. (f) 
Taxa that negatively contributed to PC3 scores (z-LQ3 <  − 2.33) and seed weights. Filled symbols, taxa with 
lowest r values; Squares, mle1-27 of Myxococcota; circles, P2-11E of Chloroflexi. Unfilled circles indicate other 
eight taxa. (g) Correlations between bacterial taxa and buckwheat traits. Taxa were grouped according to z-LQ3 
(2.33 cutoff) and correlations with buckwheat traits were statistically analyzed using *t-test (“Materials and 
methods”). (h) Heatmap of taxon frequency and hierarchical clustering generated from Supplementary Dataset 
2 using heatmap.2 and hclust functions in R that identified clusters 1, 2 and 3. Abbreviations of stages: before (B) 
and after (A) fertilization, flowering (F), ripening (R) and harvest (H).

▸
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Co‑occurrence network analysis
Correlation coefficients (r) among data in Supplementary Dataset 2 were determined using the cor function in 
R. A data frame for co-occurrence network analysis was created using the  reshape239 and  igraph40 packages in 
R. Briefly, the r matrix table was converted to a one-by-one list and paired with r categorized to the redundant 
half (upper right). Coefficients that correlated with themselves (on the diagonal) were discarded, then pairs with 
absolute r values of > 0.6 were extracted. The resulting list was formatted using the graph.data.frame function. 
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Co-occurrence networks were visualized based on the Kamada–Kawai  algorithm41 using the plot function in 
the igraph package.

The largest complete graph in the co-occurrence network was uncovered using the cor, melt, graph.data.
frame functions and the igraph package in R, Excel, and Supplementary Dataset 2. The n nodes with the most 
edges were extracted from nodes of the bacteria and the chemical components arranged in descending order 
of the number of edges, and when the nth node had n − 1 or more edges. This operation was repeated until all 
extracted nodes had n − 1 edges and to uncover the center of the groups.

The numbers of edges (degree centrality) and betweenness  centrality13 of individual nodes were respectively 
determined using the degree and betweenness functions in R. Within-group degrees (numbers of edges that 
linked nodes in the same group) and participation coefficients were calculated to characterize nodes as hubs 

Figure 5.  Pivotal components in network topology determined by co-occurrence analysis. (a) Co-occurrence 
network of bacterial community and chemical components using Supplementary Dataset 2 and the cor 
functions in R. Nodes are color-coded by bacterial clusters 1 (ocher), 2 (blue), and 3 (green). Square nodes 
indicate chemical components. White filled circles surround centers in network (solid line) and cluster 3 
(dashed circle) (Materials and Methods). (b) Betweenness centrality in network. Node size is proportional to 
betweenness centrality determined using degree and betweenness functions in R. Node groups 0, 1, 2 and 3 are 
colored white, ocher, blue, and green, respectively. Chemical components are colored as shown in panel A. (c) 
Participation coefficient and within-group degrees of nodes identified 25 intergroup and intragroup hubs as 
described in Guimerà et al.14. Node group and chemical components are colored as described in panel (b). (d) 
Schema of network with classified hubs. Edges connect nodes with close correlations (|r|> 0.6). Right, annotated 
hubs (Supplementary Table S6 shows all annotations), Dashed circle, center of group 3.
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Figure 6.  Soil bacteria associated with buckwheat cultivation. (a‒c) PC1–PC2 and PC1–PC3 scatter plots of 
difference in frequency before and at each cultivation stage (Δf). A, Δf(A) = f(A) − f(B); F, Δf(F) = f(F) − f(A); 
R, Δf(R) = f(R) − f(F); H, Δf(H) = f(H) − f(R). Principle components were analyzed and taxon frequency 
was calculated using Supplementary Dataset 1 and prcomp in R. Proportions of variance (%) are shown in 
parentheses. Plot color codes: 0 (blue), PK (orange), NK (grey), NP (yellow), NPK (black), and C (green). 
Panel (c) is magnification of red rectangle in panel (b). Significance between stage R and other stages tested by 
PERMANOVA (p < 0.002). (d) Heatmap of bacterial taxa and chemical components prepared using heatmap.2 
and hclust functions in R and Supplementary Dataset 2 after standardization. Colored bars on left indicate test 
plots as described in panels (a–c). *Abbreviations of stages: before (B) and after (A) fertilization, flowering (F), 
ripening (R) and harvest (H). †p < 0.05 (n = 24, t-test). ‡Above-ground height of buckwheat (p < 0.05, F vs. H; 
t-test). §Taxon mle1-27 of Myxococcota phylum contributed to PC3 (Supplementary Table S5). ǁSphingobium of 
Proteobacteria phylum is a hub in co-occurrence network (AG in Fig. 5d and Supplementary Table S6).
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in the network using  Excel14–16. Participation coefficients of the nodes were defined as  described14. Taxa with 
standardized within-group degrees of > 1.96 were defined as the intragroup hub. Taxa with a participation coeffi-
cient > 0.5 were defined as the intergroup hub. These hubs were extracted from Supplementary Dataset 2 and their 
linkages were visualized using the plot function as described above before being arranged to a schematic graph.

Temporal changes in bacterial communities
Differences in the relative frequency of taxa between a cultivation stage and its preceding cultivation stage (Δf) 
is defined as:

where f, x, p, n are relative frequency, taxon, test plot, and cultivation stage, respectively. The Δf values in each test 
plot and cultivation stage were plotted using the beeswarm function, the principal components were analyzed 
using the prcomp function in R. Taxa with a positive Δf in all plots at any cultivation stage (p < 0.05, t-test) were 
selected. The relative frequency of resultant taxa was visualized in a heatmap together with fluctuating chemi-
cal components  (SO4

2−,  NO3
−,  sCa2+,  sMg2+) and the height of buckwheat was determined using the heatmap.2 

function in R.

Statistical tests
All data were statistically analyzed using R. Homoscedasticity between groups was assessed by F-test using the 
var.test function in R. Paired and three or more groups were compared using Student t-test (t.test function) and 
Tukey–Kramer (aov and TukeyHSD functions) test, respectively. The significance of the PCA findings was tested 
by the Euclidean method using adonis2 (PERMANOVA). The significance of correlations was tested using the 
cor.test function.

Ethics statement
Experimental research and field studies on buckwheat, including the collection of buckwheat comply with rel-
evant institutional, national, and international guidelines and legislation.

Data availability
All data supporting the conclusions of this research are provided in this article and in supplemental files. The data 
of the 16S rRNA gene sequencing have been deposited with links to BioProject accession number PRJDB15840 
in the DDBJ BioProject database. This paper does not report original code.
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