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Heart rate variability helps classify 
phenotype in systemic sclerosis
Stéphane Delliaux 1,2,3,4*, Abdou Khadir Sow 2,5, Anass Echcherki 4, Audrey Benyamine 1,6, 
Quentin Gomes de Pinho 1,6, Fabienne Brégeon 2,7 & Brigitte Granel 1,6

We aimed to develop a systemic sclerosis (SSc) subtypes classifier tool to be used at the patient’s 
bedside. We compared the heart rate variability (HRV) at rest (5-min) and in response to orthostatism 
(5-min) of patients (n = 58) having diffuse (n = 16, dcSSc) and limited (n = 38, lcSSc) cutaneous forms. 
The HRV was evaluated from the beat-to-beat RR intervals in time-, frequency-, and nonlinear-
domains. The dcSSc group differed from the lcSSc group mainly by a higher heart rate (HR) and a 
lower HRV, in decubitus and orthostatism conditions. Stand-up maneuver lowered HR standard 
deviation (sd_HR), the major axis length of the fitted ellipse of Poincaré plot of RR intervals (SD2), 
and the correlation dimension (CorDim) in the dcSSc group while increased these HRV indexes in the 
lcSSc group (p = 0.004, p = 0.002, and p = 0.004, respectively). We identified the 5 most informative 
and discriminant HRV variables. We then compared 341 classifying models (1 to 5 variables 
combinations × 11 classifier algorithms) according to mean squared error, logloss, sensitivity, 
specificity, precision, accuracy, area under curve of the ROC-curves and F1-score. F1-score ranged 
from 0.823 for the best 1-variable model to a maximum of 0.947 for the 4-variables best model. 
Most specific and precise models included sd_HR, SD2, and CorDim. In conclusion, we provided high 
performance classifying models able to distinguish diffuse from limited cutaneous SSc subtypes easy 
to perform at the bedside from ECG recording. Models were based on 1 to 5 HRV indexes used as 
nonlinear markers of autonomic integrated influences on cardiac activity.

Keywords Systemic sclerosis, Heart rate variability, Nonlinear dynamics, Cardiovascular function, Machine 
learning

Systemic sclerosis (SSc) is a rare autoimmune disease combining vascular abnormalities with skin and deep 
organs fibrotic damaging that leads to the highest mortality among rheumatic diseases.

SSc is a heterogeneous disease and many efforts have been made for helping physicians to determinate 
patients’ prognosis. Since 1988, a sub-classification based on sclerosis skin extension assessed by palpation of 
17 areas allows the diagnosis of the diffuse cutaneous SSc (dcSSc) and limited cutaneous SSc (lcSSc). Natural 
history, rate of progression, severity of organ damage and dysfunction, and mortality rate of disease depend in 
part on these 2 SSc subtypes. The dcSSc having the worst prognosis, identifying as soon as possible and with a 
robust manner SSc subtype remains critical for risk stratification and SSc patients care  strategy1.

Clinical and biological evaluation has largely driven SSc risk stratification over the past decades, however, 
integration of new markers might improve disease phenotyping. As asymptomatic but also severe cardiac abnor-
malities, including myocarditis, congestive heart failure, arrhythmia, focal fibrosis, and impaired ventricular 
relaxation, are associated with systemic sclerosis and play a significant role in a considerable proportion of related 
 fatalities1, markers of cardiac activity have been studied. Heart rate variability (HRV), that is often considered 
to reflect the autonomic nervous system (ANS) modulation of the sinus node rhythmic activity, has been pro-
posed to assess cardiovascular function impairment in SSc since  19942. Several studies have reported a lower 
spontaneous HRV in SSc patients compared to healthy controls in supine resting  conditions3,4. The HRV index 
that is low-frequency spectral power has been associated with an enhanced resting sympathetic  hyperactivity5. 
Additionally, SSc patients experienced first, a reduced heart rate (HR) response to tilt test highlighting impaired 
baroreflex modulation of the cardiovascular autonomic control and second a correlated high-frequency spectral 
power—lung function suggesting a respiratory sinus arrhythmia-supported  HRV5,6. But HRV is also and more 

OPEN

1INSERM, INRAE, C2VN, Aix Marseille Univ, Marseille, France. 2Explorations Fonctionnelles Respiratoires, 
AP-HM, Hôpital Nord, Marseille, France. 3CNRS, CPT, Aix Marseille Univ, Marseille, France. 4Laënnec Institute – 
Digital Sciences for Health, Aix Marseille Univ, Marseille, France. 5Laboratoire de Physiologie, Cheikh Anta Diop 
University, Dakar, Senegal. 6Service de Médecine Interne, AP-HM, Hôpital Nord, Marseille, France. 7AP-HM, 
Microbes Evolution Phylogeny and Infections (MEPHI), IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, 
France. *email: stephane.delliaux@univ-amu.fr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-60553-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11151  | https://doi.org/10.1038/s41598-024-60553-1

www.nature.com/scientificreports/

newly considered as the result of converging common and interacting sinus activity drivers that are largely 
 interactive7. These drivers include, but non-exclusively, sympathetic and parasympathetic spontaneous and 
reflexively-driven tones, respiration pattern through frequency and volume activating pulmonary stretch reflex, 
non-vagal intrathoracic mechanical effects, hypercapnia, vagal-mediated arterial baroreflex effects, and local 
cardiac nodal (peptides) influences. Besides, SSc is known to potentially accumulate disturbances of several of 
these sinus node activity determinants such as autonomic nervous system, baroreflex function, lung function, 
and thoracic mechanics impairments. It seems therefore highly challenging to address the complexity of the issue 
in SSc patients through the only time- and frequency- domains.

Indeed, HRV has also been used to characterize cardiovascular function in children with systemic and local-
ized scleroderma and no difference has been  shown8. In adults of different SSc subsets, a recent study failed 
to prove the interest of some HRV indexes, particularly from spectral analysis, to distinguish dcSSc and lcSSc 
 subtypes9. Nevertheless, HRV metrics and more specifically nonlinear ones as symbolic dynamics and conditional 
entropy confirmed their ability to detect a predominant sympathetic modulation of sinus node rhythmic activity 
at rest and a blunted response to orthostatism stress especially at the SSc early  stage9.

All these exploratory works highlight the interest of HRV analysis, particularly through nonlinear metrics, to 
study SSc impact on cardiovascular function. To date, none provide discriminant HRV markers to distinguish 
the different SSc subtypes. A bioinformatic marker for SSc subtypes classification is still lacking. The aim of this 
research was to propose a classifying tool including HRV indexes only, easy to compute, and to be used at the 
patient’s bedside. To do so, we tested the hypothesis that a combination of few variables describing sinus node 
rhythmic activity and particularly describing the nonlinear properties of its dynamics as correlation dimension 
(CorDim), could allow to distinguish dcSSc from lcSSc. In accordance with our knowledge and experience 
previously  acquired10 and because CorDim is typically used as an index of the overall complexity of the system 
dynamics estimated from a time series, CorDim should be specifically efficient in multiple physiological func-
tions interactions situations such as that observed in SSc patients performing a stand-up test.

To meet this challenge, we compared in dcSSc and lcSSc patients HRV at rest and in response to orthostatism. 
We computed several linear and nonlinear HRV metrics from time-, frequency-, and nonlinear- domains as a 
step of a data engineering process. Several classifying models (metrics combinations) and classifying methods 
(classifier algorithms) have been compared to help the practitioner to choose the best classifying model accord-
ing to the clinical needs.

Methods
Study design and participants
We did a retrospective observational study of 58 consecutive patients aged 18–74 years and suffering from SSc. 
Patients were identified from the consulting population of the internal medicine department of north hospital, 
Marseille, France, from 2018 to 2021. Power analysis was performed to determine sample size. To achieve a 
power of 80% (type II error) and a level of significance of 5% (two-sided type I error) for detecting a 50% group 
difference (i.e. > 2 vs. < 1 degrees of freedom in the RRI generating dynamical system) in expected mean value 
(2.2 ± 0.8, based on previous  study10 and preliminary data) of the correlation dimension (CorDim), 16 patients 
(8 per group) were necessary. To ensure high models performances we included more than necessary subjects. 
Moreover, a posteriori calculation of Cohen’s d metrics (equal to 1.16761) as well as Hedges’ g metrics (equal to 
1.455829) that is usually used for unbalanced groups showed that size effect was very strong in our study and 
that sample size = 76 (16/60) was sufficient.

Inclusion criteria were 18–80 years of age, diagnosis of SSc confirmed by an internist medical doctor accord-
ing to the 2013 classification criteria for  SSc11. No specific criteria on the presence or absence of dysautonomia 
was checked at this step. Exclusion criteria were known heart disease, beta-blockers medications, and diabetes 
mellitus. Neither heart disease nor diabetes has been detected. 3 patients were identified as being treated by 
beta-blockers for systemic hypertension and were therefore not included. We included 60 patients and 2 were 
not analyzed because of incomplete data collection.

Informed consent was obtained from all subjects by the institution concerning care data exploitation for 
research purposes. The protocol of data exploitation was developed in accordance with the declaration of Helsinki 
and health data analysis approval has been provided on January 2020 by the Assistance Publique–Hôpitaux de 
Marseille Data Protection Officer and local ethics committee under the references PADS19-352 and WZTVF7.

Procedures: clinical and paraclinical features
New or already known patients referred for SSc to the internal medicine department from 2018 to 2021 were 
retrospectively screened. All patients included in our study fulfilled the 2013 American college of Rheumatology/
European league against rheumatism classification criteria for  SSc11. According to the internist medical doctor 
specifications, patients had been explored through paraclinical biological, imaging, and functional tests including 
when necessary: autoantibodies tests, chest CT scan, echocardiography, right heart catheterism, lung functional 
tests, esophageal manometry, and cardiovascular dysautonomia checking through spectral heart rate variability 
assessment. The heart rate variability recordings were made prospectively on medical justifications for routine 
care while data were retrospectively re-analyzed with complementary technics for our research purposes. SSc 
patients were classified into dcSSc or lcSSc subtypes by the internist medical doctor expertise according to the 
1988 LeRoy et al.  classification12. Accordingly, to the extent of skin sclerosis, two groups were considered, dcSSc 
and lcSSc groups.
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Heart rate variability study
The subjects were instructed to refrain from exercising, drinking alcohol, coffee or tea, and sleep deprivation 
for at least 24 h before their participation. The day of the HRV study, room experiment was quiet and its tem-
perature kept constant. Subjects were asked to lie down in the examination bed and to relax with free breathing. 
Three lead electrocardiogram (ECG) was acquired (ECG100C, UIM100C, and MP150A-CE Biopac equipment, 
BIOPAC Systems Inc., Santa Barbara, CA, USA) during 15 min in supine resting condition and then during 
10 min in orthostatic resting condition after stand-up. The data were digitized and stored on a personal computer 
for further analysis. Two periods of 5 min were extracted and analyzed: (1) 5 min of supine rest (Decubitus) 
after at least 5 min of stable ECG signal, and (2) 5 min of orthostatic rest (Orthostatism) starting immediately 
after stand-up phase (< 10 s) noise stabilization. Signals were conditioned and processed as follow and previ-
ously  described10. Raw signals were sampled at 1000 Hz and digitized with a 24-bit analog-to-digital converter. 
Non-evident non-stationarity, such as very slow drifting of the mean or sudden changes of the variance, was 
observed after 3-order polynomial detrending. No additional filtering technique such as integration was used. 
Pan and Tompkins real-time QRS detection algorithm was used to automatically detect R-waves and build the 
RRI series. Tachograms were then firstly visually checked and corrected for artifacts (including ectopic beat 
management, i.e., detection, cancelation, and interpolation) when necessary. Then, all cardiovascular data analysis 
was performed from the 5 min beat-to-beat time series constituted from inter-beat intervals from ECG R waves, 
i.e., the RR intervals (RRI) that were extracted from raw signals. Discrete original RRI series were resampled by 
cubic spline interpolation with a 4 Hz sampling rate to generate equidistantly sampled time series x(i), i = 1, 2, 
…, N. The HRV was assessed according to the consensual  standards13, using Kubios software (Kubios HRV, 2.1, 
Biosignal Analysis and Medical Imaging Group, Kuopio, Finland), computing HRV metrics in Decubitus (_S1) 
as well as in Orthostatism (_S2). We also assessed stand-up induced HRV changes (_delta) calculating the dif-
ference between orthostatic and decubitus values for each variable.

Time-domain analysis of HRV
Several classical metrics were used as indexes of the total variability that arises from both random and periodic 
 sources14, including: the mean RRI (mean_RR) and mean HR (mean_HR), the standard deviation of the RRI 
(sd_RR) and of the HR (sd_HR), the square root of the mean squared differences between adjacent normal RRI 
(RMSSD), the count of successive normal beat lengths that differed more than 50 ms (NN50), and the percentage 
of successive normal beat lengths that differed more than 50 ms (pNN50).

Frequency-domain analysis of HRV
Different metrics were used to characterize the periodic oscillations of the studied time series using the esti-
mated power spectrum by fast Fourier transform Welch’s periodogram technique. These metrics included the 
centroid frequency (expressed in Hz) and power (_power, expressed in  ms2) in 2 frequency bands of inter-
est: high frequencies (HF, 0.15–0.4 Hz) and low frequencies (LF, 0.04–0.15 Hz). The total power (tot_power) 
and LH_power/HF_power ratio (LF_HF_power) were also computed. The HF_power and LF_power were also 
expressed as the percentage of tot_power (HF_power_perc and LF_power_perc, respectively) and normalized 
units (HF_power_nu and LF_power_nu, respectively). These variables were  said13–15 to be indexes of the total 
variability of the heart rate (tot_power), the modulation of the sinus node activity by the parasympathetic com-
ponent of the ANS (HF_power_nu), the modulation of the sinus node activity by both the parasympathetic and 
sympathetic components of the ANS (LF_power_nu), the influence of the temperature, and the sympathetic/
parasympathetic balance (LF_HF_power).

Nonlinear-domain analysis of HRV
A set of metrics are known to catch and highlight non-linear properties of the studied time series. We plotted the 
RRI of rank n + 1 as a function of the RRI of rank n (lag 1 Poincaré plot) and calculated its SD1, SD2 and SD1/
SD2 defined as the standard deviation of the instantaneous beat-to-beat RRI variability (minor axis of the fitted 
ellipse), the standard deviation of the continuous long-term RRI variability (major axis of the fitted ellipse) and 
the axis ratio,  respectively16. They were respectively used as non-linear indexes of (1) the rapid changes in the RRI 
and thus of the parasympathetic sinus node  control17, (2) the effects of both parasympathetic and sympathetic 
components on the sinus node  activity18, and (3) the relationship between these components, which is the ratio 
of the short interval variation to the long interval variation. We also used other non-linear tools to characterize 
the RRI dynamics, as previously  described10. Recurrence plot analysis quantification (minimal line length (Lmin), 
mean line length (Lmean), maximal line length (Lmax), divergence (DIV), recurrence rate (REC), determinism 
(DET) and Shannon entropy (ShanEn)) was performed with embedding dimension, lag, and threshold distance 
set to m = 10, τ = 1, and r =

√
mSD of the RRI time series analyzed, respectively. We computed detrended fluc-

tuation analysis α1 and α2 coefficients (alpha1 and alpha2, respectively) with segment length set to n ∈ (4,16) 
and n ∈ (16,64), respectively. Approximate Entropy (ApEn) and Sample Entropy (SampEn) estimates of each 
RRI time series were computed with m (embedding dimension) and r (filtering level) set to 2 and 0.2 SD of the 
RRI time series analyzed, respectively. Finally, we also estimated correlation dimension (CorDim) of the RRI 
times  series19. Indeed, first, non-linear deterministic measures of heartbeats better detect the autonomic changes 
related to mortality than the stochastic indexes; and second, what the time-dependent non-linear metrics show 
as indicators of cardiac vulnerability to lethal arrhythmias are transient non-stationary shifts of dimension of the 
heartbeat dynamics to a low  value20. CorDim quantified the time self-similarity of a signal, i.e., of the RRI time 
series. CorDim can be considered as an estimation of the lower threshold of the number of degrees of freedom 
for the underlying system generating the observed data and is typically used as an index of the overall complex-
ity of the system dynamics estimated from a time  series21. CorDim was computed as described by Grassberger 
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and  Procaccia22 with r = 15% from the standard deviation of the RRI. Accordingly, the first step is to construct 
the correlation integral (N,m,r) function. The correlation integral counts the fraction of pairs (Xi, Xj) whose 
distance is smaller than r and is defined as:

where Xi and Xj represent phase-space trajectory points, N represents the total amount of phase-space points, 
and H represents the Heaviside step function, i.e., H(α) = 0 if α < 0 and H(α) = 1 if α ≥ 0. D2 is subsequently 
computed as:

Outcomes
The main outcome was the ability to express the SSc subtype as a function of HRV, i.e., to classify the SSc clinical 
form as diffuse or limited of a patient using heart rate dynamics metrics as markers. Secondary outcomes were 
the link between HRV metrics and SSc skin extent, and between HRV metrics and lung function.

Statistical analysis
All statistical computations were performed with Python 3.10 LTS.

Descriptive statistics
The quantitative variables were first tested for normality distribution with the Shapiro–Wilk normality test. 
Accordingly, means or medians groups’ differences (i.e., dcSSc vs lcSSc) were tested performing independent 
t-tests, paired t-tests, or Wilcoxon-Mann–Whitney tests when necessary for continuous variables, and Wil-
coxon-Mann–Whitney or Kruskal–Wallis tests for ordinal variables. The qualitative categorical variables were 
assessed through modalities headcounts and groups’ differences were tested performing Chi-square or Fisher 
exact tests. Linear correlations between quantitative variables were estimated computing Pearson’s and Spear-
man’s correlation coefficients when necessary and hypothesis of correlation was tested performing a t-test. A 
p-value < 0.05 was considered as statistically significant, nevertheless all variables having an unadjusted univari-
ate p-value < 0.1 (n = 33) were considered for feature engineering. Furthermore, specifically for HRV analysis, 
and with a dual objective of simplifying the interpretation, particularly in terms of physiological outcomes, and 
limiting the expansion of type I error, a two-way repeated measures ANOVA analysis with Bonferroni correction 
was employed. The first factor considered was the clinical form (dcSSc or lcSSc), while the second factor was the 
position (decubitus or orthostatism). Non-parametric ANOVA (Kruskal–Wallis) was conducted when necessary. 
For secondary outcomes, simple and multiple linear regressions were performed to predict quantitative variables 
while simple and multiple logistic regressions were performed to predict bimodal categorical variables. Ordinary 
Least Squares optimizing method were used in both cases. Significance was set to p-value < 0.05.

Features engineering
To limit effects of collinearity on features extraction procedure, we identified all pairs of variables being highly 
correlated  (R2 > 0.9) and, according to their physiological explainability, excluded the less appropriate variables 
(n = 9). Quantitative data were then normalized (min–max scaling) for subsequent steps. On one hand, five 
features selection algorithms (Random Forest, Extra Tree Classifier, Select K Best, Generic Univariate Selection, 
and Recursive Feature Elimination) were used to rank the 24 selected HRV variables. Ranking was performed on 
variable importance (explained variance) through a homemade redundancy weighted score taking into account, 
for each variable, the rank attributed by each algorithm and the dispersion of the rank attributed through the 
five algorithms. On the other hand, the gamma analysis technique was used to rank the most inter-groups dis-
criminative  variables23,24.

Models and classification
We used the Synthetic Minority Over-sampling Technique (SMOTE) to manage unbalanced groups’ size to avoid 
any bias in models’ learning and classification processes. To limit the number of candidate models and their 
complexity in order to be compatible with a physiological explainability and a bedside application, we generated 
only combinations of 1 to 5 variables among the 24 selected HRV variables, i. e. we generated 
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i=1 C

5
i = 31 
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i=1 C
24
i = 55454 possible combinations. From the 31 combinations of the most 

discriminative variables generated, 341 classifying models were generated applying on each combination 11 
machine learning algorithms that were: logistic regression, decision tree, random forest, linear support vector 
machine (SVM), radial based function SVM, neuronal network, gradient boosting machine, stacked ensembles, 
extremely randomized trees, k nearest neighbor, and extreme gradient boosting. Database was randomly split into 
training (80% of sample size) and validation (20% of sample size) sets. Performances of the 341 classifying models 
for SSc subtypes classification purposes, i.e., dcSSc or lcSSc, were assessed according to 8 usual metrics that are: 
mean squared error, logloss, sensitivity, specificity, precision, accuracy, area under curve of the ROC-curves and 
F1-score. The cross validation was performed with k-fold = 5 and repeated 10 times, providing information on 
how well a classifier generalizes for test data and further classifications, in particular the expected error range of 
the classifier thanks to the cross-validation score.
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Ethical approval
The study was approved by the Ethical Committee of Marseille University Hospital and was conducted in accord-
ance with the Declaration of Helsinki. Each subject provided written consent for data analysis. Agreement 
number is PADS19-352/WZTVF7.

Results
Population description
Between January 01, 2018, and December 31, 2021, 60 patients having SSc and assessed for dysautonomia 
were enrolled. 16 had dcSSc and 42 lcSSc clinical forms according to the internist experts. Two were excluded 
because of missing data. General characteristics of the studied population and each subgroup are summarized 
in Table 1. By definition and as expected, the two groups differed clinically mainly in the higher proportion of 
patients with severe symptoms in the dcSSc group compared with the lcSSc group, as observed through the higher 
Rodnan (t-statistic = 8.885, df = 20, p < 0.001) and Medsger (U-statistic = 626.5, p < 0.001) scores, and through 
the presence of sphincter atonia (χ2-statistic = 26.72, df = 2, p = 0.001) and nonspecific interstitial pneumonia 
(χ2-statistic = 44.86, df = 2, p = 0.031). Similarly, esophageal peristaltism dysfunction and diffuse parenchymal 
lung disease tended to be more frequent in the dcSSc group. As also expected, the two groups biologically dif-
fered mainly in the higher proportion of patients with anti-Scl-70 (χ2-statistic = 209.56, df = 2, p < 0.001) and 
anti-SSA (χ2-statistic = 20.5, df = 2, p = 0.001) antibodies in the dcSSc group compared with the lcSSc group that 
had higher proportion of patients with anti-centromere antibodies (χ2- = 14.05, df = 2, p = 0.001).

Lung function
Respiratory parameters measured during lung function test and their interpretation as functional syndromes 
are summarized in Table 2. As expected, in terms of lung function, the two groups differed only in the higher 
proportion of patients with restrictive lung disease in the dcSSc group compared with the lcSSc group (χ2-
statistic = 26.74, df = 2, p = 0.001).

Autonomic influences on sinus node activity
HRV indexes in decubitus then in orthostatism conditions as well as the stand-up induced HRV changes are 
summarized in Table 3. The two groups differed mainly in a higher HR in the dcSSc group compared with the 
lcSSc group (mean_HR, clinical form main effect, H-statistic = 11.13, p = 0.003), in decubitus and even more so 
in orthostatism position (mean_HR, interaction of main effects, H-statistic = 29.93, p < 0.001), HR (mean_HR) 
being inversely proportional to RRI duration (mean_RR). On the contrary, the differences in observed values 
for all other HRV markers, especially those derived from spectral and nonlinear analysis, appear to be less 
systematic. Except for ShanEn, which is similarly higher in the dcSSc group compared with the lcSSc group 
(ShanEn, clinical form main effect, F-statistic = 6.50, df = 1, p = 0.049) in both decubitus and orthostatic posi-
tions (no interaction effect), the other HRV markers differ from one group to another depending on the posi-
tion considered. This differential effect of verticalization according to patients’ group is highlighted through the 
interaction effect, as seen with LF_power, HF_power, or tot_power. Similarly, a higher length of the mean and 
the longest diagonal line of the recurrence plot was observed in the dcSSc group compared with the lcSSc group 
according to position (Lmax, interaction of main effects, H-statistic = 28.92, p < 0.001 and Lmean, interaction 
of main effects, H-statistic = 13.46, p = 0.011), Lmax being inversely linked to divergence (DIV). Finally, the two 
groups differed also in terms of HRV parameters changes induced by stand-up. Mainly, mean_HR increase was 
higher in dcSSc compared to lcSSc groups (t-statistic = 3.034, df = 24, p = 0.006) while all others time domain 
parameters were lowered during orthostatism and even more lowered in the dcSSc group than in the lcSSc group. 
Particularly, sd_HR was lowered in the dcSSc group while increased in the lcSSc group (t-statistic = − 3.329, 
df = 18, p = 0.004). Similarly, SD2 and CorDim were lowered in the dcSSc group while increased in the lcSSc 
group (t-statistic = − 3.586, df = 18, p = 0.002 and t-statistic = − 3.247, df = 20, p = 0.004, respectively).

Features importance
Collinearity and correlations between all variables that have been significantly different in the dcSSc group 
compared to the lcSSc group with a univariate approach are summarized in Figs. 1 and 2. We can note that many 
HRV indexes are positively or negatively correlated, and mostly of interest, some HRV parameters are correlated 
to clinical and respiratory quantitative parameters. Particularly, first, mean_HR_S2, SD2_delta, sd_HR_delta, 
SD2_delta and CorDim_delta are correlated with Rodnan and Medsger scores and with most of the respiratory 
function parameters, and second, most of the HRV parameters changes (delta) are correlated with clinical scores 
and lung function parameters. A synthetic view of features importance to describe data variance is proposed in 
Fig. 3. Features are ranked according two different metrics, the relative importance of the feature (explained data 
variance) and the gamma-metric (discriminant power). The first four most efficient features identically identified 
are SD2_delta, sd_HR_delta, CorDim_delta, and SD2_S2. The fifth important feature is either LF_power_S2 
either mean_HR_S2 according to the used metric. As fifth feature we chose mean_HR_S2 because of a more 
physiological and measuring robustness.

Models’ performances
Table 4 summarizes the performances of the classifying models generated including 1 to 5 selected variables. 
Concerning sensibility and specificity we can note that models range from 0.87 to 1 and from 0.25 to 0.99 respec-
tively. The most efficient variable taken alone and combining the best sensibility and specificity combination is 
CorDim with 1 and 0.99 values respectively. But on the other hand, precision, accuracy, and F1-score are the 
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lowest of all tested models (0.749, 0.771, and 0.823 respectively). Besides, it should be noted that the proposed 
models, except for the one including only CorDim, appear to have a rather average sensitivity ranging from 0.25 
to 0.81. Moreover and interestingly, we can note that F1-score that is an integrative metrics (harmonic mean of 
precision and accuracy) is not a linear function of the number of included variables. F1-score ranges from 0.823 
for the best 1-variable model to a maximum of 0.947 for the 4-variables best model while 0.946 is reached by 
the 3-variables best model. If specificity and/or precision is an objective we can note that best models are two 
3-variables and two 4-variables models including SD2_delta, SD2_S2, sd_HR_delta, and CorDim_delta.

Table 1.  General characteristics of the studied population. Values are expressed as mean ± standard deviation 
or modality size (percentage of the whole population) for quantitative and categorical variables, respectively. 
The whole studied population (All SSc) are described in the first column and p-values of the comparison 
between diffuse (dcSSc) and located (lcSSc) cutaneous systemic sclerosis are reported. P < 0.05 was considered 
as significant and p < 0.1 (bold) was used as threshold for further analysis. BMI: Body mass index, SSc: 
Systemic sclerosis, NSIP: Nonspecific interstitial pneumonia, IPF: Idiopathic pulmonary fibrosis.

All SSc dcSSc lcSSc p-value

Anthropometry

 Age, years 50.5 ± 13.8 47.4 ± 11.5 51.6 ± 14.5 0.108

 Sex, F/M (%) 44/14 (76/24) 9/7 (16/12) 35/7 (60/12) 0.068

 Weight, kg 65.8 ± 11.7 69.1 ± 12.3 64.0 ± 10.8 0.135

 Height, m 1.66 ± 0.08 1.71 ± 0.10 1.65 ± 0.06 0.044

 BMI, kg/m2 23.7 ± 3.4 23.6 ± 3.4 23.5 ± 3.2 0.905

Clinical features and severity

 Raynaud duration, years 12.9 ± 8.1 9.5 ± 4.1 14.2 ± 8.9 0.01

 SSc duration, years 10.1 ± 6.3 8.6 ± 2.8 10.7 ± 7.1 0.1

 Rodnan score, n.u. 6.8 ± 6.4 15.2 ± 4.8 3.6 ± 3.2  < 0.001

 Medsger score, n.u. 4.9 ± 2.5 7.7 ± 1.6 3.7 ± 1.8  < 0.001

 Pulmonary hypertension, y/n (%) 5/53 (9/91) 2/14 (4/24) 3/39 (5/67) 1

 Oesophagal aperistaltism, y/n (%) 31/27 (53/47) 13/3 (22/5) 18/24 (31/42) 0.064

 Sphincter atonia, y/n (%) 22/36 (28/72) 13/3 (22/5) 9/33 (16/57)  < 0.001

Lung disease

 Dyspnea, I/II/III/IV NYHA scale 33/23/2/0 7/7/2/0 26/16/0/0 0.176

 Thorax TDM, y/n (%) 43/15 (74/26) 12/4 (21/7) 31/11 (53/19) 0.984

 Diffuse parenchymal lung disease, y/n (%) 13/30 (30/70) 6/6 (14/14) 7/24 (16/56) 0.076

 NSIP, y/n (%) 3/40 (7/93) 2/10 (5/23) 1/30 (2/70) 0.031

 IPF, y/n (%) 3/40 (7/93) 1/11 (2/25) 2/29 (5/68) 0.965

 Fibrosis, y/n (%) 10/33 (23/77) 4/8 (9/19) 6/25 (14/58) 0.472

 Fibrosis > 20%, y/n (%) 8/35 (19/81) 3/9 (7/21) 5/26 (12/60) 0.705

Biology

 Anti-Scl-70, y/n (%) 31/26 (54/46) 15/1 (26/2) 16/25 (28/44)  < 0.001

 Anti-centromere, y/n (%) 24/33 (42/58) 0/16 (0/28) 24/17 (42/30) 0.001

 Anti-SSA, y/n (%) 8/49 (14/86) 8/8 (14/14) 0/41 (0/72) 0.001

 Anti-SSB, y/n (%) 5/52 (9/91) 5/11 (9/19) 0/41 (0/72) 0.054

 Anti-U1 RNP, y/n (%) 0/57 (0/100) 0/16 (0/28) 0/41 (0/72) 1

 Anti-RNA polymerase III, y/n (%) 1/56 (2/98) 1/15 (2/26) 0/41 (0/72) 0.918

 Anti-PM/Scl y/n (%) 0/57 (0/100) 0/16 (0/28) 0/41 (0/72) 1

 Anti-fibrillarin, y/n (%) 1/56 (2/98) 0/16 (0/28) 1/40 (2/70) 0.988

Treatments

 Calcium channel blockers, y/n (%) 35/23 (60/40) 7/9 (12/16) 28/14 (48/24) 0.011

 Diltiazem, y/n (%) 5/53 (9/91) 2/14 (3/24) 3/39 (5/68) 0.576

 Non-diltiazem, y/n (%) 30/28 (52/48) 5/11 (9/19) 25/17 (43/29)  < 0.001

 Proton-pump inhibitors, y/n (%) 10/48 (17/83) 4/12 (7/21) 6/36 (10/62) 0.276

 Steroids, y/n (%) 2/56 (3/97) 1/15 (2/26) 1/42 (2/70) 0.585

 l-thyroxin, y/n (%) 6/52 (10/90) 0/16 (0/28) 6/36 (10/62) 0.651

 Chloroquin, y/n (%) 4/54 (7/93) 0/16 (0/28) 4/38 (7/65) 0.827

 Sildenafil, y/n (%) 7/51 (12/88) 3/13 (5/22) 4/38 (7/66) 0.309

 Mycophenolate, y/n (%) 12/46 (21/79) 9/7 (16/12) 3/39 (5/67)  < 0.001

 Bosentan, y/n (%) 8/50 (14/86) 3/13 (5/22) 5/37 (9/64) 0.524

 Other drugs, y/n (%) 14/44 (24/76) 3/13 (5/22) 11/31 (19/54) 0.466
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Secondary outcomes
The link between HRV metrics and SSc skin extent appears through some significant regressions, the most sig-
nificant simple linear regressions being Rodnan score = -165.063 × SD2_delta + 6.261  (R2 = 0.268, F-statistic: 19.80, 
df = 1, p < 0.001) and Medsger score = − 0.062 × LF_power_prc_delta + 5.143  (R2 = 0.210, F-statistic: 14.36, df = 1, 
p < 0.001). The most significant multiple linear regressions provide Rodnan score estimation from mean_RR_
S2, mean_HR_S2, ApEn_S2, alpha1_S2, Lmean_S2, DIV_S2, DET_S2, and ShanEn_S2  (R2 = 0.842, F-statistic: 
4.453, df = 30, p < 0.001) and Medsger score estimation from alpha1_S2, CorDim_S2, and Lmean_S2  (R2 = 0.756, 
F-statistic: 2.393, df = 30, p = 0.015). Similarly, the link between HRV metrics and lung function appears through 
some significant regressions, the most significant simple logistic regression expressing the presence of a restrictive 
syndrome as a function of mean_HR_S2 (pseudo  R2 = 0.277, likelihood statistic: − 32.542, df = 1, p < 0.001) and 
the most significant multiple logistic regression expressing the presence of a restrictive syndrome as a function 
of SD2_S2 and sd_RR_S2 (pseudo  R2 = 0.55, likelihood statistic: − 32.542, df = 8, p < 0.001).

Discussion
Major findings
We aimed to provide classifying models of SSc subtypes, i.e., models that distinguish dcSSc from lcSSc clinical 
forms, from HRV linear and nonlinear metrics, and easy to compute at the patient’s bedside. As expected, at rest 
in decubitus condition, only HR was clearly different in SSc subgroups, HR being higher in dcSSc. Transition 

Table 2.  Lung function characteristics of the studied population. Values are expressed as mean ± standard 
deviation or modality size (percentage of the whole population) for quantitative and categorical variables, 
respectively. The whole studied population (All SSc) are described in the first column and p-values of the 
comparison between diffuse (dcSSc) and located (lcSSc) cutaneous systemic sclerosis are reported. P < 0.05 
was considered as significant and p < 0.1 (bold) was used as threshold for further analysis. TLC, total lung 
capacity; FRC, functional residual capacity; slow VC, slow vital capacity; forced VC, forced vital capacity; RV/
TLC, residual volume/total lung capacity ratio; FEV1, first 1-second forced expiratory volume; FEV1/forced 
VC, modified Tiffeneau-Pinelli index; MMEF, Maximal mid-expiratory flow; Raw, central airway resistance; 
DLCOsb, single-breath carbon monoxide diffusion capacity; KCOc, corrected carbon monoxide transfer 
coefficient;  SpO2, oxyhemoglobin saturation rate estimated from pulse oximetry.

All SSc dcSSc lcSSc p-value

Lung function, values (n = 58)

 TLC, L 4.87 ± 1.11 4.10 ± 0.89 5.15 ± 1.06  < 0.001

  % of predicted 91 ± 21 71 ± 17 98 ± 17  < 0.001

 FRC, L (%) 2.83 ± 0.60 2.53 ± 0.44 2.95 ± 0.62 0.007

  % of predicted 99 ± 21 83 ± 14 105 ± 21  < 0.001

 Slow VC, L (%) 3.03 ± 0.85 2,43 ± 0.63 3.26 ± 0.81  < 0.001

  % of predicted 91 ± 27 65 ± 24 101 ± 20  < 0.001

 Forced VC, L (%) 2.94 ± 0.87 2.31 ± 0.63 3.18 ± 0.83  < 0.001

  % of predicted 91 ± 28 64 ± 26 101 ± 20  < 0.001

 RV/TLC, no unit (%) 37.75 ± 7.88 40.63 ± 7.64 36.72 ± 7.79 0.084

  % of predicted 105 ± 22 120 ± 26 100 ± 18  < 0.001

  FEV1, L (%) 2.37 ± 0.67 1.90 ± 0.42 2.54 ± 0.67  < 0.001

  % of predicted 87 ± 25 63 ± 21 96 ± 19  < 0.001

  FEV1/forced VC, %, (%) 81.41 ± 7.70 83.75 ± 8.88 80.51 ± 7.12 0.163

  % of predicted 103 ± 9 105 ± 10 102 ± 8 0.283

 MMEF, L (%) 2.47 ± 1.06 2.12 ± 0.65 2.6 ± 1.17 0.443

  % of predicted 73 ± 28 58 ± 16 79 ± 29 0.001

 Raw  cmH20*s/L (%) 1.90 ± 0.74 1.91 ± 0.63 1.90 ± 0.78 0.711

  % of predicted 62 ± 24 63 ± 21 62 ± 26 0.711

  DLCOsb, mL/mmHg/min (%) 16.38 ± 5.19 14.48 ± 3.14 17.08 ± 5.63 0.036

  % of predicted 65 ± 18 53 ± 12 69 ± 18  < 0.001

  KCOc, mL/mmHg/min/L (%) 3.76 ± 0.78 3.99 ± 0.78 3.69 ± 0.77 0.225

  % of predicted 80 ± 16 86 ± 16 78 ± 15 0.150

  SpO2, % 99 ± 0.99 98 ± 1 99 ± 1 0.5

Lung function, interpretation (n = 58)

 Restrictive lung disease, y/n (%) 16/42 (28/72) 9/7 (16/12) 7/35 (12/60)  < 0.001

 Lung distension, y/n (%) 1/57 (2/98) 0/16 (0/28) 1/41 (2/70) 0.988

 Obstructive lung, y/n (%) 5/53 (9/91) 1/15 (2/26) 4/38 (7/65) 0.681

 Lung diffusion impairement, y/n (%) 11/47 (19/81) 2/14 (3/24) 9/33 (16/57) 0.216
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Table 3 .  Heart rate variability of the studied population. Values are expressed as mean ± standard deviation. 
Diffuse (dcSSc) and located (lcSSc) cutaneous systemic sclerosis are described for decubitus and orthostatism 
and adjusted (Bonferroni’s correction) p-values of the clinical form and position main effects as their 
interaction are reported. Stand-up-induced changes of each group are also reported. P < 0.05 was considered as 
significant (bold). Unadjusted p-values<0.1 from univariate analysis (• mark) was used as threshold for further 
analysis. Time domain variables are: mean_RR, mean RR intervals duration; sd_RR, standard deviation of RR 
intervals duration; mean_HR, mean heart rate; sd_HR, standard deviation of heart rate; RMSSD, root mean 
square of successive differences of RR intervals duration; NN50, count of successive RR intervals duration 
differing from more than 50 ms; pNN50, percentage of RR intervals duration differing from more than 50 ms. 
Frequency domain variables are: LF_peak and HF_peak, low frequency (0.04–0.15 Hz) and high frequency 
(0.15–0.40  Hz) having the highest power peaks, respectively; LF_power, low frequency power; LF_power_prc, 
percentage of low frequency power; LF_power_nu, normalized low frequency power; HF_power, high 
frequency power; HF_power_prc, percentage of high frequency power; HF_power_nu, normalized high 
frequency power; LF_HF_power, low frequency/high frequency power ratio; tot_power, total spectral power. 
Nonlinear variables are: SD1, minor axis of the fitted ellipse on RR intervals Poincaré plot; SD2, major axis of 
the fitted ellipse on RR intervals Poincaré plot; ApEn, approximate entropy; SamEn, sample entropy; alpha1, 
first (short-term) alpha coefficient of detrended fluctuation analysis of RR intervals time series; alpha2, second 
(long-term) alpha coefficient of detrended fluctuation analysis of RR intervals time series; CorDim, correlation 
dimension; Lmin, minimal line length; Lmax, maximal line length; Lmean, mean line length; DIC, divergence; 
REC, recurrence rate; DET, determinism; ShanEn, Shannon entropy.

Decubitus Othostatism Clinical form Position Interactions Stand-up-induced changes

dcSSc lcSSc dcSSc lcSSc p value p value p value DcSSc LcSSc p value

Time domain

 mean_RR (ms) 825 ± 120 894 ± 113 698 ± 117 795 ± 102 0.002•  < 0.001 1 − 127 ± 48 − 99 ± 52 0.072•

 sd_RR (ms) 40 ± 22 33 ± 14 22 ± 11 34 ± 14 0.590 0.555 0.035• − 18 ± 22 1 ± 9 0.005•

 mean_HR (bpm) 74.0 ± 10.0 68.0 ± 9.0 88.0 ± 13.0 77.0 ± 11.0 0.003•  < 0.001  < 0.001 14.0 ± 6.0 9.0 ± 5.0 0.006•

 sd_HR (bpm) 4.0 ± 2.0 3.0 ± 1.0 3.0 ± 1.0 3.0 ± 1.0 1 0.426 0.047• − 1.0 ± 2.0 1.0 ± 1.0 0.004•

 RMSSD (ms) 35 ± 29 28 ± 18 14 ± 13 22 ± 16 0.890  < 0.001 0.002• − 21 ± 29 − 6 ± 10 0.052•

 NN50 (count) 53.0 ± 61.0 30.0 ± 52.0 12.0 ± 30.0 22.0 ± 44.0 1 0.046 0.068 − 41.0 ± 60.0 − 8.0 ± 26.0 0.048•

 pNN50 (%) 15.0 ± 17.0 9.0 ± 16.0 4.0 ± 9.0 6.0 ± 12.0 1 0.030 0.048 − 12.0 ± 16.0 − 3.0 ± 8.0 0.054•

Frequency domain

 LF_peak (Hz) 0.074 ± 0.022 0.076 ± 0.028 0.074 ± 0.025 0.073 ± 0.027 1 1 1 − 0.000 ± 0.00 − 0.003 ± 0.03 0.648

 HF_peak (Hz) 0.264 ± 0.08 0.257 ± 0.07 0.24 ± 0.071 0.214 ± 0.069 1 0.008 0.038 − 0.024 ± 0.101 − 0.044 ± 0.105 0.393

 LF_power  (ms2) 750 ± 1574 369 ± 508 155 ± 218 434 ± 434 0.142 1 0.013• − 595 ± 1602 65 ± 464 0.124

 LF_power_prc (%) 31.0 ± 12.0 30.0 ± 13.0 27.0 ± 17.0 37.0 ± 16.0 0.461 1 0.302• − 4.0 ± 16.0 7.0 ± 19.0 0.040•

 LF_power_nu (n.u.) 54.0 ± 18.0 53.0 ± 18.0 71.0 ± 24.0 71.0 ± 19.0 1  < 0.001  < 0.001 17.0 ± 20.0 18.0 ± 23.0 0.485

 HF_power  (ms2) 712 ± 1385 326 ± 377 89 ± 152 192 ± 265 0.946  < 0.001  < 0.001• − 623 ± 1391 − 134 ± 289 0.183

 HF_power_prc (%) 27.0 ± 13.0 27.0 ± 17.0 13.0 ± 16.0 16.0 ± 15.0 1  < 0.001  < 0.001 − 13.0 ± 13.0 − 11.0 ± 16.0 0.686

 HF_power_nu (n.u.) 46.0 ± 18.0 46.0 ± 18.0 29.0 ± 24.0 28.0 ± 19.0 1  < 0.001  < 0.001 − 17.0 ± 20.0 − 18.0 ± 23.0 0.496

 LF_HF_power 1.54 ± 1.08 1.61 ± 1.55 4.72 ± 4.05 4.59 ± 4.6 1  < 0.001  < 0.001 3.18 ± 3.67 2.98 ± 4.9 0.866

 tot_power  (ms2) 2055 ± 3373 1135 ± 1004 559 ± 567 1218 ± 1081 0.657 0.502 0.092• − 1496 ± 3474 83 ± 982 0.092•

Nonlinear domain

 SD1 (ms) 25 ± 20 20 ± 13 10 ± 9 15 ± 11 0.890  < 0.001 0.002• − 15 ± 20 − 4 ± 7 0.052•

 SD2 (ms) 50 ± 24 42 ± 17 29 ± 13 45 ± 19 0.898 0.559 0.034• − 21 ± 26 3 ± 13 0.002•

 ApEn 1.139 ± 0.067 1.112 ± 0.11 1.006 ± 0.176 1.071 ± 0.105 1 0.003 0.015 − 0.133 ± 0.169 − 0.041 ± 0.138 0.034•

 SampEn 1.561 ± 0.275 1.58 ± 0.268 1.171 ± 0.359 1.298 ± 0.25 0.832  < 0.001 1 − 0.391 ± 0.415 − 0.281 ± 0.282 0.257

 alpha1 1.045 ± 0.288 1.047 ± 0.248 1.261 ± 0.355 1.308 ± 0.313 1  < 0.001  < 0.001 0.216 ± 0.319 0.261 ± 0.285 0.636

 alpha2 0.964 ± 0.161 0.928 ± 0.177 1.12 ± 0.206 0.979 ± 0.221 0.133 0.12 0.801• 0.156 ± 0.215 0.051 ± 0.239 0.054•

 CorDim 2.082 ± 1.703 1.358 ± 1.367 0.759 ± 1.163 1.449 ± 1.367 1 0.745 0.115• − 1.323 ± 1.619 0.091 ± 1.039 0.004•

 Lmin (beats) 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 1 1 1 0.0 ± 0.0 0.0 ± 0.0 1.0

 Lmax (beats) 235.0 ± 126.0 159.0 ± 75.0 320.0 ± 145.0 285.0 ± 115.0 0.194  < 0.001  < 0.001• 85.0 ± 115.0 126.0 ± 108.0 0.168

 Lmean (beats) 12.5 ± 3.7 11.0 ± 4.0 15.0 ± 4.7 12.6 ± 3.5 0.090 0.009 0.011• 2.5 ± 6.0 1.6 ± 3.5 0.496

 DIV 0.006 ± 0.003 0.008 ± 0.006 0.004 ± 0.003 0.005 ± 0.005 0.194  < 0.001  < 0.001• − 0.002 ± 0.003 − 0.003 ± 0.005 0.163

 REC (%) 0.368 ± 0.118 0.315 ± 0.097 0.399 ± 0.097 0.373 ± 0.084 0.198 0.021 1 0.032 ± 0.139 0.058 ± 0.092 0.686

 DET (%) 98.0 ± 1.5 97.6 ± 1.3 98.9 ± 1 98.7 ± 1.2 0.200  < 0.001  < 0.001 0.9 ± 1.3 1.1 ± 1.1 0.374

 ShanEn 3.262 ± 0.312 3.111 ± 0.302 3.475 ± 0.357 3.293 ± 0.31 0.049• 0.006 1 0.212 ± 0.44 0.183 ± 0.265 0.776
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from decubitus to orthostatism increased HR in all SSc patients. HR reached higher magnitude in dcSSc and 
was associated with a lower overall variability (tot_power). Stand-up-induced HRV changes revealed differen-
tial effects of orthostatism in SSc subtypes, effects that were mainly higher HR increase associated with (1) loss 
of time-domain variability and (2) loss of nonlinear proprieties of HRV (sd_RR, sd_HR, SD1 and SD2, ApEn, 
CorDim, and recurrence plot quantifying indexes) in dcSSc compared to lcSSc patients. Accordingly, efficient 
classifying models of SSc subtypes have been provided using from 1 to 4 HRV metrics as input variables reach-
ing F1-score of overall performance up to almost 0.95. To resume, it’s possible to distinguish dcSSc from lcSSc 
clinical forms at the patient’s bedside with a simple digital ECG analysis.

Figure 1.  Correlations between heart rate variability metrics. The HRV metrics that were significantly different 
(p < 0.05) in the dcSSc and lcSSc subgroups were tested for correlation and are represented in the correlation 
matrix. Correlations between HRV metrics from time-, frequency-, and nonlinear- domains measured in supine 
(_S1) as orthostatism (_S2) conditions and HRV metrics stand-up induced changes (_delta) are reported.  R2 is 
color-coded from -1 (dark red) to + 1 (dark blue) when correlation was significant (p < 0.05).
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Figure 2.  Correlations between clinical features, heart rate variability and lung function metrics. Correlations 
between HRV metrics from time-, frequency-, and nonlinear- domains measured in supine (_S1) as 
orthostatism (_S2) conditions and HRV metrics stand-up induced changes (_delta), and clinical features as well 
lung function metrics are reported.  R2 is color-coded from -1 (dark red) to + 1 (dark blue) when correlation was 
significant (p < 0.05).
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Autonomic influences on sinus node activity
Time domain and frequency domain HRV metrics have been used to investigate the cardiovascular conse-
quences of SSc since  19942. On one hand, SSc is known to alter autonomic nervous system and its cardiovas-
cular  component25 and on the other hand HRV has been considered to inform on autonomic nervous system 
modulation of sinus node rhythmic  activity13. High frequency (around 0.25 Hz) being related to respiration 
via the parasympathetics and low frequency (around 0.1 Hz) to a sympathetic Eigen-oscillation of the barore-
flex to blood pressure and heart rate  system26. Typically, SSc is described as increasing resting HR through a 
predominant sympathetic activity and vagal withdrawal compared to healthy  controls9,27–29 and as blunting 
cardiovascular response to  orthostatism9,29. The HR and HRV we observed in dcSSc and lcSSc subtypes at rest 
and during orthostatism does not evidence a so clear phenotype-dependent sympathetic activation neither 
parasympathetic withdrawal. In decubitus position, when comparing dcSSc and lcSSc groups using multiple 
univariate unpaired t-tests as well as ANOVA, we found no evidence for any difference in autonomic modula-
tion of sinus activity, as commonly  accepted13. For 5-min RR intervals time series this usually includes some 
HRV spectral indexes that are LF_power  (ms2), LF_power_prc (%), LF_power_nu (n.u.), HF_power  (ms2), 
HF_power_prc (%), HF_power_nu (n.u.) and LF_HF_power. On the contrary, in dcSSc compared to lcSSc, 

Figure 3.  Features importance. The features importance of heart rate variability metrics is represented 
according to two different features importance ranking techniques: relative importance (top histograms), 
and gamma-metric (bottom histograms). Features importance of HRV metrics from time-, frequency-, and 
nonlinear- domains measured in supine (_S1) as orthostatism (_S2) conditions and HRV metrics stand-up 
induced changes (_delta) was assessed. The four most important features (red arrows) were: SD2_delta, 
stand-up induced change of the major axis length of the fitted ellipse on RR intervals Poincaré plot; sd_HR_
delta, stand-up induced change of the heart rate standard deviation; CorDim_delta, stand-up induced change 
of the correlation dimension; SD2_S2, major axis length of the fitted ellipse on RR intervals Poincaré plot in 
orthostatism condition.



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11151  | https://doi.org/10.1038/s41598-024-60553-1

www.nature.com/scientificreports/

we found that orthostatism was paradoxically associated with significantly lower low frequency spectral power 
(LF_power as explicated by the main effects interaction) while high frequency spectral power (HF_power as 
explicated by the main effects interaction) tends to be lower. Orthostatism is known to physiologically induce a 
temporary adaptative response increasing sympathetic and decreasing parasympathetic activities. Oppositely to 
previous  descriptions9,29, our data do not reveal any major alteration in the sympathovagal response, as expressed 
by LF_prc, LF_nu, HF_prc, HF_nu and LF_HF ratio, to orthostatism. These normal responses are explicitely 
evident in Table 3 of the results. LF_power_nu and even more so HF_power, HF_power_prc, HF_power_nu, as 
well as LF_HF_power, are significantly modified during orthostatism compared to decubitus (position effect, 
p < 0.001). No clinical form effect (group effect) was observed but only main effects interactions (main effects 
interactions, p < 0.001). The effect of orthostatism was different according to clinical form. Yet, indexes from 
RRI time series spectral analysis are known to be markers of the autonomic nervous system influences on the 

Table 4.  Performances of classifying models. SSc subtypes classifying models including 1 to 5 most 
informative and discriminant HRV variables are presented. Variables used are: SD2_delta, stand-up 
induced change of the major axis length of the fitted ellipse on RR intervals Poincaré plot; sd_HR_delta, 
stand-up induced change of the heart rate standard deviation; CorDim_delta, stand-up induced change of 
the correlation dimension; SD2_S2, major axis length of the fitted ellipse on RR intervals Poincaré plot in 
orthostatism condition; mean_HR_S2, mean heart rate in orthostatism condition. Classifier algorithms used 
were neuronal networks; stacked ensembles; and GBM, gradient boosting machines. Models’ performances 
were assessed through MSE, mean squared error; LogLoss, logarithmic loss; Sensibility; Specificity; Precision; 
Accuracy; AUC, area under curve; and F1-score.

Model variables
Classifier 
algorithm MSE LogLoss Sensibility Specificity Precision Accuracy AUC F1-score

1 variable

 mean_HR_S2 Neuronal network 0.17 0.578 0.96 0.583 0.858 0.869 0.762 0.897

 SD2_delta Neuronal network 0.157 0.433 0.95 0.5 0.841 0.847 0.875 0.88

 SD2_S2 Neuronal network 0.162 0.492 0.92 0.563 0.837 0.829 0.782 0.852

 sd_HR_delta Neuronal network 0.182 1.192 1 0.25 0.72 0.762 0.759 0.828

 CorDim_delta Stacked Ensemble 0.188 0.53 1 1 0.729 0.749 0.771 0.823

2 variables

 SD2_delta, mean_HR_S2 GBM 0.117 0.341 1 0.583 0.858 0.891 0.9 0.919

 CorDim_delta, mean_HR_S2 Neuronal network 0.154 0.465 1 0.583 0.858 0.891 0.848 0.919

 SD2_delta, CorDim_delta GBM 0.155 0.468 0.92 0.708 0.916 0.891 0.88 0.903

 sd_HR_delta, mean_HR_S2 GBM 0.137 0.423 1 0.521 0.825 0.869 0.888 0.901

 SD2_S2, mean_HR_S2 Neuronal network 0.159 0.453 1 0.604 0.833 0.871 0.88 0.901

 sd_HR_delta, CorDim_delta Neuronal network 0.186 0.546 0.91 0.625 0.882 0.869 0.88 0.888

 sd_HR_delta, SD2_S2 Neuronal network 0.155 0.503 0.87 0.688 0.922 0.869 0.83 0.878

 SD2_delta, SD2_S2 Neuronal network 0.141 0.438 1 0.396 0.783 0.824 0.859 0.873

 CorDim_delta, SD2_S2 Neuronal network 0.199 0.616 0.95 0.375 0.806 0.802 0.802 0.854

 SD2_delta, sd_HR_delta Neuronal network 0.162 0.515 1 0.313 0.738 0.784 0.811 0.841

3 variables

 SD2_delta, SD2_S2, mean_HR_S2 GBM 0.101 0.311 1 0.771 0.902 0.936 0.943 0.946

 SD2_delta, CorDim_delta, mean_HR_S2 Neuronal network 0.126 0.434 0.96 0.688 0.916 0.911 0.903 0.935

 CorDim_delta, SD2_S2, mean_HR_S2 Neuronal network 0.133 0.54 1 0.563 0.881 0.889 0.826 0.929

 sd_HR_delta, CorDim_delta, mean_HR_S2 Neuronal network 0.123 0.465 0.95 0.625 0.898 0.891 0.868 0.913

 SD2_delta, sd_HR_delta, SD2_S2 Neuronal network 0.165 0.515 1 0.5 0.847 0.867 0.863 0.911

 SD2_delta, CorDim_delta, SD2_S2 Neuronal network 0.147 0.454 1 0.5 0.847 0.867 0.887 0.911

 sd_HR_delta, SD2_S2, mean_HR_S2 Neuronal network 0.208 0.77 1 0.521 0.825 0.869 0.875 0.901

 SD2_delta, sd_HR_delta, mean_HR_S2 GBM 0.112 0.331 0.95 0.563 0.881 0.869 0.878 0.9

 SD2_delta, sd_HR_delta, CorDim_delta Neuronal network 0.162 0.541 1 0.375 0.806 0.822 0.833 0.884

 sd_HR_delta, CorDim_delta, SD2_S2 Neuronal network 0.212 0.748 1 0.417 0.781 0.827 0.834 0.871

4 variables

 SD2_delta, CorDim_delta, SD2_S2, mean_HR_S2 GBM 0.076 0.245 0.96 0.813 0.935 0.933 0.917 0.947

 sd_HR_delta, CorDim_delta, SD2_S2, mean_HR_S2 Neuronal network 0.23 0.83 1 0.625 0.898 0.911 0.903 0.942

 SD2_delta, sd_HR_delta, SD2_S2, mean_HR_S2 GBM 0.097 0.302 0.95 0.813 0.942 0.936 0.935 0.94

 SD2_delta, sd_HR_delta, CorDim_delta, mean_HR_S2 GBM 0.115 0.348 0.971 0.771 0.885 0.891 0.913 0.916

 SD2_delta, sd_HR_delta, CorDim_delta, SD2_S2 Neuronal network 0.213 0.708 1 0.5 0.847 0.867 0.863 0.911

5 variables

 SD2_delta, sd_HR_delta, CorDim_delta, SD2_S2, mean_HR_S2 GBM 0.092 0.279 1 0.708 0.878 0.913 0.909 0.931
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sinus node rhythmic activity. Particularly LF and HF are thought to reflect sympathovagal balance as well as 
sympathetic and parasympathetic sinus influences, respectively, when expressed in normalized units. Accord-
ing to first HRV  guidelines13, one could interpret our results as a sympathovagal balance functionality. On the 
contrary, there are at least two factors that should prompt us to approach the interpretation more judiciously. 
Firstly, a recent and highly regarded  review30 emphasizes that scientific evidence in the literature supports a pre-
dominantly parasympathetic-determined Heart Rate Variability (HRV) when assessed through spectral analysis 
indexes. This implies that, based on the results of HFnu and LFnu, as well as others spectral analysis outcomes, 
it appears that parasympathetic-determined HRV does not play a major role in partitioning the clinical forms of 
SSc patients. Secondly, the mathematical constructs of normalized HRV spectral metrics can lead to a confusing 
interpretation, depending on whether LF and HF relatively vary with LFnu = LF/(TP − VLF) ≈ LF/(LF + HF) and 
HFnu = HF/(TP − VLF) ≈ HF/(LF + HF). According to these knowledges and our observations, it is difficult to 
interpret our results as a simple and unique parasympathetic blunted response (withdrawal) to transition from 
decubitus to orthostatic conditions. It seems that in orthostatism, sympathetic (LF_power (ms2), LF_power_prc 
(%)) modulation of sinus activity is lower in dcSSc compared to lcSSc that is in favor of an unpaired adaptation 
to orthostatism all the more so as it should increase. As LFnu = LF/(TP − VLF), this impairment seems to be 
supported by modifications impacting LF, TP, but also VLF that is said to reflect mid- and long- term renin-
angiotensin system, blood pressure regulation, thermoregulation, and others long-term humoral and hormonal 
 activities13. And second, Poincaré plot short term variability index SD1 was not significantly different between 
dcSSc and lcSSc groups (no clinical form effect) but orthostatism had differential effects according the groups 
(main effects interactions, p < 0.002). SD1, that is the standard deviation of the plot data on the minor axis is 
mathematically equal to root mean square of successive differences of RRI duration described the instantaneous 
beat-to-beat variability that is neurally supported by the only vagal  nerve31. Oppositely, Poincaré plot long term 
variability index SD2 that is said to reflect sympathetic and baroreflex HR  modulation32,33 was significantly dif-
ferent between dcSSc and lcSSc groups during orthostatism but decubitus (main effects interactions, p < 0.034). 
All these elements converge with the exclusion of a simple vagal-mediated impairment differential main effect 
between lcSSc and dcSSc, but mostly toward a baroreflex loop complex impairment. Probably for this reason, 
metrics of HRV linear dynamics lacked to clearly distinguish dcSSc and lcSSc subtypes.

HR nonlinear dynamics and system failure
Three metrics quantifying the nonlinear properties of HR dynamics have been found to be more deeply impacted 
in dcSSc vs. lcSSc groups by orthostatic stress according to stand-up-induced changes results: SD2, ApEn, and 
CorDim. SD2 that is the long/major axe of the elliptic fit of Poincaré plot is also said to reflect nonlinear long-
term RR  modulation31,32. ApEn reflects the complex structure of a time series and the complex behavior of the 
system generating the time series, i.e., the system complexity and its components  interactions34–38. CorDim 
quantifies the time self-similarity of a signal, i.e., of the RRI time series. Thus, CorDim can be considered as an 
estimation of the lower threshold of the number of degrees of freedom for the underlying system generating the 
observed data and is typically used as an index of the overall complexity of the system dynamics estimated from 
a time  series21. In healthy people, stand-up induces a loss of HRV because of the arterial baroreflex, an adapta-
tive autonomic nervous system response associating sympathetic activation and parasympathetic  withdrawal39. 
But the complexity of a physiological system is increased when its components are interacting to adequate 
physiological  response34. Taken together, the combined stand-up-induced changes of these three metrics that 
explore complementary nonlinear properties highlight that the cardiovascular homeostatic system is impaired 
in dcSSc but not in lcSSc. Stand-up stimulus should increase nonlinearity of HR dynamics, which is a wellness 
index of physiological systems. But in our study, stand-up decreased HR nonlinearity and complexity, which is 
an impairment and failure marker of dynamic systems including physiological complex  systems34. Accordingly, 
our results converge to highlight that orthostatism stress lowers dramatically physiological flexibility (adapt-
ability) in dcSSc patients compared to lcSSc. DcSSc are less adaptative to orthostatism than lcSSc. These results 
seem to be in accordance with previous data on baroreflex impairment and orthostatism intolerance in SSc 
patients. Normal vasoconstrictive response to an increase in venous transmural pressure is almost abolished in 
tissues with sclerodermic changes, probably due to sympathetic  neuropathy40. Besides, advanced and fibrotic 
forms of SSc are associated with a blunted orthostatic stress  response9. Finally, orthostatic stress intolerance is 
significantly associated with microvascular damage as assessed by  videocapillaroscopy41. Moreover, in addition 
to the above-mentioned pathophysiological elements, we cannot exclude but have even to retain the potential 
role of the pulmonary abnormalities mainly observed in the dcSSc patients and characterizing restrictive lung 
disease in the loss of HRV nonlinear properties. It is well-known that lung expansion magnitude determines 
respiratory sinus arrythmia that is a major component of heart rate variability through vagal  activity42–44. Now, 
we have precisely documented that dcSSc exhibited more frequently restrictive syndrome than lcSSc and that 
the presence of a restrictive syndrome was correlated with HRV differences at rest, during orthostatism, and 
changes induced by stand-up test.

SSc subtypes and SSc phenotyping
SSc phenotyping into dcSSc and lcSSc remains a daily challenge for practitioners as clinical form phenotype is a 
determinant of prognosis and care strategy of the  disease1. In 2019, Sobanski et al. used 24 clinical and serological 
variables to cluster 6927 SSc patients in an elegant data analysis  study45. The first 2 clusters overlapped the usual 
dcSSc and lcSSc subtypes but authors showed that these 2 clusters may not capture the complete heterogeneity 
of the disease, several other clusters being associated with differential survival rates. They concluded that organ 
damage should be taken into consideration. Among other criteria that could help SSc phenotyping, HRV has 
been previously  studied3–6,9. Nevertheless, no major difference had been previously robustly documented and 
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no operational tool has been developed and tested for a real-life application. Through this study we provided 
SSc subtypes clinical forms classifying models based on HRV parameters usable at the patient’s bedside. Several 
models are provided, more or less complex, but reasonably easy to compute for a daily use, with different per-
formances allowing the clinician to choose the most appropriate for his medical purpose. The easiest models are 
that provided by our secondary outcomes. HRV can model SSc skin extent trough linear regressions and model 
respiratory function, mainly the presence of a restrictive syndrome, through logistic regressions. The first being 
part of the very definition of SSc clinical forms, the second being a highly known pathological status associated 
with dcSSc. Nevertheless, the efficient models  (R2 > 0.5) are quickly complex in terms of number of included 
variables and interpretability. As shown in Table 2, most of the lung function test variables were significatively 
different in lcSSc and dcSSc. But most of these variables are correlated and mostly were highly predictable by 
linear regression models (results not shown). Because of this data high collinearity, probably because of a causal 
link that could be a limited stretch reflex from the restrictive lungs (neither demonstrated nor documented in 
this work), we had to provide a specific methodology to extract the most informative variables that we performed 
through features engineering step. To our knowledge, we propose for the first time a whole functional test of 
cardiovascular function, usable at the patient’s bedside that includes: (1) a 15-min (10 min decubitus, stan-up, 
5 min orthostatism) 1-lead numerical ECG recording, (2) the estimation of 1 to 5 HRV metrics easy to compute, 
and (3) a simple classifying model using machine learning approaches. Locally, we have chosen the GBM 4-vari-
ables classifying model including SD2_delta, CorDim_delta, SD2_S2, and mean_HR_S2 HRV indexes as it has 
the best specificity and F1-score compromise. Nevertheless, the 1-variable model including the only CorDim 
has the best sensibility–specificity combination while its F1-score is the lowest (0.82) of the tested models that 
is, in data science an honorable performance. Finally, the choice of the model has to be driven by the underlying 
medical question and expectation.

Limits
Physiological interpretation
A first potential limitation of this study is that we did not directly assess sympathetic and parasympathetic tones 
by neurography. Physiological and physio-pathological interpretation of the models is then not obvious. We used 
indirect indexes (spectral powers) from spectral analysis of RRI time series that are known to capture only linear 
properties of HR dynamics. Nevertheless, in stationary conditions, LF_power and HF_power, expressed in  ms2 as 
well as in normalized units, are largely thought to reflect sympathetic and parasympathetic modulatory effects on 
sinus node  activity13. As previously discussed, compiling knowledge on effects of sympathetic and vagal activity 
on HRV suggests that the HRV power spectrum, including its low frequency component, is mainly determined 
by the parasympathetic  system30. Thus, LF-power and HF_power are said to be of limited interest in some physi-
ological conditions, especially during interacting processes that, by definition, lead to nonlinear  behavior46,47. 
In relation to the complexity of the sinus node activity modulation system, predominantly nonlinear behavior 
must be assumed, explored, and interpreted.

Length of time series
A second potential limitation of this study is the number of points constituting the analyzed time series. On one 
hand, the length of RRI time series used to perform linear time- and frequency-domains HRV analysis is usually 
set to 5  min13. The value of the scaling exponent is mostly defined by the dynamics of the short-time variability. 
On the other hand, and oppositely, exploring nonlinear dynamics as the dimensionality of the space spanned 
by the data, particularly when using CorDim, requires long time series to be reliably  computed48. Time series 
are supposed to include  10CorDim data points, i.e., around 10,000 data points should be used. Using only and 
approximately 400 data points per time series, we can’t consider that CorDim we computed represent robustly 
and reliably the whole concept and the underlying properties defined by the correlation dimension. But decidedly, 
the computation we performed (that of CorDim, i.e., the correlation sum) on 400 data points time series led to 
a metrics that was statistically characterized as sensitive, reliable, stable and discriminant marker. Accordingly, 
we then highlight that the interpretation of the time behavior of the RRI time series and HR dynamics should 
be made with caution: The CorDim changes we measured are not necessarily the results of the changes in the 
scaling behavior of the heart rate dynamics. Specific studies should test this hypothesis.

Design of the study
A third limitation of the study could be the necessary precaution to take before generalizing these results. Most 
of the previous studies were designed as sex and age matched groups analysis. On the contrary, we have taken 
60 consecutive patients and did not perform specific matching. As shown in Table 1, no age or sex difference 
appeared but height was significantly different in dcSSc and lcSSc. Three points needs to be addressed to consoli-
date conclusions: even if our sample size was sufficient for data analysis and to provide, in fine, a validated set of 
models, sample size has not been calculated on all variables of interest of the study that has not been designed 
accordingly; no matching has been made on any variable; and no early-stage disease group has been identified 
since all patient had already their diagnosis. Ormea et al.25 showed that autonomic degeneration was independ-
ent of tissue and vascular alterations, as severe nerve damage was already present in apparently healthy skin. He 
suggested that ANS modification takes place before vascular damage and tissue fibrosis occur. Moreover, Ormea 
stated that ANS dysfunction is a main factor in the development of the disease. Accordingly, further studies on 
a larger dataset are needed to confirm and generalize our first results, particularly with the aim to use the clas-
sifying models as a predicting tool when used at the early-stage of the disease.
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Conclusion, contribution and prospects
In conclusion, this study provides high performance classifying models able to distinguish dcSSc from lcSSc 
based on only 1 to 5 HRV indexes used as markers of autonomic integrated influences on cardiac activity. The 
best classifying model are a gradient boosting machine and a neural network reaching a 0.94  F1-score that include 
4 HRV indexes capturing nonlinear properties of HR dynamics. Even if the division of SSc in dcSSc and lcSSc 
gives mainly a clue of clinical and prognostic stratification, knowing as soon as possible the clinical subtype may 
impact patient’s care. Easy to compute at the patient’s bedside, these classifying models need external validation 
step and have to be tested to predict subtype and clinical form at the early-stage of the disease before an intensive 
daily medical use.

Data availability
The data that support the findings of this study are available from Assistance Publique–Hôpitaux de Marseille, 
Marseille, France, but restrictions apply to the availability of these data and so are not publicly available. Data 
are however available from the authors upon reasonable request and with permission of Assistance Publique–
Hôpitaux de Marseille, Marseille, France.
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