
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10838  | https://doi.org/10.1038/s41598-024-60527-3

www.nature.com/scientificreports

Enhancing renewable energy 
certificate transactions 
through reinforcement learning 
and smart contracts integration
Qingsu He 1,4*, Jingsong Wang 2*, Ruijie Shi 1, Yifan He 3* & Muqing Wu 4

Given the complexity of issuing, verifying, and trading green power certificates in China, along 
with the challenges posed by policy changes, ensuring that China’s green certificate market trading 
system receives proper mechanisms and technical support is crucial. This study presents a green 
power certificate trading (GC-TS) architecture based on an equilibrium strategy, which enhances the 
quoting efficiency and multi-party collaboration capability of green certificate trading by introducing 
Q-learning, smart contracts, and effectively integrating a multi-agent trading Nash strategy. Firstly, 
we integrate green certificate trading with electricity and carbon asset trading, constructing pricing 
strategies for the green certificate, carbon, and electricity trading markets; secondly, we design a 
certificate-electricity-carbon efficiency model based on ensuring the consistency of green certificates, 
green electricity, and carbon markets; then, to achieve diversified green certificate trading, we 
establish a multi-agent reinforcement learning game equilibrium model. Additionally, we propose an 
integrated Nash Q-learning offer with a smart contract dynamic trading joint clearing mechanism. 
Experiments show that trading prices have increased by 20%, and the transaction success rate by 30 
times, with an analysis of trading performance from groups of 3, 5, 7, and 9 trading agents exhibiting 
high consistency and redundancy. Compared with models integrating smart contracts, it possesses a 
higher convergence efficiency of trading quotes.
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Amid rising global attention to climate change, the development and use of renewable energy has become crucial 
for reducing greenhouse gas emissions and achieving sustainable development goals. In China, the world’s 
largest energy consumer and carbon emitter, developing zero-carbon energy and promoting renewable energy 
consumption through green certificates (GCs) are essential for meeting increasing energy needs and striving 
to achieve carbon neutrality by 2060. Consequently, China has introduced measures such as the Renewable 
Energy Portfolio Standards (RPS)1,2 and Tradable Green Electricity Certificates (GEC) systems to encourage a 
shift towards sustainable energy production and consumption through market incentives.

The experiences of the United States, the United Kingdom, Italy, Norway, and Sweden provide valuable lessons 
for China, demonstrating the effectiveness of market mechanisms in promoting renewable energy development.

Due to varying policies and green certificate initiation times across countries, international green certificate 
systems also face limitations, especially in terms of policy impact and market adaptability, such as price volatility 
and regulatory challenges that could undermine investor confidence and the economic viability of renewable 
projects. To enhance the efficiency and adaptability of the green certificate market, innovative methods are being 
explored, including the use of blockchain technology and the development of green financial products, as well 
as international cooperation.

Moreover, China’s green certificate market still confronts numerous  challenges3, including the complexities 
of issuance, verification, and trading, and the impact of policy changes. The current lack of a market-based 
trading system hampers the interconnectivity of electricity trading, carbon emission rights trading, and the 
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realization of the environmental attributes of green certificates. The absence of an effective pricing mechanism 
and sufficient market incentives has led to low transaction volumes, highlighting the urgent need to improve 
the green certificate trading framework, increase transaction efficiency, and transparency to promote renewable 
energy  development4.

In light of these issues, this study proposes a zero-carbon energy green certificate trading system (GC-
TS) architecture based on a balanced strategy, integrating Q-learning, smart contracts, and multi-agent Nash 
strategies. This aims to address current market problems, enhance transaction efficiency, and foster collaboration, 
making significant contributions to sustainable development goals in China and globally. Through this 
comprehensive strategy, the goal is to push the green certificate market towards higher efficiency, transparency, 
and intelligence, ensuring the harmonious coexistence of economic growth and environmental sustainability.
The main contributions are: 

1. To establish a multi-intelligence reinforcement learning game equilibrium model with the goal of diversified 
GC trading;

2. Introducing smart contracts to optimize the game equilibrium efficiency of multi-intelligents participating 
in trading, and establishing a trading system framework.

Literature review
The global transition to sustainable energy sources necessitates the development of mechanisms like green 
certificates (GCs) to incentivize renewable energy production. Scholars from China, Europe, America, and 
other regions have extensively researched and explored issues related to the market mechanisms and models of 
 GCs5–19, technological innovations including blockchain and artificial intelligence platform  technologies20–37, 
policies and economic strategies and market  changes10,19, 38–45.

Researchers worldwide, especially in China, Europe, and the United States, have thoroughly explored the 
rules of the green certificate  market5–8, circulation  methods9, price  simulations10, and market  models11,12. 
Through trading  games13–15, equilibrium  models16, the integration of electricity markets with green certificate 
 markets17–19, the coupling of green certificates with carbon  emissions46,47, market  combinations48, the impact of 
carbon  pricing49, and the effect of electricity  load50, scholars aim to understand and optimize the dynamics and 
efficiency of the GC market.

With the evolution and development of information processing technology, utilizing blockchain and artificial 
intelligence in the pricing system of GCs, trading strategies, and optimizing transaction efficiency has become an 
important means in the design of new generation trading technology frameworks. The application of blockchain 
 technology20–23, 51, smart  contracts25,26, transaction information  processing27–30, and platform  design31,32 has 
offered new possibilities for GC trading. These technological innovations not only enhance the transparency 
and efficiency of transactions but also promote the security and reliability of the market.

Research also involves the policies and economic strategies of  GCs38,46, especially analyzing how renewable 
energy tariff surcharge subsidies, subsidy settlement cycles, delay cycles, and consumer preferences affect the 
sales price of GCs. These strategies aim to improve the market price advantage of  GCs52, thereby promoting the 
consumption of renewable energy.

In the GC market, the strength of the herding effect determines the average compliance cost level, and the 
strategic behavior of market participants mainly affects the stability of the GC price, with greater price volatility 
leading to slower convergence to the equilibrium  price39. To address the regional imbalance of energy supply and 
demand in China,  literature53 has established a cross-regional GC futures model. Additionally, research has used 
game  models40–44, self-conclusive and variational particle swarm optimization  algorithms45, and other methods 
to assess the synergy and incentives of  electricity54, GPMs, and the GC market on the decision-making behaviors 
of non-renewable energy generation  companies55,56, GPMs, and electricity purchasers.

The application of reinforcement learning and Q-learning in financial market  forecasting33, learning trading 
rules for specific financial  assets34, and improving financial trading  decisions35 offers a new perspective for GC 
trading strategies. Particularly, deep Q-learning in the algorithmic trading system for the commodity futures 
 market36 and the design of a supply chain carbon allowance allocation auction based on multi-agent modeling 
and Q-learning37,57,58 demonstrate the potential of AI technology in energy management and GC trading.

Despite the challenges posed by the complexity of issuing, verifying, and trading GCs, as well as policy 
changes, the development of the GC market can be effectively enhanced by integrating technological innovations 
and advanced trading strategies, such as reinforcement learning and smart contracts. Future research needs to 
focus on further integrating these technologies and strategies, as well as addressing challenges specific to the 
Chinese market, to contribute to the healthy development of the global GC market.

Green certificate framework: Methods and lifecycle
The trading model for GCs primarily comprises two components: GCs bundled with green power (as Fig.  1) 
and standalone GCs (as Fig.  2).

The trading of Green Certificates (GCs) alongside green power represents a dual model that integrates both 
“certificates and power.” This model enhances the traceability of green power throughout its entire lifecycle 
and aligns the value of green power with environmental benefits. In the process of green power transaction 
settlements, the power trading center allocates GCs based on various data points that have been mutually agreed 
upon by the involved parties. The established framework, as depicted in Fig.  1, ensures a harmonized flow 
of green power and the corresponding GCs, thereby simplifying trading processes and strengthening market 
participation.
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Independent trading certificates allow renewable energy producers to trade on a voluntary subscription 
platform, where buyers select GCs through the interface and complete their subscription via negotiation, 
listing, or auction. Although this method overcomes geographical limitations of electricity transmission, it faces 
challenges: the platform’s inability to integrate electricity market data makes it difficult to bridge the gap between 
“certificates and electricity,” and there’s a lack of a quantified relationship between GCs and carbon credits for 
achieving net-zero carbon. NREI will issue a certificate (One Ps./MWh) based on a certain proportion of green 
power traded, forming a tradable GC. Generally speaking, grid companies, power sales companies, power users, 
and carbon emission enterprises (such as fossil energy power plants) constitute the main body of the quota. 
QEs fulfill their social responsibilities of green environmental protection, carbon reduction, and low carbon by 
purchasing GCs. GC life cycle is divided into three stages: issuance, Transactions, and verification.

Revenue model: based on green power manufacturers and quota enterprises
GPMs sell GCs in the trading market to subsidize their initial investment costs. The price of the GC will be 
affected by time, region, supply and demand tension, and other factors. The total revenue of the GPM settle-
ment cycle ugpm includes electricity sales revenue Irep , government subsidy income I(rep,subs) , and GC transaction 
revenue Igc.

Figure 1.  Framework for green certificates to accompany green power trading in China.

Figure 2.  Schematic diagram of the green certificate and green electricity separation trading method.
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where �gc is the price of GCs, Qgc is the quantity of GCs,�ep is the on-grid price of renewable energy power gen-
eration, and Qep is the electricity generation of RE,Cep is the cost of generation of the RE. It is assumed that this 
work does not consider the impact of government subsidy income I(ep,subs) on total income. Equation (1) can 
be expressed as:

where �epp,t and Qep
p,t are the online trading electricity price and trading electricity quantity of GPMs in times(t) 

, �gcp,t , Q
gc
p,t are the transaction price and transaction quantity of GCs of GPMs in times(t).

where �costp,t  is the unit cost of electricity generated by renewable energy,mic,p is the installed capacity of renew-
able energy, and �p,t is the monthly utilization hours of renewable energy generation. Assume that all renewable 
energy traded electricity will receive GC, satisfying mic,p ∗ hp,t = Q

ep
p,t . Equation (2) can be simplified as follows:

without considering other commercial values of GC in Eq. (4), we consider that its market transaction price can 
be determined by green power cost, revenue balance and opportunity cost.

The utility function of the QE corresponds to its cost function, and the model is as follows:

where uqe is the total cost of the QE, �ep is the on-grid electricity price (the fixed electricity price model will be 
used in this work),�gc is the GC transaction price of the QE,Qgc is the GC transaction volume of the QE. �co2p,t  is the 
price of carbon.γp,t is the ratio of income generated from the production and operation of enterprises using renew-
able energy (We take the reciprocal of carbon emission intensity of QE as the calculated value of γ in this work).

To reflect the characteristics of the seller’s market in the function, this work supplements the function ϕ(Qgc
p,t) 

as a component in the cost function of the QE, which represents the ability of a QE to independently complete 
a certain amount of quota.It is also a functional relationship between the actual GC transaction volume and a 
certain percentage of the quota. In this work, the quota completion capability function is a constraint rather 
than a real cost for the QEs. QE needs to consider whether it can meet the quota requirements when bargaining 
with GPMs and adjusting the transaction volume strategy. ω is the carbon asset conversion rate corresponding 
to the GC (and the quota rate of the QE). Where Π(co2,qe)

p,t  is the actual GC trading volume of the enterprise that 
offsets the carbon quota quantity.We ignore the impact of income change trend. In addition, the price of GCs 
and the price of carbon assets meet a certain linear relationship (the coefficient is η ): Π(co2,qe)

p,t = γp,t ∗ η ∗ Q
gc
p,t 

So transformed Eq. (5) as follows:

Equation (6) establishes the correlation between carbon allowances, green certificates, and carbon intensity. 
Equations (4), (6) provide quantitative relationships for game equilibrium, trading offer optimization, and rein-
forcement learning convergence.

Algorithms combining game strategies: Q-learning and smart contracts
Game and green certificates
We define the multi-agent collaborative trading game, G = �P, S,U� . Where P is the set of QEs, GPMs of GCs, 
P = 1, 2, ..., n ; S is the set of possible strategies to be executed by the transaction; Si is the action strategy of 
each buyer(seller) in the team, and each buyer(seller) makes the corresponding action according to the cur-
rent surroundings and the environment of other participants. The strategy of each Agent can be formalized as 
(A1

t ,A
2
t , ...,A

n
t ) , and U is the payoff function, which denotes the gain or loss after executing the strategy.

In dynamic and complex environments, the information acquired by agent in a multi-Agent system may be 
complete or incomplete. Let the environment in which a multi-Agent system is located be X, and Xt denotes 
the environment in which the multi-Agent system is located at moment t. Let the set of agent observable envi-
ronmental states be St , Sit = f (Et) , and St = (S1t , S

2
t , ..., S

n
t ) be the joint observation in the system at moment t, 

denoted by S =
∏

i∈N Si . Let the set of agent actions be A, Ai is used to denote the set of actions of agent i, the 

(1)ugpm = Iep + I(ep,subs) + Igc − Cep = I(ep,subs) +

T
∑

t=1

(�
ep
t ∗ Q

ep
t + �

gc
t ∗ Q

gc
t )− Cep.

(2)ugpm =
∑

p∈P

∑

t∈T

(�
ep
p,t ∗ Q

ep
p,t + �

gc
p,t ∗ Q

gc
p,t)− Cep

(3)Cep =
∑

p∈P

∑

t∈T

(mic,p ∗ �p,t ∗ �
cost
p,t )

(4)

{

ugpm =
∑

p∈P

∑

t∈T ((�
ep
p,t − �

cost
p,t ) ∗ Q

ep
p,t + �

gc
p,t ∗ Q

gc
p,t)

s.t.Q
ep
p ≥ Qc

p, �
ep
p ≥ �

cost
p

(5)

{

uqe =
∑

p∈P

∑

t∈T (γp,t ∗ Q
ep
p,t + �

co2
p,t ϕ(Q

gc
p,t)− �

gc
p,t ∗ Q

gc
p,t)

ϕ(Q
gc
p,t) = ωQ

gc
p,t +Π

(co2,qe)
p,t

(6)

{

uqe =
∑

p∈P

∑

t∈T (γp,t ∗ Q
ep
p,t + �

co2
p,t ϕ(Q

gc
p,t)− �

gc
p,t ∗ Q

gc
p,t)

ϕ(Q
gc
p,t) = ωQ

gc
p,t + γp,t ∗ η ∗ Q
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p,t
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set of actions of agent is denoted by A( A =
∏

i∈N Ai ), and from the impact on the environment of the actions 
taken by each agent at the moment t of the observed environment Ai

t ∈ Ai , the joint action between multiple 
participants (A1

t ,A
2
t , ...,A

n
t ) will also affect the state of the environment in which it is currently located.

Let the state transfer function be T, Tt : S × A → S , denoting the possible impact on the environment through 
collaboration between a trader and other transactions in a particular environment.

Let the Agent payoff function be U, Ui = S × A → U  , denoting the payoffs after the actions taken by agent 
i to accomplish a task in a multi-agent system. Agent’s goal set G = G1,G2, ...,Gn , Gi denotes the goal of each 
agent in the multi-agent system, which can usually be expressed by using the payment function U, and there may 
be multiple relationships between the goals of each agent i: when the goals are consistent, the completion of the 
goals between the Agents is mutually reinforcing; when the goals conflict, there is a conflict of interest resources. 
If there exists a joint action a∗ ∈ S that satisfies the conditions: ∀I ∈ P , ∀ai ∈ S,U(a∗i , a

∗
i−1) ≥ U(ai , ai−1) , then 

a∗ is said to be a Nash equilibrium of the game G.
According to Eqs. (4), (6), the GMP revenue function is a quadratic function of the green power transaction 

and GC market price, with a coefficient of not less than zero and a “convex” property.Therefore, the game model 
considered has Nash equilibrium.Through the process of establishing the above mathematical model,the GC 
trading price ( �ep, �gc ) is established based on the transformation of the interests of the participating subjects. 
The trading subjects derive the optimal strategy based on the combination of variables( Qep

i,t,Q
gc
i,t,Π

co2,qe
i,t  ) and 

adjustment coefficients ( γi,t , η,ω ), and thus determine the Nash equilibrium point.Considering the introduction 
of non-convex characteristics of decision variables in equation. The traditional solution algorithm has certain 
difficulties, so this paper adopts the Therefore, this paper adopts a multi-agent Nash-Q reinforcement learning 
algorithm and Smart matching of bidding under smart contracts.

Q-learning-based strategy analysis and green certificate trading process
Q-learning have been heavily researched in finance, especially in stock trading, and in the energy field focusing 
on energy management. Given the attributes of GCs and the market participants in the transaction subject, in 
addition to the different liquidity, the mode of its transaction can be referred to. So,we combine multi-agent 
reinforcement learning with game theory and construct a framework for applying multi-participant bidding 
games in GC markets using multi-agent Nash-Q reinforcement learning. Agents try out rewards or punishments 
given by the environment during the learning process and gradually develop expectations about incentives to 
formulate reward-maximizing strategies. We adopt the Q-learning algorithm in reinforcement learning, which 
involves four kinds of parts: (1) Q-table, Q(s, a1, ..., an) is the cumulative value of executing a action in state s, 
(2) selecting action a, (3) making action and environment feedback, 4) environment update. During its process 
Agenti observes the surrounding environment and executes the actions in the action strategy set. At time t, Agenti 
acts ai , while feedback gain R(St , ai) , updates the Q-value table, and repeats the above process until the end of 
the task. The value of Q(St , ai) can be expressed as: Q(St , ai) = R(St , ai)+ βmaxQ(St + 1, ai + 1) , where a is an 
action in the action strategy set; β (0 ≤ β ≤ 1) is influence factor.

The GC seller GPMs make a joint action offer based on the green power trading price, generation efficiency, 
and environmental status such as cost recovery cycle and carbon asset. Therefore, a reinforcement learning 
algorithm is added to the set of trading strategies to improve the set of strategies selected by the participants’ 
actions. the set of strategies at moment t is denoted as St : St ⊆ R . The purchaser and seller of GCs choose their 
respective offer actions at a certain moment t.

The purchaser can separately compute the payment matrix Ut of the purchaser for both parties under dif-
ferent strategy choices based on the defined payment function. It is difficult for buyers (QEs) to be informed 
of the state-action values Q of sellers (GPMs) to accurately find suitable strategies to cope with them, so we 
incorporate Q-learning methods to learn the action-state values of GPMs and adjust them to a targeted set of 
trading strategies.The game strategies of GPMs are learned through reinforcement learning to develop suitable 
bidding strategies for buyers.

The learning task of Step-T cumulative reward is added to the algorithm, starting from the ini-
tial state of the offerer, so that the offerer obtains an offer trajectory of GPMs with Step-T after learn-
ing:�x0, a0, r1, x1, a1, r2, ..., xt−1, at−1, rt , xt� . In order to obtain the optimal strategy, the ε − greedy algorithm 
is introduced, which selects one action uniformly at random from all actions with probability ε . The current 
optimal action is selected with probability 1 - ε , and the identified strategy is labeled as the “original strategy”. 
The policy that uses the ε − greedy algorithm in the original policy is denoted as Eq. (7):

In GC trading process ,the sum of cumulative rewards for each pair of state-action Q in the trajectory is recorded 
as a one-time sampling value of cumulative rewards with respect to the GC seller. When multiple GC seller tra-
jectories are obtained by sampling the GC seller multiple times, the cumulative reward sampling values obtained 
multiple times will be averaged using Eq. (8) to obtain an estimate of Q.

During the Nash-Q intensive learning process for GC trading based on GPMs, QEs, and other participants, the 
corresponding iterative refinement of the Q-table is illustrated in Algorithm 1. To validate the effectiveness of 
Nash Q-Learning in optimizing GC trading and enhancing sustainability by promoting the increased use of 
renewable energy sources, a comprehensive experimental setup and an evaluation strategy are essential. We 

(7)π(a|s) =

{

1− ε + ε
|A(s)| , if a = argmaxaQ

π (s, a)
ε

|A(s)| , if a �= argmaxaQ
π (s, a)

(8)Qn(k) =
1

n
((n− 1)× Qn−1(k)+ un) = Qn−1(k)+

1

n
(un − Qn−1(k))
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employ the trade-off between exploration and exploitation, known as the Exploration-Exploitation Tradeoff ( ǫ
-greedy).

Algorithm 1.  Collaborative algorithms based on game theory and Q-learning.

Smart contracts and transaction execution
In this work,we integrate game models with smart contracts to solve the bargaining, consensus cooperation, and 
trading equilibrium problems in GC trading. Based on the Nash equilibrium strategy, a trading contract script 
under smart contract is established to dynamically implement the trading strategy (NES-SC).

The GC trading game model, coupled with the operational mechanics of smart contracts, guarantees that 
all transaction and management parties can dynamically and intelligently complete transactions within given 
constraints. To ensure a systematic approach to equilibrium and market clearing, the execution flow of this 
process is outlined in Algorithm 2. 

Algorithm 2.  NES-GC Process Improvement for Smart Contracts.

Results and analysis
Basis of data
In this paper, we focus on the demand for Green Certificates (GCs) from enterprises in thermal power, chemical 
industry, iron and steel, and cement sectors within China’s eight major carbon emission categories. Three GC 
supply enterprises are selected to partake in the simulation transaction. The relationship between GC price, green 
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power trading price, and carbon asset price is delineated as Eq. (5). The convergence and trading return behavior 
are governed by Eqs. (4), (6), with carbon emissions intensity data referenced in Table 1,and the methodological 
framework for logical relationships between models (Fig. 3).

This study simulates the Nash bargaining scheme for bilateral GC transactions, utilizing historical data of 
Wind-GC. CQ-fulfilling enterprises across different industries in 2020 are chosen as Qualified Entities (QEs) 
(see Table 1). In the case study, four QEs and three Green Power Markets (GPMs) (Wind) are selected to engage 
in the gaming process to substantiate the analysis. The algorithms 1, 2 are coded and executed in python3.9.

In addition, we take the base price as 0.43 (CNY)/kWh,the operating cost as 0.2 (CNY/kWh), ω=0.96 (t./MWh) 
and combine the data in Table 1 (* is the estimated data of Zhong Chuang Carbon Investment & Finance maga-
zine. Enterprises marked with ⋆ have their own disclosure, and enterprises marked with blank use their own pub-
lic disclosure of data.) to verify the analysis.In this paper, we set �∗gpm,1(0) = 210, �∗gpm,2(0) = 200, �∗gpm,3(0) = 196

.

Figure 3.  Methodological framework for logical relationships between models.

Table 1.  Carbon emissions of CQ companies (2020, extracts from Chinese listed companies, CNY).

QEs Enterprise attributes Revenue (10 kt) Carbon emissions (100 million CNY)
Carbon emission intensity (tons/10k 
CNY) Data source

QE-1 Non ferrous 1860 8904 4.79

QE-2 Steel 370 1758 4.75 ⋆

QE-3 cement 71 1430 20.06 *

QE-4 Comprehensive 4645 4337 0.93

QE-5 Power plant 142 3694 25.98 ⋆

QE-6 Coal 338 3026 8.97 ⋆

QE-7 Petrifaction 21,060 17,094 0.81

QE-8 Shipping 1713 2084 1.22

QE-9 Communication 3038 1423 0.47

QE-10 Chemical industry 167 831 4.98
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Analysis of results
In the results analysis section, we present the performance of the GC-TS architecture and trading mechanism 
through simulations and experimental validation under varying market conditions and policy environments. 
By establishing a multi-agent reinforcement learning game equilibrium model and proposing a Nash Q-learning 
offer clearing mechanism, as well as integrating smart contracts to facilitate smart trading, we aim to validate the 
analysis of the convergence efficiency of the trading offer game, trading efficiency, and optimized trading benefits.

Convergence analysis
In Fig. 4, we observe the following: 

1. On the Q-value Analysis aspect, Fig. 4a shows the Q-values of the Nash Q-learning algorithm for both 
photovoltaic (PV-GCs) and wind (WD-GCs) green certificates without the integration of smart contracts. 
The Q-values for photovoltaics tend to be slightly higher than those for wind, suggesting that photovoltaic 
projects might expect slightly higher returns in the simulated trading environment. In Fig. 4b, when smart 
contracts (SC) are introduced, the Nash Q-learning with SC demonstrates Q-values that stabilize at higher 
iterations with less fluctuation, indicating that smart contracts might offer additional stability to the trading 
process.

2. On the Convergence speed, Fig.4a indicates that the system begins to show convergence behavior after 
1.6× 104 iterations. In contrast, Fig. 4b shows the onset of convergence earlier, after just 9× 103 itera-
tions, suggesting that the integration of smart contracts may accelerate the convergence speed of the Nash 
Q-learning algorithm.

3. On consistency of GC trade clearing, both Fig. 4a and b, the stability of Q-values within the convergence 
interval signifies a consistent clearing process. This means that as learning progresses, trading strategies for 

Figure 4.  Convergence analysis of green certificate trading.
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both types of green certificates begin to align, with agents finding more optimal strategies for maximizing 
returns.

In summary, the analysis of these two Fig. 4a,b reveals the potential advantages of the Nash Q-learning model 
integrated with smart contracts in terms of convergence speed, stability, and consistency of trading strategies. 
These advantages may bring significant benefits to actual green certificate trading, thereby promoting the use of 
renewable energy and the overall development of the market.

Price analysis
Figure 5 shows a simulation of how the bid prices of the two players change over the episode. The Nash 
equilibrium is represented by the green solid line, with the Episode outside the 5000 range and bids converging 
to the value of the Nash equilibrium. The chart displays the evolving dynamics of offer prices from two groups 
of agents involved in the green certificate market, categorized as Agent Set I and Agent Set II, within a Nash 
Q-learning framework. Their pricing strategies are informed by the current green power price(π(co2,em) ), carbon 
asset trading price ( �co2i,t  ), and the last round’s clearing price(�epi,t,�

∗
(gpm,i) ). Regarding the offer trend and adjustment 

(Offset δ� ), the green power price and carbon asset price provide the base price parameters for the trading parties. 
As seen in Fig. 5, these prices generally fall within the range of offers from both sides; the offer adjustment (Offset 
δ� ) indicates that both sides continually adjust their offers in search of market equilibrium. Before reaching 
consistency within the Nash Equilibrium Region, there might be a significant difference in the offers from the 
buyer and seller. The equilibrium trend analysis shows that (1) after initial fluctuations, the offers from both 
trading parties begin to converge toward the equilibrium trend line (dashed green line), indicating the market is 
moving towards stability and consistency; (2) in the chart, around the 2000 to 4000 episode range, offers begin to 
converge within the Nash Equilibrium Region, suggesting that after a series of dynamic adjustments, the market 
has found an equilibrium price acceptable to both sides. Additionally, the analysis of convergence and market 
clearing in the chart found that as the number of episodes increases, the offers from Agent Set I and Agent Set 
II tend to stabilize within the Nash Equilibrium Region. This convergence demonstrates the effectiveness of the 
proposed Nash Q-learning offer clearing mechanism, capable of implementing smart trading by integrating 
smart contracts, thus enhancing trading efficiency and optimizing trading benefits.

Comparison of two algorithms
Using the algorithm 1,2, we compare the speed of convergence after 5000 iterations of 100 3-agent simulations, 
20 5-agent simulations, and 20 7-agent simulations. The game convergence scenario becomes more difficult 
to converge as the number of intelligences increases. This is illustrated by the example runs with 3, 5, 7, and 9 
trading intelligence in Figs.6, 7.

In the Nash Q-learning (NES) and Nash Q-learning & Smart Contract (NES-SC) model model validation 
cases, a total of seven intelligences, QEs, and GPMs, were used to participate in the GC quotation trading. Four 
QEs and three GPMs achieve 10 rounds of quotes in this case. Figure 6a,c are the quotation and strategy spending 
time in NES mode, respectively. The supply and demand sides continuously adjust the price, trading volume, 
and other game strategies, and multiple quotes form a trading trend when k ≥ 5 . There are TR-I, TR-II, TR-III, 
and TR-IV transaction clusters that satisfy the price and volume demands in the offer cycle in Fig.6a, and the 
model cannot guarantee that all demands are satisfied when k = 10 and the transaction is not yet completed. 
The number of offers increases, the amount of information obtained increases, and the time spent by the strategy 
subsequently decreases as in Fig.6c. In the same data case, we performed a case study of NES-SC, and Fig. 6b,d are 
the offer and strategy spend time, respectively. Figure 6b shows that both sides basically complete the transaction 
(two transaction clusters TR-I and TR-II) when k = 7 . Compared with Fig. 6a,c, the transaction success rate of 
both sides is improved and the strategy spending time is shortened. In conclusion, the two methods are consistent 

Figure 5.  Trend analysis of GC price under the model learning process.
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in the trend of quotes, and the NES-SC method is based on the NES model, so both methods can effectively 
support the trading platform, and NES-SC has better advantages in transaction efficiency.

Robustness analysis
To validate the robustness of the green certificate trading model, we increased the complexity of transactions by 
expanding the number of agents involved. The study employs cluster agents representing different industries, 

Figure 6.  Quotation and time period in two models (Nash Q Learning: algorithm1, Nash Q Lerning &SC: 
algorithm 2) in case.
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such as power grid, steel, chemical, and thermal power, with each group consisting of several individual entities 
participating in collective quotation trading.

In Fig. 7, we observe the bidding behavior of agent groups with 3, 5, 7, and 9 agents participating in Nash 
Q-learning and integrated smart contract trading strategies. These charts reflect how agents’ bidding actions 
change over time and attempt to approach the equilibrium line. In Fig. 7a, the bidding behavior of the agents 
exhibits significant fluctuations, which may reflect the uncertainty of decision-making in a smaller group of 
agents. Despite the fluctuations, bids tend to converge toward the equilibrium line over time.As the number of 
agents increases, the volatility of the bidding behavior seems to increase, indicating that reaching a consensus 
becomes more difficult in a larger group. However, over time, bids tend to stabilize and move closer to the equi-
librium line (in Fig. 7b–d). NeverthelessIn,from the Fig. 7c,d, the largest group of agents, despite significant 
volatility, the bidding trends gradually approach the equilibrium line over the long term.So this indicates that 
even in more complex multi-agent environments, the combined strategy of Q-learning and smart contracts can 
still guide groups of agents toward collaboration and equilibrium.

From these simulations, we can conclude that as the number of agents increases, the complexity of the trad-
ing strategy and the difficulty of reaching equilibrium also increase correspondingly. The integration of Nash 
Q-learning and smart contracts is crucial for enhancing the coordination of group behaviors and driving toward 
an equilibrium in trades, especially in complex trading environments involving more agents. These simulations 
emphasize the importance of considering agent diversity and collective behavior patterns when designing green 
certificate trading systems.

Comparison of green certificate trading
As the actual value of GCs in the future carbon neutrality is more and more emphasized by the Chinese 
government, and the value-added benefits of carbon quota enterprises through the carbon offset mechanism of 
GCs are taken into account.

Figure 8 is the analysis of the monthly mean values of the quoted price and trading volume under the gam-
ing strategy of the participating counterparties. The trading model designed in this paper underpins the overall 
transaction price and volume. Using an equilibrium strategy, it swiftly locates the trading point for each partici-
pant, and compared with the trading data from 2021, the transaction volume has increased by up to 30 times. 
The average transaction price induced by the Nash Q-learning strategy (yellow line) is generally higher than the 
actual transaction price (orange line), thanks to the game-theoretic strategy negotiation and bid adjustments of 
the Nash Q-learning model.

In terms of transaction volume, the graph shows a significant peak in Nash Q-learning transaction volume 
(green bar) in the ninth month, which occurs concurrently with the peak of the Nash Q-learning mean price (yel-
low line). The data reveals that the forecasted transaction volume by Nash Q-learning reached nearly 70,000 units, 
whereas the actual volume was only about 2000 units. As for pricing, the predicted price by Nash Q-learning for 
the ninth month reached close to 300 CNY, while the actual price was around 200 CNY. The actual transaction 
volume (red bar) and price (orange line) exhibit some volatility with noticeable peaks and valleys. The transac-
tion volume prediction by Nash Q-learning (green bar) is more stable.

The Fig. 8 illustrates the potential value-added benefits of applying the Nash Q-learning strategy in the GC 
market, reflecting its capability to quickly locate optimal trading points for participants, potentially leading to 

Figure 7.  Robustness analysis of green certificate trading models.
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an increase in price and volume compared to historical data. This aligns with the objective of enhancing the 
effectiveness of the GC trading model and the carbon offset mechanism in the context of carbon neutrality goals.

Conclusion
Given the complexity of issuing, verifying, and trading GCs in China, coupled with the challenges brought forth 
by policy shifts, it is imperative to ensure that the market-based GC trading system is bolstered by adequate 
mechanisms and technological support. This study proposes an architecture for a zero-carbon energy Green 
Certificate Trading System (GC-TS) that leverages an equilibrium strategy, enhancing the efficiency of GC trading 
quotes and facilitating multi-party collaboration through the incorporation of Q-learning, smart contracts, and 
an effectively integrated multi-agent Nash strategy. Initially, the system integrates GC trading with electricity 
and carbon asset markets, formulating pricing strategies across these domains. Subsequently, a certificate-elec-
tricity-carbon efficiency model is designed to maintain consistency across the GC, green electricity, and carbon 
markets. Aiming for diversified GC trading, a multi-agent reinforcement learning game equilibrium model is 
established, alongside a Nash Q-learning offer clearing mechanism that employs smart contracts for intelligent 
trading, thereby increasing the convergence efficiency of the trading offer game and enhancing trading efficacy 
while optimizing benefits for all parties involved.

In summary, this research plays a constructive role in advancing the development of renewable energy in 
China. It highlights the scalability of the GC-TS and its potential as a reference model for future GC trading 
platforms in China. The system offers a swift avenue for green power producers to subsidize the costs of renew-
able energy generation through GC proceeds, facilitating the involvement of carbon quota enterprises in carbon 
emission responsibility compliance, and promoting the growth of renewable energy sources.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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