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The solitary solutions 
for the stochastic fractional 
Chen Lee Liu model perturbed 
by multiplicative noise in optical 
fibers and plasma physics
Wael W. Mohammed 1,2*, Naveed Iqbal 1, Rabeb Sidaoui 1 & Monirah W. Alshammary 1

In this paper, we consider the stochastic fractional Chen Lee Liu model (SFCLLM). We apply the 
mapping method in order to get hyperbolic, elliptic, rational and trigonometric stochastic fractional 
solutions. These solutions are important for understanding some fundamentally complicated 
phenomena. The acquired solutions will be very helpful for applications such as fiber optics and plasma 
physics. Finally, we show how the conformable derivative order and stochastic term affect the exact 
solution of the SFCLLM.
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Stochastic evolution equations are mathematical equations used to interpret the evolution of a system over 
time, taking into account both deterministic and random influences. They are widely used in various scientific 
disciplines, including physics, biology, and finance, to analyze complex systems that exhibit random  behavior1,2. 
Stochastic evolution equations provide a powerful framework to study the dynamics of such systems, allowing 
scientists and researchers to better understand their behavior and make predictions. Because of the relevance of 
stochastic evolution equations, various methods have been developed to solve them, including He’s semi-inverse3, 
mapping  method4, Jacobi elliptic function  method5, Riccati equation  mapping6, modified tanh–coth  method7,8, 
modified fractional sub-equation  method9, exp-function  method10, and so on.

On the other hand, fractional evolution equations provide a powerful mathematical tool for modeling and 
understanding complex systems with long-range interactions. By incorporating fractional derivatives into the 
equations, these models can capture memory effects and interpolate between different classes of differential 
equations. The diverse applications of fractional evolution equations make them a valuable tool for research-
ers in various fields to analyze and simulate a wide range of phenomena, leading to a deeper understanding of 
complex  systems11–15. Recently, there are numerous useful and effective techniques for solving these problems, 
such as modified simple equation  method16, first integral  method17, generalized Kudryashov  method18, extended 
tanh–coth  method19–21, exp-function  method22, Jacobi elliptic  function23, F-expansion  technique24, and etc.

In this paper, we consider the stochastic fractional Chen Lee Liu model (SFCLLM) as  follows25:

where G is the the normalized electric-field envelope, Dα
x  is a conformable fractional derivative (CFD), a, b and 

ρ are positive constants, and Bt = ∂B
∂t

 is the derivative of the Brownain motion B(t).
Due to the importance of the Chen Lee Liu model in fiber optics and plasma physics, many authors have 

used several methods in order to acquire the analytical solutions for this model such as Laplace Adomian 
decomposition  method26, chirped W shaped optical  solitons27, Darboux  transformation28, modified extended 
tanh-expansion  method29, Sardar sub-equation  method30, Riccati–Bernoulli and generalized tanh  methods31, 
( G′

/G, 1/G)-expansion  approach32, extended direct algebraic  method33, and modified Khater  method34.

(1)iGt + aD
α
xxG + ib|G|2Dα

x G = iρGBt ,
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The purpose of this paper is to create the exact solutions of the SFCLLM (1). We apply the mapping method 
to produce a variety of solutions for instance hyperbolic, trigonometric, rational, and elliptic functions. Fur-
thermore, we use Matlab program to create 2D and 3D graphs for some of the analytical solutions established 
in this paper to address the impact of the conformable fractional derivative and time-dependent coefficient on 
the acquired solutions of the SFCLLM (1).

The paper is organized as described below. In “Conformable derivative”, we define the CFD and describe some 
of its features. To attain the wave equation of the SFCLLM (1), we utilize an appropriate wave transformation 
in “Wave equation for SFCLLM”. In “The solutions of the SFCLLM”, we find the exact solutions of the SFCLLM 
(1) using the mapping method . In “Impacts of CD and noise”, we address the impact of the CFD and stochastic 
term on the attained solutions. Finally, the conclusion of the paper is introduced.

Conformable derivative
Fractional calculus operators are an effective tool for modeling and evaluating complicated processes that cannot 
be effectively explained using regular integer-order calculus. Several types of fractional derivative operators have 
been suggested in the literature, including the Katugampola derivative, the Jumarie derivative, the Hadamard 
derivative, the Riemann–Liouville derivative, the Caputo derivative, and the Grünwald–Letnikov  derivative35–38. 
In recent years, Khalil et al.40 proposed the conformable derivative (CD), which has features similar to Newton 
derivative. From here, let us define the CD for the function P : (0,∞) → R of order α ∈ (0, 1] as follows:

The CD fulfills the next properties for any constant a and b:

• Dα
x [aP1(x)+ bP2(x)] = aDα

xP1(x)+ bDα
xP2(x),

• Dα
x [P1(x)P2(x)] = P2(x)D

α
xP1(x)+ P1(x)D

α
xP2(x),

• Dα
x [a] = 0,

• Dα
x [xb] = bxb−α,

• Dα
xP(x) = x1−α dP

dx
,

• Dα
x (P1 ◦ P2)(x) = x1−αP ′

2(x)P
′
1(P2(x)).

Wave equation for SFCLLM
To attain the wave equation of the SFCLLM (1), we utilize

where ϕ is a real deterministic function. Plugging Eq. (2) into Eq. (1) and using

we get for imaginary part

and for real part

where

Taking expectation E[·] on both sides of Eq. (4):

Since B(t) is a Gaussain process, then

D
α
xP(x) = lim

ε→0

P(x + εx1−α)− P(x)

ε
.

(2)
G(x, t) =ϕ(θα)e

(iψα+ρB−ρ2t),

θα =
θ1

α
x
α + θ2t, and ψα =

ζ1

α
x
α + ζ2t,

∂G

∂t
=[θ2ϕ′ + iζ2ϕ+ρϕBt −

1

2
ρ2ϕ]e(iψα+ρB−ρ2t),

D
α
x G =(θ1ϕ

′ + iζ1ϕ)e
(iψα+ρB−ρ2t),

D
α
xxG =[θ21ϕ′′ + 2iζ1θ1ϕ

′ − ζ 21 ϕ]e(iψα+ρB−ρ2t),

(3)[θ2 + 2aζ1θ1]ϕ′ + [θ1b]ϕ2ϕ′ −
1

2
ρ2ϕ = 0,

(4)ϕ′′ − Aϕ − Bϕ3
e
(2ρB−2ρ2t) = 0,

(5)A =
(ζ2 + aζ 21 )

aθ21
, and B =

bζ1

aθ21
for θ1 �= 0.

(6)ϕ′′ − Aϕ − Bϕ3
e
−2ρ2t

E[e2ρB] = 0.

(7)ϕ′′ − Aϕ − Bϕ3 = 0.
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The solutions of the SFCLLM
To find the solutions of Eq. (7), we use the mapping method, which is stated  in40. Assuming the solutions of Eq. 
(7) take the form

where ai(t) are undefined functions in t for i = 0, 1, ...., M , and X  is the solution of

where b1, b2 andb3 are real constants.
By balancing ϕ′′ with ϕ3 in Eq. (7), we can calculate M as

With M = 1 , Eq. (8) becomes

Differentiating Eq. (10) two times and utilizing (9), we have

We obtain by substituting Eqs. (10) and (11) into Eq. (7)

For i = 3, 2, 1, 0, we put all coefficient of X i equal zero to get

and

Solving these equations yields:

By using Eqs (2), (10) and (12), the solution of SFCLLM (1) is

There are many sets depending on b1, b2 and b3 :
Set 1: If b1 = ñ2, b2 = −(1+ ñ2) andb3 = 1, then X (ξ) = sn(θα). Therefore, by using Eq. (13), the solution 

of SFCLLM (1) is

At ñ → 1, Eq. (14) becomes

Set 2: If b1 = 1, b2 = 2ñ2 − 1 andb3 = −ñ2(1− ñ2), then X (θα) = ds(θα). Consequently, the solution of 
SFCLLM (1), by using Eq. ( 13), is

When ñ → 1, Eq. (16) is typically

At ñ → 0, Eq. (16) tends to

(8)ϕ(θα) =
M
∑

i=0

ai(t)X
i(θα),

(9)X
′ =

√

b1X
4 + b2X

2 + b3,

M + 2 = 3M =⇒ M = 1.

(10)ϕ(θα) = a0 + a1X (θα).

(11)ϕ′′ = a1(b2X + 2b1X
3).

[2a1b1 − Ba
3
1]X 3 − 3a0a

2
1BX

2 + [a1b2 − Aa1 − 3a20a1B]X − [Ba30 + Aa0] = 0.

2a1b1 − Ba
3
1 = 0,

− 3a0a
2
1B = 0,

a1b2 − Aa1 − 3a20a1B = 0,

Ba
3
0 + Aa0 = 0.

(12)a0 = 0, a1 = ±
√

2b1

B
, b2 = A.

(13)G(x, t) = ±
√

2b1

B
X (θα)e

(iψα+ρB−ρ2t).

(14)G(x, t) = ±ñ

√

2

B
sn(θα)e

(iψα+ρB−ρ2t) If B > 0.

(15)G(x, t) = ±
√

2

B
tanh(θα)e

(iψα+ρB−ρ2t) If B > 0.

(16)G(x, t) = ±
√

2

B
ds(θα)e

(iψα+ρB−ρ2t) If B > 0.

(17)G(x, t) = ±
√

2

B
csch(θα)e

(iψα+ρB−ρ2t) If B > 0.



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10516  | https://doi.org/10.1038/s41598-024-60517-5

www.nature.com/scientificreports/

Set 3: If b1 = −ñ2, b2 = 2ñ2 − 1 andb3 = 1− ñ2, then X (θα) = cn(θα) . Consequently, the solution of SFCLLM 
(1) is

When ñ → 1, Eq. (19) is typically

Set 4: If b1 = ñ2

4
, b2 = (ñ2−2)

2
 andb3 = 1

4
, then X (θα) = sn(θα)

1+dn(θα)
. Consequently, the solution of SFCLLM (1) is

At ñ → 1, Eq. (21) tends to

Set 5: If b1 = (1−ñ2)2

4
, b2 = (1−ñ2)2

2
 andb3 = 1

4
, then X (θα) = sn(θα)

dn(θα)+cn(θα)
. Therefore, the solution of SFCLLM 

(1) is

If ñ → 0, then Eq. (23) is typically

Set 6: If b1 = 1−ñ2

4
, b2 = (1−ñ2)

2
 andb3 = 1−ñ2

4
, then X (θα) = cn(θα)

1+sn(θα)
 . Consequently, the solution of SFCLLM 

(1) is

At ñ → 0, Eq. (25) turns to

Set 7: If b1 = 1, b2 = 0 andb3 = 0, then X (θα) = c

θα
.Therefore, the solution of SFCLLM (1) is

Set 8: If b1 = 1, b2 = 2− ñ2 andb3 = (1− ñ2), then X (θα) = cs(θα). Therefore, the solution of SFCLLM (1) is

At ñ → 1, Eq. (28) is typically

If ñ → 0, then Eq. (28) becomes

Set 9: If b1 = −1
4
, b2 = ñ2+1

2
 and b3 = −(1−ñ2)2

2
, then X (θα) = ñcn(θα)+ dn(θα). Therefore, the solution of 

SFCLLM (1) is

(18)G(x, t) = ±
√

2

B
csc(θα)e

(iψα+ρB−ρ2t) If B > 0.

(19)G(x, t) = ±ñ

√

−2

B
[cn(θα)]e(iψα+ρB−ρ2t) If B < 0.

(20)G(x, t) = ±
√

−2

B
[sech(θα)]e(iψα+ρB−ρ2t) If B < 0.

(21)G(x, t) = ±
ñ

2

√

2

B
[

sn(θα)

1+ dn(θα)
]e(iψα+ρB−ρ2t) If B > 0.

(22)G(x, t) = ±
1

2

√

2

B
[

tanh(θα)

1+ sech(θα)
]e(iψα+ρB−ρ2t) If B > 0.

(23)G(x, t) = ±
(1− ñ2)

2

√

2

B
[

sn(θα)

dn(θα)+ cn(θα)
]e(iψα+ρB−ρ2t) If B > 0.

(24)G(x, t) = ±
1

2

√

2

B
[

sin(θα)

1+ cos(θα)
]e(iψα+ρB−ρ2t) If B > 0.

(25)G(x, t) = ±
1

2

√

2(1− ñ2)

B
[

cn(θα)

1+ sn(θα)
]e(iψα+ρB−ρ2t) If B > 0.

(26)G(x, t) = ±
1

2

√

2

B
[

cos(θα)

1+ sin(θα)
]e(iψα+ρB−ρ2t) If B > 0.

(27)G(x, t) = ±
√

2

B
[
c

θα
]e(iψα+ρB−ρ2t) If B > 0.

(28)G(x, t) = ±
√

2

B
cs(θα)e

(iψα+ρB−ρ2t) If B > 0.

(29)G(x, t) = ±
√

2

B
csch(θα)e

(iψα+ρB−ρ2t) If B > 0.

(30)G(x, t) = ±
√

2

B
cot(θα)e

(iψα+ρB−ρ2t) If B > 0.

(31)G(x, t) = ±
1

2

√

−2

B
[ñcn(θα)+ dn(θα)]e(iψα+ρB−ρ2t) If B < 0.
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When ñ → 1, Eq. (31) tends to Eq. (20 ).
Set 10: If b1 = ñ2−1

4
, b2 = ñ2+1

2
 andb3 = ñ2−1

4
, then X (θα) = dn(θα)

1+sn(θα)
.Hence, the solution of SFCLLM (1) is

When ñ → 0, Eq. (32) is typically

Set 11: If b1 = −1, b2 = 2− ñ2 andb3 = ñ2 − 1, then X (θα) = dn(θα). Therefore, the solution of SFCLLM (1) is

If ñ → 1, then Eq. (34) turns to Eq. (20).

Impacts of CD and noise
Impacts of CD
Now, we analyze the influence of CD on the obtained solutions of the SFCLLM (1). Suitable values are 
assigned to the unknown variables to construct a sequence of two- and three-dimensional graphs. Fig-
ures 1 and 2 represent the behavior solutions of Eqs. (14) and ( 15), respectively. Figure 1 displays the dark 

(32)G(x, t) = ±
1

2

√

2(ñ2 − 1)

B
[

dn(θα)

1+ sn(θα)
]e(iψα+ρB−ρ2t) If B < 0.

(33)G(x, t) = ±
1

2

√

−2

B
[

1

1+ sin(θα)
]e(iψα+ρB−ρ2t) If B < 0.

(34)G(x, t) = ±
√

−2

B
[dn(θα)]e(iψα+ρB−ρ2t) If B < 0.

Figure 1.  (i–iii) 3D-profile of the periodic solution |G(x, t)| described in Eq. (14) with α = 1, 0.8, 0.6 (iv) 
depict 2D-profile of Eq. (14) with various α.
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solutions |G(x, t)| described in Eq. (14) for ζ1 = 1, ζ2 = −2, θ1 =
√
2, a = b = 1, ñ = 0.5, ρ = 0, x ∈ [0, 4] , 

t ∈ [0, 3] and for α = 1, 0.8, 0.6 . While, Fig. 2 displays the periodic solutions |G(x, t)| described in Eq. (15)for 
ζ1 = 1, ζ2 = −2, θ1 =

√
2, a = b = 1, ρ = 0, x ∈ [0, 4] , t ∈ [0, 3] and for α = 1, 0.8, 0.6.From these figures, 

we deduce that when the derivative order α of CD increases, the surface shrinks.

Impacts of noise
Now, we study the impact of the t ime-dependent coeff icients on the acquired solu-
tions of the SFCLLM (1). Figure  3 displays the solutions |G(x, t)| described in Eq. (14) for 
ζ1 = 1, ζ2 = −2, θ1 =

√
2, a = b = 1, ñ = 0.5, α = 1, x ∈ [0, 4] , t ∈ [0, 3] and for ρ = 0, 1, 2 . While, Fig. 4 

displays the solutions |G(x, t)| described in Eq. (15) for ζ1 = 1, ζ2 = −2, θ1 =
√
2, a = b = 1, α = 1, x ∈ [0, 4] , 

t ∈ [0, 3] and for ρ = 0, 1, 2 . From Figs. 3 and 4, we observe that when the noise strength increases, the surface 
stabilizes around zero.

Discussion and physical interpretation
This work aimed to get exact solutions of the SFCLLM (1). We used the mapping approach, which yielded a vari-
ety of solutions, including periodic solutions, kink solutions, brilliant solutions, dark optical solutions, solitary 
solutions, and so on. Physically, dark optical soliton denotes waves with lower intensities than the backdrop. 
Singular solitons are solitary waves with discontinuous derivatives, including compactions with limited (com-
pact) support or peakons with discontinuous first derivatives. These kinds of solitary waves are very important 
owing to their efficiency and of course flexibility in long distance optical communication. We investigated the 
influence of conformable derivatives on the obtained solutions and concluded that as the order of fractional 
derivatives increases, the surface shrinks, as depicted in Figs. 1 and 2. Furthermore, we examined the impact of 

Figure 2.  (i–iii) 3D-profile of the bright solutions |G(x, t)| described in Eq. (15) with α = 1, 0.8, 0.6 (iv) depict 
2D-profile of Eq. (15) with various value of α.
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noise on the solutions and observed that when the noise strength increases, the surface stabilizes around zero 
as shown in Figs. 3 and 4.

Conclusions
In this paper, we introduced a large variety of exact solutions to the stochastic fractional Chen Lee Liu model 
(SFCLLM) (1) forced by multiplicative noise in the Itô sense. By using the mapping approach, rational, elliptic, 
hyperbolic, and trigonometric stochastic fractional solutions were obtained. These solutions are important for 
understanding some fundamentally complicated phenomena. The attained solutions are very helpful for applica-
tions such as optics, plasma physics and nonlinear quantum mechanics. Finally, we show how the conformable 
derivative order and the stochastic term affect the exact solution of the SFCLLM (1).

Figure 3.  (i–iii) 3D-profile of the solution |G(x, t)| described in Eq. (14) with α = 1,and different ρ (iv) depict 
2D-profile of Eq. (14).
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The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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