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Exploring the mystery of colon 
cancer from the perspective 
of molecular subtypes 
and treatment
Wenhong Lu 1, Qiwei Wang 2, Lifang Liu 3 & Wenpeng Luo 1*

The molecular categorization of colon cancer patients remains elusive. Gene set enrichment analysis 
(GSEA), which investigates the dysregulated genes among tumor and normal samples, has revealed 
the pivotal role of epithelial-to-mesenchymal transition (EMT) in colon cancer pathogenesis. In this 
study, we employed multi-clustering method for grouping data, resulting in the identification of 
two clusters characterized by varying prognostic outcomes. These two subgroups not only displayed 
disparities in overall survival (OS) but also manifested variations in clinical variables, genetic mutation, 
and gene expression profiles. Using the nearest template prediction (NTP) method, we were able to 
replicate the molecular classification effectively within the original dataset and validated it across 
multiple independent datasets, underscoring its robust repeatability. Furthermore, we constructed 
two prognostic signatures tailored to each of these subgroups. Our molecular classification, centered 
on EMT, hold promise in offering fresh insights into the therapy strategies and prognosis assessment 
for colon cancer.

Keywords Non-negative matrix factorization, Unsupervised cluster, Colon cancer, Molecular subtypes, Cell 
cycle

Colon cancer ranks among the most prevalent malignancies worldwide. Remarkable strides in its diagnosis and 
treatment have led to a marked reduction in mortality in recent years. However, the underlying mechanisms 
driving colon cancer remains elusive. In the current landscape of precision medicine, the categorization of 
molecular subtypes, characterized by distinct molecular attributes, plays a pivotal role in guiding treatment 
decisions and shaping prognostic outcomes for patients. For instance, breast cancer patients are routinely cat-
egorized into subtypes defined by estrogen and progesterone receptor expression levels. These subtypes confer 
varied risk profiles, dictating tailored therapeutic strategies. This highlights the significant clinical utility of 
molecular classification in breast  cancer1. The pathogenesis of CRC is still unclear, and the classification of 
CRC is still mainly based on TNM staging, which is insufficient to understand CRC. Therefore, clarifying the 
molecular mechanisms of colon cancer occurrence can help the diagnosis and treatment of CRC. In recent years, 
machine learning (ML)-based approaches to understanding tumors have attracted more and more  attention2–4, 
and many algorithms for predicting and classifying tumors have  emerged5–7. Existing machine learning algo-
rithms include linear regression, logistic regression, decision trees, support vector machines (SVM), naive Bayes, 
K-means clustering, random forests, dimensionality reduction algorithms, gradient boosting, and AdaBoost. 
Jiang et al. used convolutional neural networks to predict the prognosis of stage III CRC 8. In the current context 
of precision medicine, the classification of molecular subtypes characterized by unique molecular properties 
plays a key role in guiding treatment decisions and shaping patient prognosis. Molecular subtypes have been 
used to explore colon heterogeneity. The gene expression subtypes of COAD and COADREAD were proposed 
by the Cancer Genome Atlas (TCGA) research network  respectively9,10. A recent study also identified molecular 
subtypes of colon cancer based on multiple platforms, including molecular subtypes of COAD  patients11, and 
several molecular subtypes of colon cancer based on different gene  sets12. However, early colon cancer has some 
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special molecular characteristics, and in these subtypes and gene sets, the prognostic information of patients is 
not well used, resulting in weak prognostic ability of patients. The consensus molecular subtypes (CMS) criteria 
for classifying colon cancer has garnered relative  recognition1 but it does not yield a similar clinical impact as 
seen in breast cancer. This discrepancy implies potential limitations in the clinical applicability of CMS may, 
underscoring the urgent necessity to discover alternative molecular subtypes that can inform treatment decisions 
and prognostic assessments for colon cancer.

During tumor development, epithelial cells undergo a transformation known as the epithelial-to-mesen-
chymal transition (EMT), adopting mesenchymal characteristics such as enhanced motility, invasiveness, and 
resistance to  apoptosis13. Epithelial–mesenchymal transition (EMT) is a complex cellular process in which epi-
thelial cells acquire a mesenchymal phenotype. According to the physiological and histological context, EMT is 
divided into three  types14: embryonic development and organ  formation15,16 wound healing and organ fibrosis; 
and cancer  progression17–19. Type 3 EMT is associated with an invasive or metastatic  phenotype20. In the past 
decade, an increasing number of studies have provided strong evidence that EMT plays a crucial role in the pro-
gression and metastasis of various malignant tumors, including CRC 21. During EMT, tumor cells undergo tight 
junction dissolution, apical-basal polarization destruction, and cytoskeletal structure reorganization, enabling 
the cells to develop an invasive phenotype. In cancer cells, EMT is abnormally regulated by extracellular stimuli 
from the tumor microenvironment, including growth factors and inflammatory cytokines, as well as physical 
stress within the tumor, such as  hypoxia22. Therefore, EMT programming can enable tumor cells to adapt to 
the constantly changing human tumor microenvironment for successful metastasis. Preventing or reversing the 
lethal effects of EMT is crucial for cancer therapy. At present, there are three main strategies for the treatment 
of  EMT23. First, it can inhibit tumorigenesis by blocking upstream signaling pathways. This includes ligand-
neutralizing antibodies, decoy receptors or inhibitors that block TGFβ, NF-κB, EGFR, cMET, WNT and Notch 
 signals12–34. In addition, effective inducers of EMT include a variety of proinflammatory signals, such as TNF-α35. 
Another therapeutic strategy is targeting the molecular drivers of EMT. Although EMT-TFs are the main drivers/
regulators of the EMT process, direct targeting of transcription factors (EMT-TFs) is  challenging36. Moreover, 
several EMT-TFs have complementary and redundant functions due to their tightly connected through feedback 
mechanisms. Therefore, targeting their interactions with important cofactors while targeting multiple EMT-TFs 
may be a more beneficial  strategy36. The transformation of EMT involves the reprogramming of gene expression, 
primarily driven by signaling pathways responsive to extracellular cues. Among these pathways, transforming 
growth factor (TGF)-β signaling holds a predominant role, although the convergence of multiple signaling 
pathways is essential for inducing  EMT24. Previous studies have implicated EMT-related signaling pathways in 
colon cancer, including  Wnt25, TGF-β26,  Hedgehog27, and Notch  pathways28. Interestingly, EMT status has been 
linked to peritoneal metastasis, progression-free survival (PFS) and overall survival (OS) in ovarian  cancer29. 
Furthermore, recent research has underscored the prognostic potential of EMT-related genes in neuroblastoma, 
 ependymomas30, and bladder  cancer31. However, a comprehensive analysis of their prognostic ability in colon 
cancer is currently lacking.

In this study, we identified two distinct molecular subtypes using genes related to EMT. These subgroups 
exhibited disparities in clinical features, OS, and genetic mutations. By employing nearest template prediction 
(NTP), we demonstrated the robust repeatability of our molecular classification within the original dataset and 
validated it across different datasets. This underscores the reliability of our classification approach, which centers 
on EMT, and offers promising new insights into colon cancer treatment and prognosis.

Materials and methods
Datasets and samples
We collected data from four Gene Expression Omnibus (GEO) datasets, specifically GSE17536 (55 stage II and 
56 stage III patients with a median RFS of 3.0625 years; the 1-, 2-, and 3-year recurrence rate were 6.3%, 15.3%, 
and 23.4%, respectively), GSE29623 (Primary fresh frozen tissues from 65 patients (40 male and 25 female) 
with a mean age 65 ± 13 years and with AJCC Stages I (n = 7), II (n = 22), III (n = 18) and IV (n = 18) colon can-
cers, underwent RNA extraction and miRNA array analysis). and GSE71187 (189 samples with detail clinical 
information), all of which contained detailed survival information. Clinical information was obtained from the 
Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) project via the TCGA database. Potential batch 
effects were mitigated using the “Combat” package. GSE29621 and GSE39582 datasets were used to validate 
model accuracy.

Gene set variation analysis (GSVA)
The Hallmarker pathway is applied to help researchers gain a deeper understanding of gene function and regula-
tory relationships in the genome. Through the GSEA Hallmarker pathway, researchers can discover which genes 
are co-regulated in specific biological processes, revealing the function and mechanism of action of these genes in 
organisms. There are great significance for the study of biological processes, disease mechanisms, and the design 
of drug treatment regimens. For pathway analyses, we leveraged the 50 hallmark pathways from the molecular 
signature database, sourced from the “GSEABase” package. To streamline our analysis and minimize pathway 
overlap and redundancy among pathways, the gene sets associated with these pathways were trimmed, ensuring 
the uniqueness of genes within each pathway. GSVA gene set variant analysis is an analytical method that enriches 
the gene set of microarray and RNA-seq data under parametric and unsupervised conditions. GSVA converts 
a gene-sample data matrix (microarray data, FPKM, RPKM, etc.) into a gene set-sample matrix. Based on this 
matrix, the enrichment of gene sets (such as KEGG pathway) in each sample can be further analyzed. Since the 
results of GSVA are a gene set-sample enrichment matrix, there is more freedom in downstream analysis than 
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other gene set enrichment methods such as GSEA (Gene Set Enrichment Analysis). Subsequently, the GSVA 
 package23 (version 1.22.4) was employed to estimate pathway scores (Table S6).

Characterizing molecular subtypes and prognosis with immune cell data analysis
Two datasets encompassing gene expression matrices and data on the infiltration of 22 immune cells were used 
to confirm the existence of molecular subtypes. Gap  statistics15 were utilized to determine the optimal number of 
subtypes and clustering prediction  indices32 were used to assess the quality of cluster separation. Leveraging the 
capabilities of the “MOVICS” package in conjunction with the two datasets, we identified two distinct molecular 
subtypes with varying prognostic implications.

Immunohistochemistry
Formalin-fixed, paraffin-embedded tissue sections were routinely dewaxed and hydrated, and then antigen 
was extracted at 120 °C for 3 min in 10 mM citric acid buffer (pH 6.0). The sections were then treated with 3% 
hydrogen peroxide at room temperature for 15 min, washed with phosphate buffer saline (PBS), and blocked with 
10% goat serum for nonspecific binding. The sections were incubated overnight at 4 °C with a 1:2000 dilution 
of primary BGN antibody (Proteintech: Cat No:67275-1-Ig; china), then incubated with biotin-labeled second-
ary antibody at room temperature for 15 min, stained with 3,3-diaminobenzidine (DAB), and red-stained with 
hematoxylin.

Differentially expressed genes (DEGs) linked to molecular subtypes
The “limma” package was employed for the identification of DEGs between the two subtypes. We considered 
statistical significance to be present when P < 0.01 and the absolute fold-change > 1.

Module identification and analysis
The weighted gene co-expression network analysis (WGCNA) R package was employed to identify modules 
and study the relationships between them and the two  clusters33. The optimal soft threshold was determined 
adhering to the scale-free topology criterion. Once it was determined, we defined the minimum module size as 
30 genes. The identification of modules was accomplished using the dynamic tree cut method, with the MEDis-
sThres parameter set at 0.25.

Gene correlation and signature scoring for subtype characterization
Pearson correlation analysis was conducted for exploring the correlation between clusters and gene expression, 
as well as the activity of 50 hallmark pathways. Genes showing a positive correlation with the clusters (correla-
tion coefficient > 0.4) were designated as “signature A”, while those with a negative correlation (correlation coef-
ficient <  − 0.4) were classified as “signature B”. Subsequently, we applied the single-sample gene-set enrichment 
analysis (ssGSEA) algorithm to the 78 genes in signature B to construct a score that quantifies the impact of 
these genes on the two subtypes.

Statistical analysis
Data analyses were performed using R software (v. 4.10). Differences between two subtypes were explored using 
the Wilcoxon test. The degree to which two subtypes were measured using the Pearson correlation coefficient. 
Threshold for statistical significance was P < 0.05.

Ethics approval and consent to participate
All patients included in the study signed an informed consent form, and the study was approved by the Medical 
Ethics Committee of The Second Affiliated Hospital of Hunan University of Chinese Medicine (Ethics No : 2023-
70); The study was carried out in accordance with the recommendations contained in the Declaration of Helsinki.

Results
Two molecular subtypes
Clustering analysis was conducted using the “MOVICS” package, which incorporates various methods such as 
iClusterBayes, moCluster, CIMLR, IntNMF, ConsensusClustering, COCA, NEMO, PINSPlus, SNF, and LRA. 
These methods were applied to two datasets, which include the expression matrix of EMT-related genes expres-
sion matrix and data on the infiltration of 22 immune cells. The outcomes of CPI and Gaps analyses led us to 
identify two distinct molecular subtypes characterized by varying prognostic outcomes (Fig. 1A,C) and compa-
rable scores (Fig. 1D). The cluster B showed better survival rate (Fig. 1E) than the cluster A. The distribution of 
multi-omics data among these subtypes is presented in Fig. 1B.

Co-expression module identification
With a selected soft threshold power of β = 12 (Fig. 2A,B), we constructed phylogenetic trees to uncover co-
expression modules (cut height ≥ 0.25) (Fig. 2C). Hierarchical clustering analysis of each module revealed that 
modules within the same branch exhibited similar patterns of gene expression (Fig. 2D). Consequently, similar 
gene modules were merged, resulting in the identification of 9 co-expression modules labeled by colors (yellow, 
black, red, brown, green, pink, blue, and turquoise) (Fig. 2E). Furthermore, we visualized gene clustering and 
assessed correlations among these modules (Fig. 2F). The magenta module exhibited a strong correlation with 
cluster B, warranting its selection as a crucial module for further analysis (Fig. 2G, Table S2).
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Signatures of molecular subtypes
Through Pearson correlation analysis, we identified correlations with a coefficient greater than 0.4 as “signature 
A” (Fig. 3A), and those with a coefficient less than − 0.4 as “signature B” (Fig. 3B). The signature A genes were 
enriched in the positive regulation of cell proliferation (Fig. 3E). Building upon the genes in signature A, the 
ssGSEA algorithm was utilized to quantify the clusters. Figure 3C illustrated a pronounced association of the 
high-score group with cluster B. Intriguingly, the low-score group displayed a more favorable survival rate 
compared to the high-score group (Fig. 3D). Our results underscore the effectiveness of this scoring model in 
evaluating the worst prognostic outcomes, primarily caused by the heightened activity of pathways related to 
tumor progression, including EMT, angiogenesis, coagulation, and myogenesis (Fig. 3E–G).

Genetic and epigenetic event between different score groups
A newly study shown that the genomic variation can be a source way which can drives tumor evolution and 
may provide some potential prognosis information. And a few of studies had addressed the prognostic value 

Figure 1.  (A) The identified of clustering number by the CPI analysis and gap-statistical. (B) Consensus matrix 
based on the various algorithms. (C) The landscape of various data of 200 genes expression, 23 immune cells in 
different molecular subtypes. (D) Silhouette-analysis evaluation. (E) Survival analysis of the two clusters.
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of CNA patterns in cancers. As the Fig. 4A shown that the high score group had high significant differential in 
the genomic variation. Also the high score group had instability genetic alteration, especially the copy number 
amplification of 13q12.2 and loss of 16p.13.3 in the low score group (Fig. 4B–D). And the mutation frequency 
of oncogenes had significant differential between the different score groups, our study showed that the TTN, 
LRP2 and MUC16 had higher mutation frequency in the high score group than the low score group (Fig. 4E,F).

Validation in external cohorts using ssGSEA
To extend our findings to external cohorts (GSE29621 and GSE39582), we applied the ssGSEA algorithm to the 
99 genes in signature A. In both cohorts, the high-score group aligned with the inflammatory subtype, while 
the low-score group corresponded to the immune desert cluster (Fig. 5C–F). These consistent results further 
reinforced the robustness of our approach (Fig. 5A,B).

Figure 2.  (A) Confirming the best scale-free index for various soft-threshold powers (β). (B) The mean 
connectivity for various soft-threshold powers. (C) The gene tree map and nodule color. (D) Hierarchical 
clustering analysis. (E) The gene dendrogram is based on clustering. (F) The heatmap of all genes. (G) Heatmap 
of the correlation between the module genes and the two clusters.
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Uncovering targeted therapies for colon cancer cell lines: insights from drug sensitivity 
analysis
The Genomics of Drug Sensitivity in Cancer (GDSC) dataset was utilized to identify compounds displaying 
variations in sensitivity among the different score subtypes, aiming to shed light on potentially more effective 
treatment strategies for both high- and low-score groups. Leveraging 99 signature A genes, we employed the 
ssGSEA algorithm on colon cancer cell lines to establish a scoring system. Intriguingly, these genes displayed 
notable expression levels in the transcript profiles across colon cancer cells lines (Fig. 6A). NTP classified each 
sample in the external cohorts as one of the identified subtypes (Fig. 6B). According to drug sensitivity analysis, 
the high-score group exhibited significantly increased sensitivity ofElesclomol, TW37, FEN13940 and PI-103 
while the low-score group appeared to derive greater benefits from EGFR-target therapy (erlotinib) (Fig. 6C,D) 
(Table S5).

Value of scoring in predicting response to immunotherapy
The application of immunotherapy has greatly improved the survival rate of cancer patients, especially the use of 
PD-1 or PD-L1 specific monoclonal antibodies. However, the remission rate of immunotherapy remains below 
40%. In our study, the value of scoring in immunotherapy in the IMvigor210 cohort and the TCGA cohort was 

Figure 3.  (A) Clustering analysis in DEGs of two clusters. (B) Clustering analysis in 22 immune cells of two 
clusters. (C) The distribution of clusters, and survival outcome in different score groups. (D) Survival analysis 
of the two score groups. (E) The biological function of signature A genes. (F,G) GSEA analysis based on 50 
shallmark gene sets in two score groups.
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analysed. Here, we preformed the ssGSEA algorithm using 99 signature A genes based on the both cohort to 
conduct the analyses the effect of anti-PD-L1 immunotherapy in the different score groups. Here, we used the 
TIDE website to predict the response of cancer immunotherapy with the TCGA database. The rate of objective 
response in the anti-PD-L1 treatment in the high score group (28.5%) of TCGA was lower than the low score 
group (56.9%) (Fig. 7B). The IMvigor210 cohort showed the same trend in the objective effectiveness of anti-PD-
L1 treatment as the TCGA cohort (high score: 17.4%, low score: 28.2%) (Fig. 7D). At the same time, the score 
of the response subtype was lower than that of the non-response subtype (Fig. 7A,C).

The role of BGN gene in colon cancer mechanisms and prognosis
To delve deeper into the underlying mechanisms, we uploaded the 99 signature A genes into the STRING data-
base to construct a protein–protein interaction (PPI) network, as visualized in Fig. 8A. And the BGN is high 
expression in the tumor than the normal tissue (Fig. 8B). Our analysis of protein–protein interactions based on 

Figure 4.  (A) The distribution of fraction genome altered (FGA) and fraction genome gain/loss (FGA/FGG) in 
the different score group. (B) CNA plot showed the relative frequency of copy number gains (red) or deletions 
(blue) between the high score group and low score group of the COAD cohort. (C,D) The distribution of the 
copy number of genomic regions between the high score group (C) and the low score group (D). (E,F) The 
significant mutation genes in the high scores (D) and low scores (E).
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STRING database, along with COX analysis, highlighted the pivotal role of BGN genes as key nodes within this 
network. Univariate Cox regression analysis demonstrated a obust correlation of the BGN gene with OS (HR 
1.183, P < 0.01) (Fig. 8C, Table S1). Furthermore, Gene Expression Profiling Interactive Analysis (GEPIA) and our 
research underscored elevated BGN expression is tumor tissues compared to normal ones, with the low expres-
sion group exhibiting more favorable outcomes in terms of disease-free survival (DFS) and OS (Fig. 8D,E,G). 
Multivariate Cox regression analysis identified BGN as an independent prognostic indicator (hazard ratio [HR] 

Figure 5.  Validation of different score group in external cohorts. (A,B) The distribution of various immune 
cells in the GSE39582 data (C,D) and GSE29621 data (E,F).
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1.63, P = 0.02) (Table S2, Fig. 8C). A higher BGN expression level was found in advanced-stage cancer (Fig. 8F). 
The BGN protein expression levels were examined in 12 colon cancer specimens, we found BGN protein was 
gradually increase in the normal tissue, stage I, stage II, and stage III tissue, which indicated that the BGN expres-
sion in clinical samples may therefore hold prognostic and/or potentially predictive value (Fig. S1).

Discussion
Colorectal cancer (CRC) stands as the third leading cause of morbidity and mortality as per the 2020 cancer 
 statistics34. Colon cancer represents a prevalent subtype of CRC. Recent advancements in therapy and diagnosis 
have contributed to a substantial reduction in mortality rates. Nevertheless, there remains a notable lack of 
specificity in colon cancer treatment, leaving ample room for enhancing both therapy and diagnosis. This gap 
becomes particularly pronounced due to the absence of a clearly defined molecular subtype for this disease. 
Precision medicine underscores the tailoring of treatments to individual patients, yielding significant benefits 
that has even been extended to those initially diagnosed with different cancer types. In addition, there is ample 
evidence indicating that, compared to normal colon tissue, the NF-kB pathway is activated and COX-2 expres-
sion is upregulated in stromal myofibroblasts surrounding colonic adenocarcinoma. Given that the upregulation 
of COX-2 expression is primarily induced by NF-kB, NSAIDs (selective COX-2 inhibitors) may exhibit their 
chemopreventive properties by directly targeting these  cells35. Despite the existence of several molecular subtyp-
ing approaches, such as CMS, for colon  cancer2, they primarily target patients with stage I to III colon cancer 
and have yet to find widespread application in clinical treatment. This indicates a need for further research into 
potential molecular subtyping within the context of colon cancer, aimed at refining the precision of treatment 
for patients.

Figure 6.  (A) Heatmap of subtype-specific upregulated biomarkers using limma for identifying the two 
clusters. (B) Heatmap of NTP. (C) Heatmap shows the expression pattern of 99 genes in cancer cell lines 
showing low or high score group. (D) The figure summarizes the relative changes of the ic50z score and P values 
in selected COAD cell systems at low or high score group which can be treated using the designated compounds 
based on the cancer drug susceptibility genomics (gdsc) database. The red spot clearly shows the high sensitivity 
drugs of high score group and the blue point clearly shows the high sensitivity drugs of low score group.
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Advances in bioinformatics, particularly high-throughput sequencing technology, allow for the investigation 
into molecular mechanisms underlying malignancies at the transcriptome level. Researchers have harnessed these 
tools to develop signatures for improved prognosis estimation and to uncover the underlying mechanisms of 
diverse  cancers36–42. Moreover, clustering analysis categorizes cancer patients into molecular subtypes based on 
specific gene sets, known as reference points. The selection of these reference gene sets is crucial for determining 
the quality of molecular subtyping.

A large number of studies on molecular typing of COAD based on omics or specific gene sets have emerged. 
Recently, Yang integrated the multi-omics data of all COAD patients based on a single algorithm, but the analysis 
did not include immune cell infiltration  data43. Chen et al. integrated the multi-omics data of COAD for reclas-
sification, but this study only classified from each omics level, without realizing the real integration of multi-omics 
data for  classification44. Although these studies provide new directions for the diagnosis and treatment of COAD 
to some extent, there are also some shortcomings. The classification methods used in most typing studies are 
relatively simple. These shortcomings make it difficult to apply these classification studies to clinical practice. 
The development of multi-omics makes it easier for researchers to deepen their understanding of cancer at the 
molecular level. At the same time, a large amount of omics data also brings new challenges to  analysts45. It is 
particularly crucial to reduce data noise and obtain the key features of tumor occurrence and development while 
retaining tumor  characteristics45. At present, there are few studies trying to establish a comprehensive model 
based on multi-omics data to predict the prognosis and personalized drug selection of COAD patients. Therefore, 
it is particularly important to develop a comprehensive and reliable model for prognosis and drug selection of 
COAD patients to assist prognosis prediction and guide personalized treatment. Previous studies mainly focused 
on the expression of certain specific genes to predict the prognosis of  tumors46–48, however, the biological process 
of tumors is extremely complex, and different types of features are interrelated. Using multi-omics analysis to 
explain the heterogeneity of tumors and constructing relevant models to predict the efficacy of immunotherapy 
can make the system more stable and convincing. This process not only reduces the untruthfulness of the results 
of  CIBERSORT49, but also makes the model system stable, free from the influence of single or multiple gene 
 expressions50–52. Our study, a set of 200 EMT-related genes and data on 22 immune cell types were utilized to 
establish a connection between EMT and immune cell populations. Leveraging these two datasets, we applied 

Figure 7.  (A,C) The distribution of anti-PD-1 response rate in different score groups in the TCGA cohort and 
IMvigor210 cohort. (B,D) The two score groups with different anti-PD-1 response in the TCGA cohort and 
IMvigor210 cohort.
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the MOVICS algorithm to delineate distinct molecular subtypes. Our findings revealed that cluster B exhibited 
heightened activity within EMT pathways which, unfortunately, correlated with a poorer prognosis. Building 
upon this, we sought to understand the relationship between DEGs, 22 immune cells, tumorigenesis-related path-
ways, and the identified clusters by conducting Pearson correlation analysis. Through this analysis, we identified 
99 genes, M2 macrophages, and M1 macrophages as the markers of cluster B (Tables S3, S4). The ssGSEA applied 
for quantifying clusters a strong overlap between the high-score group and cluster B. Intriguingly, a poorer sur-
vival outcome was observed in the high-score group which displayed heightened activation of pathways related 
to tumorigenesis, including EMT, angiogenesis, coagulation, and myogenesis. To ensure the robustness of our 
approach, we validated our scoring system in two external cohorts (GSE29621 and GSE39582) to predict the 
activity of tumorigenesis pathways of colon cancer patients. Encouragingly, our results demonstrated the accuracy 
and reliability of our scoring method. Moreover, driver gene distribution in both high- and low-score groups 
was investigated using MAFtools. Among the top 25 genes with the highest frequency, we observed significant 
differences between the two groups. These findings not only contribute valuable insights into the mechanisms 
governing tumor components but also shed light on gene mutations relevant to immune therapy.

GDSC data were harnessed to identify potential compounds effective for distinct score groups. Our findings 
unveiled that AZD5991, functioning as an MCL inhibitor, exhibited heightened sensitivity in the low-score 
group, while the high score group displayed increased sensitivity to PI-103, a dual PI3K and mTOR inhibitor.

In summary, our research leveraged multi-omics data to construct a predictive model for colon cancer prog-
nosis, successfully identifying the high-score group as characterized by elevated EMT activity. Our study estab-
lished a scoring model capable of forecasting EMT activity and prognosis, revealing a greater benefit from MCL 
inhibition within the high-score group. Furthermore, our investigation unveiled diverse cellular and molecular 
stratifications among colon cancer patients, suggesting that the high-score group derive substantial advantages 
from dual inhibition of PI3K and mTOR by PI-103. Our study presents evidence indicative of specific epigenomic 
alterations preceding distinct prognosis groupings, thereby enhancing the early classification of cancer patients. 
Furthermore, our research revealed the elevated expression of BGN as a distinctive feature associated with the 
high activity of EMT phenotype and gradually increase in the normal tissue, stage I, stage II, and stage III tissue, 
underscoring its potential as an attractive medication target in combination therapy approaches.

Our model is effective in predicting prognostic efficacy, but the scoring model needs to be confirmed by 
prospective analysis of a large cohort of patients with COAD, and the efficacy of the model needs to be validated 
in appropriate preclinical models and future clinical trials.

Figure 8.  (A) PPI network of the signature A genes. (B) mRNA expressions of BGN in lung cancer and normal 
tissues as accessed by GEPIA database. (C) Multivariate Cox regression analysis. (D,E) The overall survival and 
diseases free survival analysis of BGN in the GEPIA analysis. (F) Box plot of the BGN for different pathological 
stages in the GEPIA analysis. (G) The overall survival analysis of BGN in the COAD.
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Data availability
Publicly available datasets were analyzed in this study. This data can be found here: The Cancer Genome Atlas 
(TCGA) database (https:// portal. gdc. cancer. gov/) and Gene Expression Omnibus (https:// www. ncbi. nlm. nih. 
gov/ geo/).
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