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DRA‑Net: Medical image 
segmentation based on adaptive 
feature extraction and region‑level 
information fusion
Zhongmiao Huang , Liejun Wang * & Lianghui Xu 

Medical image segmentation is a key task in computer aided diagnosis. In recent years, convolutional 
neural network (CNN) has made some achievements in medical image segmentation. However, the 
convolution operation can only extract features in a fixed size region at a time, which leads to the loss 
of some key features. The recently popular Transformer has global modeling capabilities, but it does 
not pay enough attention to local information and cannot accurately segment the edge details of the 
target area. Given these issues, we proposed dynamic regional attention network (DRA‑Net). Different 
from the above methods, it first measures the similarity of features and concentrates attention on 
different dynamic regions. In this way, the network can adaptively select different modeling scopes 
for feature extraction, reducing information loss. Then, regional feature interaction is carried out to 
better learn local edge details. At the same time, we also design ordered shift multilayer perceptron 
(MLP) blocks to enhance communication within different regions, further enhancing the network’s 
ability to learn local edge details. After several experiments, the results indicate that our network 
produces more accurate segmentation performance compared to other CNN and Transformer based 
networks.

With the rapid development and progress of medical imaging technology, computer-aided diagnosis (CAD) is 
expected to help doctors reduce workload and improve work  efficiency1–5. And medical image segmentation 
is a key step in CAD. Its task is to accurately identify the target organ, tissue, or lesion area from a given medi-
cal image. So it is of great significance in evaluating diseases, planning treatment strategies, and monitoring 
disease progression. But as a result of imaging equipment quality and technology limitations, medical  images6,7 
compared with the other images often have lower contrast and more noise. For example, colon tissue images 
can be diagnosed by observing and judging stained histopathological samples through a microscope. The tissue 
images recorded by microscopes are not only noisy but also have the characteristics of complex tissue texture and 
fuzzy boundaries that are not easy to distinguish. Therefore, it is essential to find a method that can accurately 
segment medical images.

In recent years, deep learning methods have achieved great success in different  tasks8. In medical image seg-
mentation tasks, compared to traditional algorithms, deep learning based  algorithms9–12 can automatically extract 
features, which effectively overcomes the shortcomings of traditional medical image segmentation algorithms 
that need to design manual features and rely too much on the prior cognition of medical experts. Moreover, 
deep learning algorithms are highly transferable and can be rapidly extended to different tasks with the help of 
transfer learning. Among the deep learning algorithm model based on convolutional neural network (CNN), 
U-Net13 is a representative work. And many subsequent medical image segmentation works are based on the 
idea of this model. Such as U-Net++14, U-Net3+15, V-Net16, Res-UNet17, Y-Net18, ARU-Net19. Although CNN 
has become the mainstream method for medical image segmentation, it also has weak points because of ignoring 
the relationship between long-distance context information.

With the continuous development of deep learning algorithms, some researchers have introduced well-per-
formed methods from natural language processing (NLP)20,21 to vision field, such as self-attention  mechanism21. 
For its powerful global modeling ability, Transformer achieve good results in machine translation tasks. Later, 
the outcomes of  ViT22 in image classification also confirmed that the self-attention mechanism can be used in the 
field of visual processing. Although ViT and other  works23–25 have proved the effectiveness of the self-attention 
mechanism, it needs the support of a large amount of data due to the lack of inductive biases. Applying it to 
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small amounts of medical images cannot fully utilize its advantages, and the calculation cost is relatively large. 
Lately, new progress has been made in the research of multilayer perceptron (MLP)  model26–28. The results of 
MLP-Mixer29, AS-MLP30 and other works can also be comparable to the models based on CNN or self-attention 
mechanism. MLP, like self-attention mechanism, has global modeling ability and has strong performance under 
small model size. Still when the model size is enlarged, it may influence the model effect due to  overfitting31.

Based on the above issues, we propose a medical image segmentation model based on adaptive feature 
extraction and regional level information fusion in this paper. This model can aggregate attention into different 
dynamic regions based on similarity measurement. Because we note that the size of the target area in medical 
images is variable, and using only local fixed structures to extract features may lead to information loss. So we 
propose a dynamic regional attention module, which can measure the similarity of various features and divide 
similar features into one region to achieve the goal of automatically selecting different modeling ranges based 
on features. It is equivalent to delineating different regions on the feature map and fusing information within 
different regions, enabling the network to extract more surrounding feature information. Finally, we also use 
the ordered shift MLP module to rearrange features, moving the channels of feature maps from different spatial 
directions to obtain information flow, thereby enhancing communication between feature groups that have 
learned different features. By combining these parts, we can achieve multi-range feature interactions, improve 
the network’s ability to learn local details and reduce information loss. In summary, the contributions of this 
paper include the following three points:

(1) We design a dynamic regional attention module that can measure the similarity between features and 
divide similar features together to form explainable local dynamic regions. Through this approach, similar 
regions complement each other and dissimilar regions are excluded. At the same time, attention within the 
dynamic region is utilized to facilitate interactive fusion of features and reduce information loss.

(2) We also design a ordered shift MLP module. This module rearranges features through feature selection, 
divides different features into different feature groups, and promotes local communication between differ-
ent features through spatial displacement, thereby improving the network’s ability to extract local details.

(3) Different from CNN or Transformer which adopts local fixed or global feature extraction, this paper 
designs two different efficient feature extraction strategies and combines them to propose a medical image 
segmentation network based on hybrid encoding and decoding, achieving advanced segmentation results 
on different datasets.

Related work
Model based on CNN
In the past few years, much of the work has been based on improvements to CNN models. U-Net is a repre-
sentative work. It realizes the feature fusion of different levels through long skip connections and improves 
the segmentation accuracy. The subsequent U-Net++ further improved the multi-layer feature fusion mode to 
enhance the feature fusion effect. Milletari et al, extended the U-Net model to three dimensions and preserved 
more details by adding short skip connections in  ResNet32 at each stage of the down-sampling. These models can 
prove that the local modeling function of CNN is crucial. However, increasing the receptive field during feature 
extraction may provide assistance in model segmentation performance.

Model based on transformer
With the success of Transformer in the visual field, Some scholars have attempted to apply it to medical image 
segmentation  tasks33,34. Swin-Unet35, a medical image segmentation model based on pure Transformer appears. 
It uses hierarchical Swin-Transformer36 with shifted Windows as an encoder to extract contextual features, 
which allows it to learn the interaction of global and remote semantic information. But medical images have a 
strong local structure, completely ignoring this locality is not advisable. Then,  TransUNet37 integrates CNN and 
Transformer to design a better method, so that the global context encoded by Transformers can be combined 
with detailed high-resolution spatial information from CNN features to achieve accurate positioning.  TransFuse38 
runs CNN and Transformer in parallel. As a result, global information can be captured without building deep 
networks, while maintaining sensitivity to low-level context. Zhu et al.39 propose a brain tumor segmentation 
method based on the fusion of deep semantics and edge information in multimodal MRI. Its designs semantic 
segmentation module that uses Swin-Transformer as the backbone, which can reduce computational complexity 
and achieve efficient dense prediction. X-Net40 combines CNN and Transformer to interactively fuse local and 
global information during encoding, achieving better segmentation results. Similarly, Liu et al.41 also demon-
strated the importance of properly integrating CNN and Transfomer for extracting global and local information 
in retinal segmentation tasks. Although using Transformer is a new idea to solve the problem of medical image 
segmentation, the model based on Transformer will not perform well when training data is insufficient.

Model based on MLP
While MLP is not a new concept, a lot of new work based on MLP is appearing. For example, MLP-Mixer does 
not use CNN and Transformer, and uses two different MLP layers repeatedly to realize the interaction of spatial 
position and channel information, for obtaining spatial position and channel characteristics. In addition, AS-
MLP puts forward a new way of thinking based on MLP. It captures local dependencies by acquiring information 
flows from different axial directions through moving the channel of feature maps. It is able to implement the 
same local receptive field as the CNN class architecture when using pure MLP architecture.

In summary, CNN is still the best choice for segmenting small data volume medical datasets. However, using 
it alone for feature extraction of medical images has certain limitations. So after analyzing existing methods, 
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this paper proposes a new feature extraction and information fusion method. On the one hand, it fully utilizes 
local correlations in medical images and enhances communication between similar feature regions. On the other 
hand, it combines dynamic regional attention module (DRA) and ordered shift MLP in a parallel manner for 
multi-feature fusion, achieving higher segmentation performance in medical images.

Method
As mentioned above in the introduction, the organization and texture of medical images are complex and the 
boundary is blurred, which makes the identification of medical images a very complicated and time-consuming 
work. Therefore, the data volume of medical image dataset is smaller than other datasets. Moreover, medical 
images have strong local structure. Compared with CNN, Transformer structure treats all tokens equally and 
ignores locality. In view of this situation, we used a small model with CNN as the backbone and integrating 
ordered shift MLP module and dynamic regional attention module.

The overall architecture of the network is shown in Fig. 1, which consists of three parts. The first is the encoder, 
considering that the target size in medical images is usually dynamic and variable, we not only use convolu-
tion operation to extract feature information in the encoder, but also design the ordered shift MLP module to 
promote local information exchange and the dynamic regional attention module to increase the receptive field 
during feature extraction. The second part is the decoder, which restores the feature resolution of the encoded 
feature through bilinear interpolation algorithm to predict the target region. The third part is the skip connec-
tion. When the decoder is working, the same stage features of the encoder and decoder end are fused by the 
skip connection to prevent the information loss that will occur in the target area from being predicted directly 
using the coding features.

Encoder
CNN part
We set the input image size to 224× 224 . The specific details of the network architecture are shown in Fig. 2a,b, 
shallow texture features and deep abstract features can be available by the encoder. The five stages in the down-
sampling imitate the method of extracting features from  ResNet3432. Considering the amount of data, we set the 
number of layers in the second to fifth stages to 2. By this means, we can avoid overfitting and waste of computing 
resources. In the down-sampling process, we adopt group  normalization42. In contrast to batch normalization, 
group normalization groups channels and normalizes them within each channel group so that batch size does 
not affect the model.

Figure 1.  Overall network architecture.
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Ordered shift MLP module
In this section, we will introduce the ordered shift MLP module. The specific details of the module are shown in 
Fig. 3. Assume that the input feature dimension is X ∈ R

H×W×C . First, we will extract the spatial feature map-
ping information by performing average pooling and max pooling on the input features. The feature mapping 
information reflects the ordering relationship between the input feature channels. And use the reordered feature 
mapping information S1 ∈ R

c×1×1 to order the input features to get the sequential feature XS ∈ R
H×W×C.

Next, we’re going to padding XS to obtain XSpad , then group the filled features in the channel dimension. Let 
XS = [X1

S , . . . ,X
g
S ] , where g is the number of groups. Let i represent any set of feature maps, then Xi

S ∈ R
H∗W∗ C

g  . 
The communication between local information is obtained by shifting channel blocks belonging to different 
groups in the height direction. The local information flow obtained after moving the grouping is represented 
by TH ∈ R

H×W×C.

(1)S1 =Sort(MLP(AvgPool(X))+MLP(MaxPool(X))).

(2)XS =Index_selected(X, S1).

Figure 2.  Specific illustration of network architecture. (a) Structure of Down-sample. (b) Structure of Basic 
block. (c) Structure of Up-sample.
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Figure 3.  Overview of the proposed ordered shift MLP module.
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At the same time, we use a depthwise separable convolution  operation43 to encode the position information 
in the MLP layer. As shown in formula (4).

Similarly, different local information flows can be obtained in the width direction to obtain receptive field 
that are different from convolution operations. For feature T, we use the rearranged feature mapping information 
S2 ∈ R

c×1×1 to obtain the ordered feature TS ∈ R
H×W×C.

We also consider the sequential feature TS performs a series of operations such as filling, channel grouping, 
etc. The final output XOutput ∈ R

H×W×C is obtained.

Our proposed ordered shift MLP module obtains surrounding feature information through channel grouping 
shift, enhancing local information exchange. Before grouping, we sort the features, so that more local communi-
cation can be obtained between the feature groups that have learned different features in the subsequent process.

Dynamic regional attention module
This section will introduce our proposed dynamic regional attention module. This module is used to measure 
feature similarity and select different modeling ranges for feature fusion. Figure 4 shows the changing process of 
the input feature map. Assume that the input feature dimension is X ∈ R

H×W×C , where H represents the height 
of feature map, W represents the width of feature map, and C represents the number of feature map channels. 
During information fusion, this method fuses each spatial information of the input feature map into a channel 
through a fully connected layer to obtain one-channel feature map. Through this operation, we hope to synthesize 
the previously extracted features and get all the possibilities of each spatial feature. After passing through the fully 
connected layer, we perform dimension transformation on the features to generate feature map Xfc ∈ R

H×W×1.

Similarity measure. Next, we calculate the similarity between each feature point and classify the feature points 
on the one-channel feature map. In this way, we can divide similar features in the feature map together, which is 
equivalent to defining a boundary for similar features. In the module, we set the number of different regions to 
k. Let Xi

fc represents the feature value corresponding to the i-th feature point on the feature map. h ∈ R [0,H−1] 

(3)TH = ShiftH(XSpad).

(4)T = GELU(DWConv(MLP(TH ))).

(5)S2 =Sort(MLP(AvgPool(X))+MLP(MaxPool(X))).

(6)TS =Index_selected(T , S2).

(7)TW =ShiftW(TSpad).

(8)Xoutput =MLP(Tw).

(9)Xfc = Reshape(FC(Flatten(X), 1), h,w).

Figure 4.  Working Principle of dynamic regional attention MLP.
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represents the coordinate of the feature value in the height direction, while w ∈ R [0,W−1] represents the coor-
dinate of the feature value in the width direction. In the process of division, the module will record the cor-
responding spatial coordinates and feature values of each feature point. Because the category of feature points 
is judged in the search area according to these two points. The calculation formula is shown in the following 
formulas (7–9).

The similarity measure S is determined by feature proximity df  and spatial proximity ds . Feature proximity 
is calculated by the Euclidean distance between the value of feature point in the region and the value of central 
point, as shown in formula (7).

Similarly, the spatial proximity is calculated by the Euclidean distance between the spatial coordinate values 
of feature points and the spatial coordinate values of central points in the region, as shown in formula (11).

In order to combine the two approaches into a similarity measure S, it is necessary to normalize the feature 
proximity and spatial proximity through m and s. Where m is a constant to determine the spatial distance weight 
ratio, and s is determined according to the specific number k of dividing feature map.

Modeling scope selection. We designed two methods based on similarity measurement and search area. The 
first methods, similarity measure is based on the feature proximity df  and spatial proximity ds , and search area is 
not global; The second methods, similarity measure is only based on the feature proximity df  , and search area is 
global. After the search is completed, the feature map will be divided into k non overlapping regions. The recep-
tive fields comparison of two different search methods and convolution is shown in Fig. 5. The red box represents 
the receptive field.

Feature fusion. After selecting the appropriate modeling range, we will perform feature fusion on features in 
different regions. Assuming ki regions are set, it means that the feature map Xfc ∈ R

H×W×1 will be divided into 
ki blocks. Let xi represent the feature area corresponding to center ki , and xji represent the feature value corre-
sponding to the j-th feature point in the i-th region. Then there is [x1, x2, ..., xi] ∈ Xfc , [x01 , x

1
1 , ..., x

n−1
1 ] ∈ x1 . So it 

can be represented by formula 13.

Output of dynamic regional attention module MDRA(X) ∈ R
H×W can be represented by the following for-

mula (14). Where SM represents similarity measure, MSS represents Modeling scope selection, and FF represents 

(10)df =

√

(

Xi
fc − X

j
fc

)2
.

(11)ds =

√

(

hi − hj
)2

+
(

wi − wj

)2
.

(12)S =

√

(

df

m

)2

+

(

ds

s

)2

.

(13)xi =
1

n





n−1
�

j=0

x
j
i



.

Figure 5.  Comparison of receptive fields between convolution and DRA module. (a) Convolutional Kernel 
(3*3), (b) The first methods, similarity measure is based on the feature proximity df  and spatial proximity ds , and 
search area is not global. (c) The second methods,similarity measure is only based on the feature proximity df  , 
and search area is global.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9714  | https://doi.org/10.1038/s41598-024-60475-y

www.nature.com/scientificreports/

feature fusion. Finally, as shown in formula (15), we combine it with the output of the ordered shift MLP block 
to achieve the goal of increasing feature interaction within the region.

The local correlation of medical images is relatively strong, and we need to use this prior knowledge to help the 
network segment medical images better. However, only using convolution operations to extract features can result 
in the loss of some key information, so this paper proposes two different methods for feature extraction. Both 
of these methods can increase the network’s ability to extract similar feature information. The difference is that 
the first method can extract feature information far away from the feature point, while the second method can 
extract feature information within a certain range around the feature point. Different from other  methods44–47, 
The perception area of this module during the selection of regions and feature fusion process is adaptive and 
determined by similar features. In this way, the module can fully utilize all feature information to improve the 
learning ability of the network.

Decoder
In the decoder, we will use the deep feature map through multiple up-sampling stages to predict the segmentation 
map. The up-sampling part utilizes bilinear interpolation algorithm to obtain feature maps of different layers, 
as shown in Fig. 2c. The same level feature maps of up-sampling and down-sampling are concatenated together 
through long-distance skip connections to effectively preserve some feature details.

Loss function
In this paper, the loss combination of binary cross entropy (BCE) and Dice are used in the loss section. The 
specific formula is as follows:

The loss function shown in formula (18) combines BCE loss and Dice loss. In the BCE loss formula, xn rep-
resents the element value in the prediction diagram, and yn represents the corresponding element value in the 
label diagram. Parameter wn means that we can manually rescale the loss weight for each element, and other 
parameters such as reduction were not specified in the training. In the Dice loss formula, xi is the probability 
value that the i-th element in the prediction diagram belongs to a prospect of a certain category, and yi is the 
true value of the i-th element in the label diagram. Dice loss, unlike BCE loss, is not affected by foreground size, 
and BCE loss can play a guiding role in Dice loss during network learning. Therefore, it is more reasonable to 
combine the two losses for network learning.

Experiments and results
Datasets
We used two medical datasets  GlaS48 and  CoCaHis49 to validate the method. The specific information of the 
dataset is as follows: The GlaS dataset consists of 165 images from 16 H &E staining histological sections of colo-
rectal adenocarcinoma in T3 or T42 stages, and each section belongs to different patients. The CoCaHis dataset 
contains the microscopic images of 82 H &E stained sections, which are frozen samples of liver metastatic colon 
cancer collected from 19 patients during surgery. In colorectal cancer, the key criteria for cancer grading are 
the morphology of the intestinal glands including architectural appearance and gland formation. So the fore-
ground information in GlaS is fragmented but not complex. However, CoCaHis contains images of colon cancer 
metastasis, in which the cancer cells are irregularly arranged. The foreground information of the dataset is not 
only scattered but also complicated. Figure 6 shows the difference between the two datasets. In GlaS, we used 85 
images for training and 80 images for test. And in CoCaHis, we use 65 images for training and 17 images for test.

Implementation details
We conduct our experiment on Python 3.6 and torch 1.8.1. NVIDIA Tesla V100 GPUs are used in training and 
testing models. The initial learning rate of the model is set to 0.001. During the training process, the cosine 
annealing method is used to attenuate the learning rate to the minimum value of 0.00001. The default optimizer 
is Adam. We set the weight decay to 0.0001. In the experiment, the batch size is set to 4, the number of training 
epochs is 400, and the input image size is 224 * 224. At the same time, the image will be rotated, flipped, contrast 
enhanced, and so on.

Evaluation metrics
In this paper, we adopt two evaluation indicators, IoU (intersection over union) and Dice (dice similarity coeffi-
cient), to measure the similarity between the prediction diagram and the label diagram. The formula is as follows.

(14)MDRA(X) =sigmoid(FF(MSS
(

SM
(

Xfc

))

)).

(15)X
′

=MDRA(X)⊗MLP(X).

(16)LossBCE =−wn

[

yn · logxn + (1− yn) · log(1− xn)
]

.

(17)LossDice =1−
2
∑

i xiyi
∑

i xi +
∑

i yi
.

(18)Losstotal =0.5 ∗ LossBCE + LossDice .
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where TP is True Positive, that is, the correct foreground area in the prediction diagram. TN is True Negative, 
which is the correct background area in the prediction diagram. FP is False Positive and is the part judged as 
foreground area in the prediction diagram but as background area in the label diagram. FN is False Negative 
and is the portion of the prediction diagram that is judged to be a background region and the label diagram that 
is judged to be a foreground region.

Comparative experiment
To prove the segmentation performance of the proposed model on these two datasets, We compared the final 
results with some advanced models, including CNN-based models U-Net, U-Net++, U-Net3+,Transformer based 
models  MedT50,  UCTransNet51,  DAEFormer52,  BiFormer53,  UDTransNet54,  ConvFormer55, and other medical 
segmentation models such as Attention U−Net56,  UNeXt57. The results of comparative experiment are shown 
in Tables 1 and 2. It can be seen from the Tables that the method has certain effect improvement on these two 
datasets, and has certain advantages over the existing methods.

Results on GlaS: According to the results in Table 1, our method outperforms other methods in most indica-
tors. It achieved an accuracy of 82.45% on the IoU and 90.23% on the Dice. Based on Table 1 and Fig. 7, it can be 
seen that the foreground information of this dataset is slightly scattered and the cell staining is different in depth. 
The U-Net has fewer layers and cannot fully learn these complex information, so the effect is poor. Compared to 
U-Net, U-Net++ and U-Net3+ increase communication at different levels, which helps to segment more accurate 
foreground regions. At the same time, most of the cancer cells have regular boundaries, so the existing medical 
image segmentation models have good segmentation results. And we use the ordered shift MLP module, which 
can enable more local communication between feature groups that have learned different features in feature 

(19)IoU =
TP

FP + TP + FN
,

(20)Dice =
2TP

FP + 2TP + FN
,

(21)Recall =
TP

TP + FN
,

(22)Specificity =
TN

TN + FP
,

(23)Precision =
TP

FP + TP
.

Figure 6.  The difference between GlaS and CoCaHis. (a) Two images of GlaS, (b) Two images of CoCaHis.
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extraction, reducing information loss. Therefore, our method produces fewer under segmentation cases and 
achieves higher results.

Result on CoCaHis: According to the results in Table 2, our method outperforms other models in almost 
all indicators. It achieved an accuracy of 70.24% on the IoU metric and 82.45% on the Dice metric. Due to the 
complexity of the foreground information of this dataset, most of the existing methods have poor segmentation 
effect on it. Combined with Table 2 and Figs. 8 and 9, it can be seen that some Transformer-based models have 
lower effects than CNN-based models. This may be due to the small size of the dataset, so Transformer-based 
models cannot learn features from the limited data. Our method utilizes the dynamic regional attention module 
to cluster locally similar pixels, forming interpretable local regions. And using the attention in the super pixel 
to make the local information interaction, then reduce the information loss, so the effect is better. Most of the 
textures in this dataset are complex, and the corresponding boundary information is also abundant and complex. 
We need to reduce information loss to ensure the accuracy of model segmentation.

Figures 7, 8 and 9 shows the prediction diagrams generated by different models. From the figure, we can see 
that the proposed method produces better segmentation results than other models. Compared with the results of 
other models, it improves the edge information of some segmentation areas with incorrect prediction, especially 
some foreground parts, and makes the results closer to the label diagram. The red box in other prediction figures 

Table 1.  Results compared with the most advanced models on GlaS. Bold represents the highest value and 
italic represents the second highest value bold.

Network

GlaS

IoU (%) Dice (%) Recall (%) Specificity (%) Precision (%)

U−Net13 76.84 86.30 86.19 87.21 87.91

U−Net++14 78.10 87.07 86.62 88.82 89.93

U−Net3+15 78.09 86.81 88.57 83.39 87.61

Attention U−Net56 77.53 86.98 89.78 83.39 85.20

UTNet24 80.30 88.16 92.12 82.98 86.55

MedT50 73.32 83.72 85.89 80.94 84.56

Swin−Unet35 78.83 65.93 81.01 75.40 79.00

UCTransNet51 82.21 89.62 90.10 88.59 89.73

TransUNet37 79.10 87.63 86.59 88.77 88.12

DAEFormer52 76.28 85.71 88.50 81.62 84.83

BiFormer53 85.52 75.67 87.25 81.94 86.07

UDTransNet54 89.45 81.73 90.47 87.52 89.77

ConvFormer55 86.42 77.00 90.83 77.40 83.81

UNeXt57 76.85 86.79 87.31 85.73 86.64

Ours 82.45 90.23 90.69 89.42 90.11

Table 2.  Results compared with the most advanced models on CoCaHis. Bold represents the highest value 
and italic represents the second highest value bold.

Network

CoCaHis

IoU (%) Dice (%) Recall (%) Specificity (%) Precision (%)

U−Net13 63.24 75.20 75.90 87.53 83.89

U−Net++14 65.90 78.28 78.29 87.81 83.79

U−Net3+15 65.16 77.06 77.15 88.89 83.80

Attention U−Net56 60.49 71.91 69.65 90.92 86.90

UTNet24 61.67 74.88 83.59 84.19 71.90

MedT50 64.38 77.41 81.27 86.66 78.14

Swin−Unet35 51.77 65.20 66.95 84.49 78.60

UCTransNet51 63.43 76.67 84.74 80.92 73.82

TransUNet37 67.48 79.84 83.96 87.01 78.21

DAEFormer52 64.80 77.70 83.60 86.61 75.74

BiFormer53 74.59 61.41 81.53 82.96 74.80

UDTransNet54 77.32 64.22 82.05 84.17 76.19

ConvFormer55 76.09 63.08 80.61 83.36 75.52

UNeXt57 63.22 77.24 84.45 85.10 71.40

Ours 70.24 82.45 86.95 88.90 78.60
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Figure 7.  The qualitative comparison of different models on GlaS.

Figure 8.  The qualitative comparison of different models on CoCaHis.

Figure 9.  The qualitative comparison of differences in prediction diagram details between different models on 
CoCaHis.
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shows the poor accuracy of the model compared with the method in this paper. From the figure, we find that 
CNN-based models show more under-segmentation, because these models mainly use convolution operations 
in which the convolution kernel is locally fixed. It can not extract all the relevant feature information at once, 
which may lead to the loss of some key information. Transformer-based models have the ability to model glob-
ally, so it has fewer under-segmented parts compared to CNN-based models. However, they may blur some local 
edge details and cause over-segmentation. Unlike the above methods, our method adaptively selects different 
modeling ranges based on different features, and can extract similar feature information around it. And it can 
be seen that our method can perform more accurate segmentation while retaining detailed shape information 
in these prediction results.

To sum up, CNN-based models have more obvious advantages in segmentation compared to some Trans-
former-based models when dealing with small amounts of data. Due to the strong local structure of medical 
images, some features are often more closely related to surrounding features, so the ability of convolution opera-
tions to extract local information makes CNN-based models perform well in segmentation. Compared with 
CNN, Transformer pays more attention to global information, ignoring the importance of local information. 
Moreover, Transformer based models require the support of large amounts of data, so the segmentation effect is 
not good. Meanwhile, from Table 3, we can see that most Transformer-based models perform lower than CNN-
based models in terms of model parameters and inference speed. However, our method adaptively selects the 
extraction range of local information, making up for the shortcomings of convolution operation in extracting 
feature information. It not only has better effect than the CNN-based model and the Transformer-based model, 
but achieves good levels in model parameters, inference speed, and other aspects.

Ablation studies
In this section, we conducted multiple sets of experiments to verify the specific role of the proposed module, 
and conducted ablation analysis on the GlaS and CoCaHis datasets. Firstly, We are based on U-Net. Then, we 
add ordered shift MLP module and dynamic regional attention module respectively to U-Net. Meanwhile, we 
also validated the parameters and inference speed, as shown in Table 6.

From Tables 4 and 5, it can be seen that adding ordered shift MLP and dynamic regional attention has an 
improving effect on segmentation accuracy. Proving that increasing the receptive field during feature extraction 
is crucial for reducing information loss. In addition, we also provided a Visualization of the ablation studies 
(Table 6).

Table 3.  Comparison of performance with models based on different methods.

Network Pramas (M) GFLOPs Inf. Time (ms)

Based on CNN

U−Net13 7.77 10.52 9.68

U−Net++14 9.16 26.72 21.37

U−Net3+15 26.97 152.87 68.63

Attention U−Net56 34.88 51.02 12.65

Based on Transformer

UTNet24 10.01 13.15 92.43

MedT50 1.60 21.24 1861

Swin−Unet35 41.30 8.63 58.63

UCTransNet51 66.22 32.87 1328

TransUNet37 93.19 24.63 52.63

DAEFormer52 29.61 25.95 92.33

BiFormer53 87.46 49.63 262.58

UDTransNet54 33.80 26.51 107.99

ConvFormer55 115.61 92.74 64.31

Based on MLP
UNeXt57 0.25 0.08 10.93

Ours 15.28 4.15 69.88

Table 4.  Results of ablation analysis on the GlaS dataset. Bold represents the highest value and italic represents 
the second highest value bold.

Method

GlaS

IoU (%) Dice (%) Recall (%) Specificity (%) Precision (%)

U−Net 76.84 86.30 86.19 87.21 87.91

Conv stage 79.83 88.64 88.31 89.23 89.45

Conv stage+MLP 81.67 89.80 89.93 89.35 89.99

Conv stage+DRA 81.59 89.75 91.23 87.79 88.63

Conv stage+DRA+MLP 82.45 90.23 90.69 89.42 90.11
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As can be seen from Fig. 10, for cell areas with lighter staining, the original U-Net is prone to under-segmen-
tation, that is, it will mistakenly distinguish the light-colored areas in the foreground information as background 
information, resulting in the reduction of segmentation accuracy. However, the addition of DRA can effectively 
reduce under-segmentation, because DRA uses similarity measurement to form local interpretable regions, and 
increases local communication within the region, weakening the information loss caused by feature extrac-
tion only with convolution. With the DRA, this occurrence is reduced and the edge details of the foreground 
information are segmented more precisely. At the same time, for cells with blurred boundaries, U-Net cannot 
accurately judge the boundary details. After the application of the ordered shift MLP, the adhesion between the 
foreground area and the surrounding unrelated area can be effectively reduced, and the segmentation result can 
be significantly improved.

As can be seen from the experimental results in Fig. 11, U-Net is prone to over-segmentation for areas with 
blurred boundaries and normal cells, that is, it mistakenly identifies other tissue areas as cancer cells. Moreover, 
due to the complexity of cancer cell arrangement, the foreground region has rich edge information, and it will 

Table 5.  Results of ablation analysis on the CoCaHis dataset. Bold represents the highest value and italic 
represents the second highest value bold.

Method

CoCaHis

IoU (%) Dice (%) Recall (%) Specificity (%) Precision (%)

U−Net 58.71 71.10 67.13 90.87 87.72

Conv stage 67.50 80.35 84.90 87.50 76.78

Conv stage+MLP 67.71 80.61 85.28 88.07 76.72

Conv stage+DRA 68.36 81.06 87.02 87.08 76.19

Conv stage+DRA+MLP 70.24 82.45 86.95 88.90 78.60

Table 6.  Comparison of model performance by adding different modules.

Network Pramas (M) GFLOPs Inf. Time (ms)

U−Net 7.77 10.52 9.68

Conv stage 14.32 2.36 18.28

Conv stage+MLP 15.27 2.46 31.18

Conv stage+DRA 14.33 4.14 60.78

Conv stage+DRA+MLP 15.28 4.15 69.88

Figure 10.  The ablation studies results of the GlaS, with red indicating the highest value and blue indicating the 
second highest value.
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also lead to the expansion of the edge when the feature fusion. The convolutional layer setup in the baseline can 
effectively reduce this situation. At the same time, it is obvious from the fifth column that adding the ordered 
shift MLP can significantly reduce the phenomenon of under-segmentation. And through the subdivision of 
different feature areas through DRA, the boundary of the target area can be defined, and the finer details of the 
foreground area can be predicted. Therefore, the proposed module can be applied to the network at the same 
time to make the prediction graph closer to the real label.

Results of different search methods on DRA
Due to the similarity measure determining the degree of similarity between features, and the search range affect-
ing the results of feature fusion, we chose two different methods for experiments to confirm the effectiveness of 
the method. The first, similarity measure is only determined by feature proximity, and the search area is global; 
The second, similarity measure is determined by both feature proximity and spatial proximity, and the search 
area is not global.

The comparison results are shown in Table 7. From the table, it can be seen that the second method yields 
better results. This further confirms that the local structure in medical images is strong, and adding this prior 
condition to distance measurement and search range can improve segmentation performance.

Results of different parameters on DRA
We conduct multiple groups of experiments on the parameters used in the training process to ensure that the 
selected parameters can make the model achieve the best effect. The main parameter in the module is the number 
of region partitions k. K represents the number of partitions, which controls the size of the module’s perception 
area range. In the experiment, we will choose different values of k for the experiment, and each change in k will 
increase by 5 to find the optimal value of k. The specific experimental results are shown in Fig. 12.

From Fig. 12, it can be seen that the model exhibits the best segmentation performance when using the 
DRA module at k = 5. From the results of the GlaS dataset, we can see that the smaller the number of region 
partitions, the better the effect. This may be due to the fact that the smaller the number of region divisions in 
the feature map, the more feature information is present in the divided regions, and the more feature data is 

Figure 11.  The ablation studies results of the CoCaHis, with red indicating the highest value and blue 
indicating the second highest value.

Table 7.  Segmentation results of different methods on DRA, black bold represents the highest value.

Dataset

Search rules

IoU(%) Dice(%) Recall(%) Specificity (%) Precision (%)

Similarity measure Search area

df ds global

GlaS
� × � 81.89 89.90 89.93 89.63 90.25

� � × 82.45 90.23 90.69 89.42 90.11

CoCaHis
� × � 68.81 81.37 89.01 86.38 75.27

� � × 70.24 82.45 86.95 88.90 78.60
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used to represent each region. Therefore, each pixel in the region can interact with more similar pixels around 
it, reducing the possibility of information loss. In the results of the CoCaHis dataset, we can see that selecting 
the appropriate number of region partitions k has a significant impact on the improvement of the module. Due 
to the complexity of the foreground information in this dataset, the value of the number of regions divided, k, 
is crucial. But compared to not adding the DRA module, the DRA module has an improvement effect on the 
segmentation accuracy of the model in any k value.

Conclusions
In this paper, an adaptive feature extraction and region-level information fusion medical image segmentation 
network is proposed. It uses CNN as the backbone for semantic feature extraction. Noticed that the targets of 
medical images usually exist in regions, we designs a dynamic regional attention module, which uses a similarity 
measure to extract features. Different from local fixed or global forms, this method can adaptively select a suit-
able modeling range based on features. At the same time, we also use the ordered shift MLP module to enhance 
the feature interaction within different regional blocks, so that the network can not only focus on the fixed size 
of the region, but also focus on the feature information of the more distant or surrounding areas. In this way, we 
can enhance the network’s ability to extract local detail information and reduce information loss, thereby more 
accurately and reliably segmenting the target area in medical images. After in-depth analysis, we have found 
reasonable parameters to achieve better experimental results. The experimental results show that the proposed 
method performs better on the dataset than other methods. It not only breaks the limitation of using local 
fixation to extract information, but also brings a new solution for dealing with data with scattered foreground 
information. Compared with other methods, we have better results in model parameters and computational 
complexity, but our inference speed is slightly slower than some methods. So, our future work will not only focus 
on extending this multi angle feature extraction method to other medical images, but also improve the running 
rules of the algorithm to achieve higher efficiency.

Data availability
Two public datasets, GlaS and CoCaHis were used to support this study and are available at https:// doi. org/ 
10. 1016/j. media. 2016. 08.008 and https:// doi. org/ 10. 1016/j. bspc. 2020. 102402. These prior datasets are cited at 
relevant places within the text as Refs.48,49.
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