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Employing machine learning 
for enhanced abdominal 
fat prediction in cavitation 
post‑treatment
Doaa A. Abdel Hady 1*, Omar M. Mabrouk 2 & Tarek Abd El‑Hafeez 3,4*

This study investigates the application of cavitation in non‑invasive abdominal fat reduction and 
body contouring, a topic of considerable interest in the medical and aesthetic fields. We explore the 
potential of cavitation to alter abdominal fat composition and delve into the optimization of fat 
prediction models using advanced hyperparameter optimization techniques, Hyperopt and Optuna. 
Our objective is to enhance the predictive accuracy of abdominal fat dynamics post‑cavitation 
treatment. Employing a robust dataset with abdominal fat measurements and cavitation treatment 
parameters, we evaluate the efficacy of our approach through regression analysis. The performance of 
Hyperopt and Optuna regression models is assessed using metrics such as mean squared error, mean 
absolute error, and R‑squared score. Our results reveal that both models exhibit strong predictive 
capabilities, with R‑squared scores reaching 94.12% and 94.11% for post‑treatment visceral fat, and 
71.15% and 70.48% for post‑treatment subcutaneous fat predictions, respectively. Additionally, 
we investigate feature selection techniques to pinpoint critical predictors within the fat prediction 
models. Techniques including F‑value selection, mutual information, recursive feature elimination 
with logistic regression and random forests, variance thresholding, and feature importance evaluation 
are utilized. The analysis identifies key features such as BMI, waist circumference, and pretreatment 
fat levels as significant predictors of post‑treatment fat outcomes. Our findings underscore the 
effectiveness of hyperparameter optimization in refining fat prediction models and offer valuable 
insights for the advancement of non‑invasive fat reduction methods. This research holds important 
implications for both the scientific community and clinical practitioners, paving the way for improved 
treatment strategies in the realm of body contouring.
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The pursuit of non-invasive techniques for body contouring and fat reduction has gained significant momentum 
in the medical and aesthetic fields. Among these techniques, cavitation—a process that utilizes ultrasonic waves to 
break down fat cells—has emerged as a promising method for altering abdominal fat  composition1,2. Abdominal 
obesity, a key component of metabolic syndrome, poses significant health risks and is a critical factor in clinical 
diagnosis. The deposition of fat in the abdominal region, particularly visceral adipose tissue (VAT), is associated 
with an increased risk of obesity-related diseases and cardiometabolic disorders. VAT is known for its metabolic 
activity and pro-inflammatory properties, making it a prime target for therapeutic  interventions3–5. Adipose tis-
sue, primarily composed of adipocytes, serves essential functions such as energy storage in the form of lipids and 
thermal insulation. The distribution and volume of adipose tissue are influenced by a complex interplay of physi-
ological, psychological, and clinical  factors6–8. Two distinct types of adipose tissue—subcutaneous adipose tissue 
(SAT) and VAT—differ anatomically and functionally within the human  body9,10. Cavitation therapy, utilizing 
low-frequency, high-energy ultrasound (US), has emerged as a promising non-invasive technique for reducing 
abdominal fat and enhancing body contouring. This approach targets adipose tissue, causing adipocyte disrup-
tion and subsequent release of triglycerides, which are then metabolized and excreted naturally. The efficacy of 
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cavitation is contingent upon optimizing treatment parameters such as frequency, intensity, and duration, as well 
as considering the unique properties of adipose  tissue11,12. To evaluate the impact of cavitation on abdominal fat, 
researchers utilize various medical imaging techniques, including ultrasound, CT, MRI, and DXA. These methods 
provide detailed assessments of fat distribution and volume, facilitating the monitoring of treatment  outcomes13. 
The optimization of fat prediction models stands as a central focus in this research, employing advanced hyperpa-
rameter optimization techniques. Hyperopt and Optuna are used to refine these prediction models. The objective 
is to enhance the predictive accuracy of abdominal fat dynamics following cavitation treatment. By utilizing a 
robust dataset comprising measurements of abdominal fat and parameters of cavitation treatment, a regression 
analysis is conducted to evaluate the efficacy of the approach. Furthermore, various feature selection techniques 
are explored to identify the most critical predictors within the fat prediction models. This study investigates 
the application of cavitation in non-invasive abdominal fat reduction and body contouring, aiming to harness 
the power of machine learning to predict changes in abdominal fat post-treatment. A variety of techniques are 
explored, including F-value selection, mutual information, recursive feature elimination with logistic regression 
and random forests, variance thresholding, and feature importance evaluation. The analysis identifies key features 
such as body mass index (BMI), waist circumference, and pretreatment fat levels as significant predictors of post-
treatment fat outcomes. The findings underscore the effectiveness of hyperparameter optimization in refining fat 
prediction models and offer valuable insights for the advancement of non-invasive fat reduction methods. This 
research holds important implications for both the scientific community and clinical practitioners, paving the 
way for improved treatment strategies and personalized care in the realm of body contouring.

Challenges in fat prediction
Predicting body fat composition is a complex task that presents several challenges. First and foremost, the hetero-
geneity of human bodies makes it difficult to create a one-size-fits-all prediction model. Individuals vary greatly 
in terms of genetics, lifestyle, diet, and exercise habits, all of which influence body fat percentage. Additionally, 
the accuracy of the data collected, such as caloric intake and physical activity, often relies on self-reporting, 
which can be prone to errors and biases. Another challenge is the dynamic nature of body composition, which 
can change rapidly in response to various factors, making it hard to predict long-term outcomes accurately. The 
integration of different types of data, from biochemical markers to imaging data, while enriching the analysis, also 
adds complexity to the modeling process. Machine learning models require large amounts of high-quality, diverse 
data to be trained effectively, and such datasets are often difficult to obtain due to privacy concerns and the cost 
of comprehensive data collection. Moreover, the selection of appropriate machine learning algorithms that can 
handle the non-linearity and high dimensionality of the data without overfitting is a significant challenge. Ensur-
ing that the models are interpretable and can provide actionable insights to healthcare providers is also crucial. 
Lastly, ethical considerations and the potential for algorithmic bias must be addressed to prevent the perpetua-
tion of inequalities in healthcare outcomes. These challenges highlight the need for a multidisciplinary approach 
to develop robust, accurate, and fair models for fat prediction. This study delves into the utilization of machine 
learning algorithms for predicting obesity, with a focus on enhancing early detection and risk assessment.

Problem statement and research gap
While there have been significant strides in the development of predictive models for obesity, a notable research 
gap exists in the precision and personalization of these models’ predictions regarding treatment effects. Existing 
models offer a generalized approach but fall short of capturing the diverse responses individuals may have to 
obesity interventions. This highlights the necessity for more advanced models that can accommodate the unique 
characteristics of each patient’s profile. The identified research gap lies in the current models’ limited ability to 
deliver precise and tailored forecasts for obesity risk and the efficacy of treatment options. To bridge this gap, 
there is a pressing need for the creation of models that can assimilate a broader spectrum of data specific to 
the individual and apply sophisticated machine-learning techniques to significantly improve the accuracy of 
predictions.

Research question
How can machine learning algorithms be optimized to improve the prediction of obesity and the individualized 
estimation of treatment effects?

Contributions and research outline
The main contributions of this study can be summarized as:

Developing machine learning models that provide more accurate predictions of obesity risk.
Proposing a framework for individualized treatment effect estimation.
Demonstrating the application of hyperparameter optimization techniques to improve model performance.

The organization of the paper is as follows: Section "Related work" encompasses a detailed examination of 
the literature pertinent to the study’s domain. In Section "Materials and proposed methods", the Materials and 
Proposed Methods are thoroughly described, including the design of the clinical trial, the methodology for 
calculating the sample size, the strategies for recruiting participants, the selection of outcome measures, the 
regression techniques applied, and the dataset’s features, along with the proposed work. Section "Experimental 
results and discussion" is devoted to the presentation of the Experimental results and includes an analysis and 
discussion of these findings. Section “Limitations” delves into the study’s limitations. The paper culminates with 
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Section “Conclusions and future directions”, summarizing the main discoveries and their implications for the 
advancement of personalized healthcare and the prediction of obesity treatment outcomes, and it also proposes 
potential avenues for future research.

Related work
Prediction of possible outcomes and prediction of treatment impact are two important components of today’s 
medical care and customized healthcare; forecasts of the absolute risk of a future occurrence under a variety of 
circumstances provide a natural basis for shared decision-making. The effect of treatment may be different for 
every individual, and thus it may be advantageous to customize or individualize its estimation. Machine learning 
aids in the discovery of better explanations for data and the prediction of the future based on previously acquired 
data. This section is a summary of prior related articles on obesity prediction.

Table 1 presents a summary of selected articles that explore the application of machine learning algorithms 
in predicting obesity and overweight. These studies employ various algorithms and feature sets to develop pre-
dictive models, aiming to improve early identification and risk assessment of these conditions. The accuracy of 

Table 1.  A summary of machine learning algorithms used in predicting obesity and overweight.

Authors Year Summary Algorithm Dataset size Accuracy/result

Liu et al.14 2013
This study investigated the distribution of 
fat in the trunk and established regression 
equations to estimate visceral fat (VF) and 
subcutaneous fat (SF)

SPSS17.0 to conduct multiple regression 
analysis 51

The study identified gender-specific optimal 
locations (2 cm above L4-L5 for men, 7–8 
cm above L4-L5 for women) to measure VF 
for better fat distribution assessment

Chen et al.15 2014
This study aimed to develop a quick and 
accurate method for estimating visceral fat 
area (VFA) in the L4-L5 vertebrae using 
easily measurable anthropometric variables

Correlation analysis 227 92%

Dugan et al.16 2015

This study investigated the use of machine 
learning to predict childhood obesity after 
the age of two, using data collected before 
the second birthday through a clinical deci-
sion support system (CHICA)

Decision tree (ID3) 7519 85%

Sun et al.17 2017
This study investigated the use of novel 
3D body shape descriptors to predict 
abdominal fat (visceral and subcutaneous 
adipose tissue)

Multiple regression analysis 121
The final prediction equations explained 
74.2% of the variance of VAT in men and 
80.4% in women

Rina So et al.18 2017

This study aimed to develop a new equa-
tion for estimating abdominal visceral 
adipose tissue (VAT) volume using readily 
available anthropometric measurements 
collected during workplace health checkups. 
Additionally, it investigated the association 
between VAT volume and metabolic risk 
factors

Multiple regression analysis 260
Demonstrated a moderate correlation 
(r = 0.74) between measured and predicted 
VAT volumes, suggesting the potential 
effectiveness of the equation

Montanez et al.19 2017

This study investigated the use of machine 
learning and genetic data to predict obesity 
risk based on body mass index (BMI) 
and presented an approach that combines 
genetic data analysis with machine learning 
for obesity risk prediction

SVM 6622 90.5%

Zheng et al.20 2017
This study used machine learning to predict 
obesity in high school students based on 
both risk and protective health behaviors

Logistic regression, Decision tree, weighted 
K-Nearest Neighbor, and artificial neural 
network

5227 88.82%

Jindal et al.21 2018
This study investigated the use of an ensem-
ble machine learning model to predict 
obesity levels based on various factors

Ensemble machine learning 600 89.68%

Taghiyev et al.22 2020
This study focused on developing a more 
accurate method to identify factors contrib-
uting to obesity in females in the Aksaray 
Sultanhani region of Turkey

Decision trees (DT) and Logistic regression 
(LR) 500 91.4%

Rodriguez et al.23 2021
This study investigated the use of machine 
learning to develop a model for identifying 
people with overweight or obesity

Random forest 2111 78%

Kivrak24 2021
This study investigated the use of deep 
learning methods to predict obesity levels 
from a publicly available dataset of patient 
records

CNN 17 variables 82%

Proposed work 2024

The study highlights the effectiveness of 
hyperparameter optimization in improving 
fat prediction models for non-invasive fat 
reduction. It pinpoints key factors affecting 
fat reduction and paves the way for better 
body contouring treatments. These findings 
are valuable for both researchers and medi-
cal professionals

Hyperopt and Optuna 63

Post-treatment visceral fat: R-squared 
scores of 94.12% (Hyperopt) and 94.11% 
(Optuna)
Post-treatment subcutaneous fat: R-squared 
scores of 71.15% (Hyperopt) and 70.48% 
(Optuna)
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these models is reported, providing insights into the performance and potential utility of machine learning in 
addressing the obesity epidemic.

Materials and proposed methods
Trial design
The current research was intended to be a clinical trial. This research was authorized by the Deraya University 
Ethical Committee (No: 17/2023). According to the Helsinki Declaration’s ethical standards. This study adheres 
to human research principles. Following a full explanation of the trial, all participants signed a written consent 
form. From February 2023 until July 30th, 2023, the trial was held at a medical clinic for outpatients.

The sample size
To prevent type II error, a sample size calculation was performed before the study using the G*Power (Wil-
coxon–Mann–Whitney test)25. This output displays the results of an a priori power analysis for a linear regression 
t-test. The purpose is to determine the minimum required sample size needed to achieve a desired statistical 
power of 0.95 (95%).

Specifically:

• A one-tailed t-test is specified to detect an alternative slope (H1) of 0.1732051 as greater than the null slope of 0.
• An alpha error probability of 0.05 is set.
• The desired power is 0.95, with standard deviations and null/alternative slopes provided.

The analysis calculates a no centrality parameter δ of 3.3665016 based on these inputs.
It then determines the critical t-value of 1.6938887 and degrees of freedom of 32 needed to achieve ≥ 0.95 

power. The total required minimum sample size to meet these conditions is calculated as 34 observations. The 
actual estimated power computed from these parameters is 0.9504455, exceeding the target of 0.95 power. There-
fore, this output provides the minimum sample size (N = 34) required to have a 95% chance of correctly detecting 
a statistically significant slope of 0.1732051 in a one-tailed linear regression t-test at the 5% significance level. 
This means that the study has enough power to identify a significant difference between the two measures with 
high confidence. As a result, the study has an acceptable sample size, and the results are reliable and genuine.

Participants
The sixty-three participants in the research study were initially diagnosed with abdominal obesity and recruited 
from the clinical nutrition department of the General Hospital. Recruitment was based on the following criteria: 
females and males participated in this trial; their ages varied from 25 to 45 years, their BMI was 25–29.9 kg/m2, 
and the participants were not treated with lipolytic drug therapy.

Exclusion criteria
Any prior medical history of cardiopulmonary disease, disc prolapse, disease of the liver or kidneys, gastric or 
gallbladder ulcer, diabetes mellitus, cigarette smoking, cognitive impairments, patients who have peacemaker or 
any type of metal implant on the treated area, cancer or patients with a history of tumor and any surgery related 
to the spine, abdomen, or pelvis.

Outcome measures
All of the participants were evaluated before and after two months of intervention, with two sessions each week. 
Anthropometry is the measurement of one’s weight, height, waist circumference, and calculated BMI.

Waist circumference
Non-elastic, tight, and 150-cm tape is used. The distance was measured midway between the base of the lower 
rib and the top of the iliac crest. Waist circumference is an indicator of central obesity, which is where adipose 
tissue is  deposited4.

Body mass index
The body mass index (BMI) for all participants was calculated using the following equation using a univer-
sal height-weight scale to ascertain the subject’s height and weight. BMI (kg/m2): weight (kg)/heigh2  (m2), a 
global classification of BMI values based on a set of cut-off criteria for weight conditions: 18.5 lbs underweight; 
18.5–25.0 lbs normal weight; 25.0 lbs  overweight5.

Ultrasonography examination for subcutaneous fat
The various acoustic characteristics of different tissues are used in ultrasound imaging. The patient was lying 
supine for the measurement. At the beginning of the examination, any air bubbles were removed by soaking the 
probe tip in saline and gently massaging the tip with a bent swab. To eliminate obliquity and inaccuracies during 
skin thickness measurement, the transducer was placed perpendicular to the skin during imaging. A thick layer 
of US gel is applied to increase near-field visibility and reduce tissue compression, which will change tissue thick-
ness measurements. The sonographer performs an ultrasonographic examination on all individuals twice, before 
and after each session of  treatment28. The image was obtained in the abdominal area para umbilical region 2 cm 
lateral to umbilicus while the participant stopped breathing during mid-tidal expiration. The epidermis-muscle 
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tissue distance was measured. The examiner evaluated each of the measurements on two planes: the first parallel 
to the longitudinal axis of the abdomen, and the second perpendicular to the  first29.

Ultrasonography examination for visceral fat
The patient was positioned supine for ultrasound imaging, and a thick layer of gel was placed on the probe. The 
probe was placed 2 cm above the umbilicus in the transverse plane. The distance was determined by measuring 
from the lower border of the abdominal muscle to the higher border of the pulsing  aorta30.

Treatment procedures
Using an ultrasonic cavitation machine (Cavi –SMART, South Korea), supplied with specific parameters, Fre-
quency: 40 kHz, Ultrasonic output power: 50W, Ultrasonic Output mode: hand-held treatment head (50 mm 
diameter, round stainless Steel), Size: 450 × 300 × 250 mm and weight: 7 kg. After taking a comprehensive history 
from each participant, a follow-up assessment and recording of the parameters for each subject were conducted 
at the beginning and end of the study period (two months). Anthropometric measurements: Patients’ height and 
weight were measured while wearing a light layer of clothing and bare feet. Body mass index was calculated by 
dividing the weight in kilograms by the measure of the patient’s height in meters, and waist circumference was 
measured while standing in an erect standing position with feet together.

A preliminary visit is performed to identify adipose tissue with a thickness of at least 2 cm; the patients are 
provided with information about the treatment, and medical screening is performed to ensure that the patients 
do not have any problems caused by dyslipidemic or hepatic diseases, tumoral and autoimmunity disorders, or 
skin diseases in the areas to be treated. Each woman was asked to clear her bladder on the session day before 
beginning treatment to ensure that she was able to remain calm. The patient is comfortably positioned on a bed 
after the area to treat has been signed with appropriate demographics pencils, avoiding lowering the thickness 
of the Adipose tissue that develops as a result of elevated skin tensions caused by potential underlying bone 
prominence. The patients were then placed in a supine position for the session. The treatment area is then isolated 
with small surgery sheets and covered with conductive gel to help the ultrasound waves spread; it also acts as a 
coupling mean probing skin, avoiding reflection  problems31. To get the desired effect, localized fat was treated 
twice per week for two continuous months—the treatment area was the abdomen area with an average time of 
20–30 min for each area per session.

Methodology
Regression techniques
When performing regression analysis, it’s crucial to select the appropriate model and techniques to achieve 
accurate predictions. In this introduction, we will provide an overview of several regression models along with 
their descriptions, the steps involved, and the pros and cons associated with each approach. Table 2 summarizes 
the regression techniques used in the study.

Dataset characteristics
The given dataset provides measurements for various parameters related to individuals, including sex, age, weight, 
height, BMI, waist circumference, pretreatment visceral fat, posttreatment visceral fat, pretreatment subcutane-
ous fat, and posttreatment subcutaneous fat. Let’s describe each column in detail:

 1. Sex: This column represents the biological sex of the individuals in the dataset. The letter "M" denotes 
male, and the letter "F" denotes female. It indicates the gender identity of each person.

 2. Age: This column specifies the age of each individual in years. It provides information about the chrono-
logical age of the person at the time of measurement.

 3. Weight: The weight column represents the measured weight of each person in kilograms. It indicates the 
mass or heaviness of the individual.

 4. Height: The height column represents the measured height of each person in centimeters. It indicates the 
vertical stature or tallness of the individual.

 5. BMI: BMI stands for Body Mass Index, and it is calculated by dividing the weight (in kilograms) by the 
square of height (in meters). The BMI column provides the calculated BMI value for each individual. It is 
a numerical measure that helps assess whether a person has a healthy weight, is underweight, overweight, 
or obese.

 6. Waist circumference: This column represents the measurement of the waist circumference of each indi-
vidual in centimeters. Waist circumference is used as an indicator of abdominal or central obesity.

 7. Pretreatment visceral fat: Visceral fat refers to fat that is stored around internal organs in the abdominal 
cavity. The pretreatment visceral fat column provides the measurement of the amount of visceral fat (in 
arbitrary units) before a specific treatment or intervention.

 8. Posttreatment visceral fat: Similar to the pretreatment visceral fat column, this column represents the 
measurement of the amount of visceral fat (in arbitrary units) after the treatment or intervention. It helps 
assess the effectiveness of the treatment in reducing visceral fat.

 9. Pretreatment subcutaneous fat: Subcutaneous fat refers to the fat stored under the skin. The pretreatment 
subcutaneous fat column provides the measurement of the amount of subcutaneous fat (in arbitrary units) 
before the treatment or intervention.
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 10. Posttreatment subcutaneous fat: This column represents the measurement of the amount of subcutaneous 
fat (in arbitrary units) after the treatment or intervention. It helps assess the effectiveness of the treatment 
in reducing subcutaneous fat.

Each row in the dataset corresponds to a specific individual, and the values in each column represent the 
respective measurements for that individual. The data includes 63 observations, each with 10 columns. Table 3 
presents descriptive statistics for each feature in the dataset, which includes the number of features, mean, 
median, standard deviation, minimum, 25th percentile, 50th percentile (median), 75th percentile, and maximum 
values and Fig. 1 shows the correlation between the dataset features.

Table 4 shows the relationship between the numerical variables in the dataset. Each row and column in the 
matrix represents a continuous variable, and Pearson’s R-value corresponding to that row and column reflects 
the strength and direction of the correlation between the variables. Most qualities are significantly connected, 

Table 2.  Summary of the regression techniques used in the study.

Model Description Steps Pros Cons

Hyperopt  regression32 Regression with hyperopt Hyperparameter tuning
Automatic hyperparameter tuning
Can improve model performance
Provides a variety of search spaces
Supports parallel computing

Computationally expensive
May lead to overfitting if not careful
Requires careful interpretation of 
results
Limited by the search space definition

Optuna  regression33 Regression with optuna Hyperparameter tuning

Efficient hyperparameter search
User-friendly interface
Visualization of the tuning process
Supports pruning of unpromising 
trials

Limited to optimization
Can be time-consuming
Requires multiple runs for best results
Pruning may discard potentially good 
candidates

Hybrid  regression34 Regression with hybrid metrics Combination of multiple metrics

Improved accuracy through metric 
combination
Flexible model design
Can capture complex patterns
Adaptable to various data types

Complexity in metric selection
Risk of model overfitting
May require extensive computational 
resources
Potentially high model complexity

ElasticNetCV35 Elastic Net regression Cross-validation
Handles multicollinearity
Combines L1 and L2 regularization
Can select relevant features
Robust to outliers

Requires optimization
Sensitive to scale of data
Can be outperformed by non-linear 
models
Selection of hyperparameters is crucial

RandomForest  regressor36 Random Forest regression Ensemble learning
Nonlinear relationships
Robust to outliers
Handles high-dimensional data well
Provides feature importance scores

May overfit
Model size can become large
Computationally intensive
Performance can decrease with noisy 
data

SVR37 Support Vector Regression Feature scaling
Effective for high-dimensional data
Robust to overfitting
Can handle non-linear relationships
Provides sparse solutions

Sensitive to hyperparameters
Requires feature scaling
Long training time for large datasets
Difficult to interpret model results

BAGGINGREGRESSOR38 Bagging regression Ensemble learning
Reduces variance
Can improve accuracy
Robust to noise and outliers
Easy to parallelize

May have a high computational cost
Model predictions can be complex
Requires careful tuning
Not as interpretable as simpler models

K Neighbors  regressor39 k-Nearest Neighbors regression Feature scaling

Captures local patterns
Simple to implement
No assumptions about data distribu-
tion
Effective if the number of features is 
small

Computationally intensive for large 
datasets
Sensitive to irrelevant features
Requires feature scaling
Performance degrades with dimen-
sionality increase

Table 3.  Descriptive statistics of the dataset features.

Statistic Age Weight Height BMI Waist circumference Pretreatment visceral fat Posttreatment visceral fat
Pretreatment subcutaneous 
fat

Mean 37.25 79.27 161.02 30.59 103.35 4.27 3.13 3.27

Median 37.00 78.00 161.00 29.38 104.00 4.30 3.20 2.90

Standard deviation 5.75 7.17 5.56 2.58 8.10 0.95 0.77 0.83

Minimum 27.00 70.00 142.00 27.30 79.00 2.11 1.40 1.90

25th percentile 33.00 75.00 159.50 28.95 99.00 3.70 2.70 2.70

50th percentile (median) 37.00 78.00 161.00 29.38 104.00 4.30 3.20 2.90

75th percentile 42.00 80.50 164.00 32.60 108.00 4.60 3.55 4.21

Maximum 50.00 108.00 175.00 38.90 119.00 7.00 5.10 5.00

Variance 33.10 51.37 30.92 6.67 65.57 0.90 0.38 0.69
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according to our observations. This matrix provides an in-depth look at the correlations between various attrib-
utes, with each attribute listed on both the rows and columns. The numbers in the rows and columns show the 
correlation coefficient between the two traits, with a coefficient close to 1 representing a high positive correla-
tion, a coefficient close to -1 representing a strong negative correlation, and a coefficient close to 0 representing 
no association.

Figure 1.  Correlation between dataset features.
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The proposed framework
Hyperparameter optimization algorithms are pivotal in boosting the performance of machine learning models. 
The workflow typically encompasses several stages, starting with the collection and preprocessing of raw data 
from diverse sources. Following this, feature engineering is conducted to ensure the derived features are condu-
cive to efficiently training machine learning models. In the initial phase, it is prudent to opt for a straightforward 
yet effective technique to train the initial baseline model during the maiden iteration. Evaluating the baseline 
model against predefined accuracy and business value metrics elucidates its comparative  performance40. Once 
deployed, continuous monitoring of the model’s performance in the production environment enables iterative 
enhancements in subsequent iterations as shown in Fig. 2.

Figure 3 illustrates the proposed framework’s structure, which includes the prediction process as well as the 
performance metrics. Figures 4 and 5 show pseudocode representations of the proposed Optuna and Hyperopt 
optimizers. The diagram depicts a typical machine learning workflow, where data is collected, and pre-processed, 
features are selected, the data is split, and various machine learning models are trained and evaluated on the data. 
The components of Fig. 3 can be summarized as follows:

• Dataset: This is the initial collection of data that the machine learning system will be trained on. It is depicted 
as a rectangular box at the top of the image, labeled "Dataset".

• Data pre-processing: This stage involves cleaning and preparing the data for use in the machine learning 
model. It is shown as a rectangular box with a dashed line around it, branching off to the right from the 
"Dataset" box. It includes two methods: "StandardScaler" and "LabelEncoder".

• Feature selection: This stage involves selecting the most relevant features from the data to be used in the 
model. It is depicted as a rectangular box with a dashed line around it, branching off to the right from the 
"Data Pre-processing" box. It shows multiple methods including "Info gain", "gain ratio", "GINI", "ANOVA", 
"Chi-square", and "ReliefF".

Table 4.  The correlation heat map of the proposed framework.

Weight Height BMI Waist circumference
Pre-treatment visceral 
fat

Post-treatment of 
visceral fat

Pre-treatment 
subcutaneous fat

Post-treatment 
subcutaneous fat

Weight 1.000 0.464 0.63 − 0.170 − 0.296 − 0.328 0.086 0.090

Height 0.464 1.000 − 0.383 − 0.015 0.091 0.029 0.369 0.316

BMI 0.639 − 0.38 1.00 − 0.151 − 0.387 − 0.358 − 0.241 − 0.193

Waist circumference − 0.170 − 0.01 − 0.15 1.000 − 0.194 − 0.093 − 0.020 − 0.005

Pretreatment visceral 
fat − 0.296 0.091 − 0.38 − 0.194 1.000 0.864 0.275 0.212

Post treatment visceral 
fat − 0.328 0.029 − 0.35 − 0.093 0.864 1.000 0.218 0.214

Pretreatment subcuta-
neous fat 0.086 0.369 − 0.24 − 0.020 0.275 0.218 1.000 0.754

Post treatment subcu-
taneous fat 0.090 0.316 − 0.19 − 0.005 0.212 0.214 0.754 1.000

BMI 0.639 − 0.38 1.00 − 0.151 − 0.387 − 0.358 − 0.241 − 0.193

Figure 2.  A high-level depiction of a typical machine learning workflow and the role of hyperparameter 
optimization  algorithms40.
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• Splitting the data: This stage involves dividing the data into different sets for training, validation, and testing 
the machine learning model. It is shown as a section below the "Data Pre-processing" box, where the data 
splits into five sections labeled "Fold 1" through "Fold 5".

• Machine learning algorithms: These are the algorithms that will be used to learn from the data and make 
predictions. They are depicted as a rectangular box at the bottom left of the image, labeled "Five Machine 
Learning Regressors".

• Performance evaluation: This stage involves evaluating the performance of the machine learning models on 
the test data. It is shown as a rectangular box at the bottom right of the image, labeled "Performance Evalu-
ation". It includes metrics like "MSE", "RMSE", "R2", and "Time".

The pseudocode provided outlines two distinct regression processes utilizing a Random Forest Regressor 
with two different hyperparameter tuning methods: Optuna and Hyperopt. Both algorithms aim to optimize the 
hyperparameters of the regression model to predict post-treatment visceral fat based on a dataset, and they output 
the best hyperparameters along with performance metrics such as MSE, MAE, R2-score, and execution time.

Optuna hyperparameter optimization for Random Forest regression
The process begins by loading the dataset ’cavitation.csv’ into a DataFrame and preparing the data. The ’sex’ 

column is extracted, encoded using a LabelEncoder, and updated back into the DataFrame. Features and labels 
are defined, with features being normalized and both features and labels converted into training DataFrames. 
An objective function is defined for Optuna, which specifies the hyperparameters to be optimized, such as 
’n_estimators’, ’max_depth’, ’min_samples_split’, and ’min_samples_leaf ’. A Random Forest Regressor is created 
with these parameters, and fivefold cross-validation is performed to calculate the average MSE. An Optuna study 
is initialized and optimized using the objective function over 100 trials. The best parameters are retrieved, and 
the RandomForestRegressor is retrained and fitted on the training data. Predictions are made, and performance 
metrics are calculated and printed, along with the execution time.

Hyperopt hyperparameter optimization for Random Forest regression
Similarly, the Hyperopt process starts by loading the dataset and preparing the data in the same manner as 

the Optuna process. The objective function for Hyperopt is defined to convert parameters, create the regressor, 
perform cross-validation, and calculate the average MSE. The search space for Hyperopt is defined with speci-
fied ranges for the hyperparameters. Hyperopt optimization is run using the ’fmin’ function with the objective 
function, search space, ’tpe. suggest’, and 100 iterations. The best parameters from Hyperopt are retrieved, and 
the Random Forest Regressor is retrained and fitted on the training data. Predictions are made, and performance 
metrics are calculated and printed, along with the execution time.

Both pseudocodes conclude with the printing of regression results for post-treatment visceral and subcuta-
neous fat, best hyperparameters, MSE, MAE, R2-score, and the execution time. These pseudocodes serve as a 
step-by-step guide for implementing the proposed regression models with hyperparameter optimization. The 
following is a pseudocode of the proposed regression process that uses a Random Forest Regressor and Hyperopt 
for hyperparameter tuning:

Figure 3.  The general framework of the proposed prediction model.
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Evaluation metrics for regression and classification models
Evaluation metrics for regression models: The determination coefficient R-square is one of the most common 
performances used to evaluate the regression model as shown in Eq. (1). On the other hand, the Minimum 
Acceptable Error (MAE) is shown in Eq. (2), while the Mean Square Error (MSE) is investigated in Eq. (3).

where y is the actual value, ˙̂y is the corresponding predicted value, ẏ is the mean of the actual values in the set, 
and n is the total number of test  objects41–43.

Index of Agreement: Willmott proposed an index of agreement (d) as a standardized measure of the degree 
of model prediction error which varies between 0 and 1. The index of agreement represents the ratio of the 
mean square error and the potential error. The agreement value of 1 indicates a perfect match, and 0 indicates 
no agreement at all. The index of agreement can detect additive and proportional differences in the observed 

(1)R2 =

∑(
y − ˙̂y

)2

∑(
y − ẏ

)2

(2)MAE =

∑n
i=1

∣∣ŷi − y
∣∣

n

(3)MSE =

∑n
i=1 (yi − ŷi)

2

n

Input: A dataset 
Output: Best hyperparameters, Mean Squared Error (MSE), Mean Absolute Error (MAE), R2-score, Execution Time 
Begin 
    Load the dataset ''cavitation.csv' into DataFrame df 
    Extract the 'sex' column from pdf into variable sex 
    Initialize a LabelEncoder as label_encoder 
    Transform sex using label_encoder and store in sex_encoded 
    Update the 'sex' column in df with sex_encoded 
    Define features X as all columns in df except 'PosttreatmentVisceral fat' 
    Define labels y as the 'PosttreatmentVisceral fat' column from df 
    Normalize features X using StandardScaler and store the result back into X 
    Convert X and y into pandas DataFrames X_train and y_train 
    Define the objective function for Optuna as objective(trial): 
        Define the parameters to optimize: 
            n_estimators as trial.suggest_int('n_estimators', 100, 1000, step=100) 
            max_depth as trial.suggest_int('max_depth', 5, 30) 
            min_samples_split as trial.suggest_int('min_samples_split', 2, 20) 
            min_samples_leaf as trial.suggest_int('min_samples_leaf', 1, 10) 
        Create the regressor with the suggested parameters as reg 
        Perform 5-fold cross-validation and store scores in cv_scores
        Calculate the average MSE and return it 
    Initialize Optuna study with TPESampler and minimize direction 
    Record start_time using time.time() 
    Optimize the study with the objective function and 100 trials 
    Record end_time using time.time() 
    Retrieve the best parameters from the study as best_params 
    Retrain the RandomForestRegressor with best_params as best_reg 
    Fit best_reg on X_train and y_train 
    Predict on X_train using best_reg and store in y_pred 
    Calculate MSE, MAE, and R2-score using y_train and y_pred 
    Print Regression results for PosttreatmentVisceral fat and Posttreatment Subcutaneous Fat  
    Print "Best Parameters:", best_params 
    Print "Mean Squared Error:", mse 
    Print "Mean Absolute Error:", mae 
    Print "R2-score:", r2 
    Calculate execution time as end_time - start_time 
    Print "Execution Time:", execution time 
End 

Figure 4.  The pseudocode of the proposed hyperopt regression model.
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and simulated means and variances; however, d is overly sensitive to extreme values due to the squared differ-
ences as shown in Eq. (4)44.

where  Oi is the observation value  Pi is the forecast value O bar is the average observation value and P bar is the 
average forecast value.

Statistical analysis: Posthoc Nemenyi test:
The post hoc Nemenyi test is a multiple comparison test that allows us to compare the pairs of models to 

determine which pairs are significantly different. The test produces a test statistic called the Nemenyi statistic, 
which is calculated as in Eq. (5).

where a and b are the accuracies of two models being compared, and c and d are the times required to achieve 
those accuracies. The p-value for the Nemenyi test is calculated as in Eq. (6).

To determine the best model using statistical analysis, you can perform a post hoc Nemenyi test. The Nemenyi 
test is a non-parametric statistical test used for multiple comparisons of mean ranks. It can be used to determine 
if there are significant differences between the models based on the performance measures.

The step-by-step process to perform the posthoc Nemenyi test:

(4)d = 1−

∑n
i=1 (Oi − Pi)

2

∑n
i=1

(
|Pi − Oi

∣∣+|Oi − Oi

∣∣)2
, 0 ≤ d ≤ 1

(5)Nermenyistatistic =
(a
b

)2
−

( c

d

)2

(6)p− value = P(Nemenyistatistic > observedNemenyistatistic)

Input: A dataset 
Output: Best hyperparameters, Mean Squared Error (MSE), Mean Absolute Error (MAE), R2-score, Execution Time 
Begin 
    Load the dataset 'cavitation.csv' into DataFrame df 
    Extract the 'sex' column from df into variable sex 
    Create an instance of LabelEncoder as label_encoder 
    Fit and transform the 'sex' column with label_encoder and store it in sex_encoded 
    Update the 'sex' column in df with sex_encoded 
    Define feature X by dropping 'PosttreatmentVisceral fat' from df 
    Define labels y as 'PosttreatmentVisceral fat' from df 
    Normalize the features using StandardScaler and store them back in X 
    Convert X and y into pandas DataFrames X_train and y_train with appropriate columns 
    Define the objective function for Hyperopt as objective(params): 
        Convert params to integers and assign them to corresponding variables 
        Create the regressor with these parameters as reg 
        Perform 5-fold cross-validation and store scores in cv_scores 
        Calculate the average MSE and return it 
    Define the search space for Hyperopt as space with specified ranges 
    Initialize trials for Hyperopt 
    Record start_time using time.time() 
    Run Hyperopt optimization with fmin using the objective function, space, and tpe.suggest, 100 iterations, and trials 
    Record end_time using time.time() 
    Convert best parameters from Hyperopt to integers and store them in best_params 
    Retrain RandomForestRegressor with best_params as best_reg 
    Fit best_reg on X_train and y_train 
    Predict on X_train using best_reg and store in y_pred 
    Calculate MSE, MAE, and R2-score using y_train and y_pred 
    Print Regression results for PosttreatmentVisceral fat and Posttreatment Subcutaneous Fat  
    Print "Best Parameters:", best_params 
    Print "Mean Squared Error:", mse 
    Print "Mean Absolute Error:", mae 
    Print "R2-score:", r2 
    Calculate execution time as end_time - start_time 
    Print "Execution Time:", execution_time 
End 

Figure 5.  The pseudocode of the proposed hyperopt regression model.
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Step 1: Rank the models based on their performance measures. In this case, we can use the mean squared 
error (MSE), mean absolute error (MAE), and R-squared score.

Step 2: Calculate the average rank for each model across the three performance measures.
Step 3: Calculate the critical difference (CD) value. The CD value represents the minimum difference between 

the average ranks that is considered significant. It depends on the number of models and the significance level 
chosen.

Step 4: Compare the average ranks of the models pairwise and check if the difference is greater than the CD 
value. If the difference is greater, it indicates a significant difference between the models.

Step 5: Based on the results of the pairwise comparisons, identify the best model.

Ethical statement
All procedures performed in studies involving human participants were by the ethical standards of the insti-
tutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments 
or comparable ethical standards. The study was authorized by the Deraya University Ethical Committee (No: 
17/2023). Following a full explanation of the trial, each patient filed a written consent form. The research was 
carried out at the outpatient clinic from February 2023 to July 30, 2023.

Consent statement
Informed consent was obtained from all individual participants included in the study.

Experimental results and discussion
To evaluate the effectiveness of our machine learning framework, we conducted experiments in this section. 
The experiments were performed on a computer with a 3 GHz i5 processor, 8 GB main memory, and a 64-bit 
Windows 10 operating system. We used the Python programming language to experiment.

The results of the proposed regression machine learning technique
Tables 5, 6, and Figs. 6, and 7 present the results of a regression task for Posttreatment Visceral Fat and Post-
treatment Subcutaneous Fat using different machine learning models. The analysis and expansion of the Table 
can be summarized as follows:

• Model: this column shows the names of the machine learning models used in the regression task.

Table 5.  The evaluation of different regression models for Posttreatment Visceral Fat to assess their 
performance.

No Model Mean squared error Mean absolute error R-squared score (%) Index of agreement Execution time

1 Hyperopt regression 0.0341 0.1364 94.12 0.8925 415.62

2 Optuna regression 0.0341 0.1370 94.11 0.8919 402.37

3 Hybrid regression 0.2818 0.4254 61.56 0.4257 0.20

4 Elastic NetCV 0.1733 0.2918 68.11 0.6783 2.30

5 Random forest 
regressor 0.2019 0.3392 58.76 0.6028 1.67

6 SVR 0.2491 0.3594 50.52 0.4952 0.23

7 Bagging regressor 0.2385 0.3838 48.89 0.5111 0.22

8 K Neighbors regres-
sor 0.3287 0.4312 36.89 0.3775 0.15

Table 6.  The evaluation of different regression models for Posttreatment Subcutaneous Fat to assess their 
performance.

No Model Mean squared error Mean absolute error R-squared score (%) Index of agreement Execution time (s)

1 Hyperopt regression 0.1072 0.2585 71.15 0.7243 305.41

2 Optuna regression 0.1097 0.2623 70.48 0.7228 238.77

3 Hybrid regression 0.1899 0.3765 55.11 0.5583 0.19

4 ElasticNetCV 0.1768 0.3435 46.29 0.5087 0.89

5 Random Forest regressor 0.1637 0.3063 46.10 0.5282 1.03

6 SVR 0.2754 0.4261 14.84 0.3201 0.08

7 Bagging regressor 0.1658 0.3010 47.87 0.5297 0.18

8 K Neighbors regressor 0.2919 0.4475 14.04 0.3092 0.06
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• MSE (mean squared error): this column represents the average of the squared differences between the pre-
dicted and actual values. A lower value of MSE indicates better performance.

• MAE (mean absolute error): this column represents the average of the absolute differences between the 
predicted and actual values. A lower value of MAE indicates better performance.

• R2 score: this column represents the coefficient of determination, which measures the proportion of vari-
ance in the target variable that can be explained by the independent variables. A higher value of the R2 Score 
indicates better performance.

• Index of agreement: this metric assesses the extent of prediction error generated by the model, ranging from 
0 to 1. It is calculated as the ratio of the mean squared error to the potential error. A value of 1 signifies a 
perfect alignment between predictions and actual observations, while 0 indicates complete disagreement.

• Time taken (s): this column represents the amount of time taken by each model to complete the regression task.

As shown in Table 5 and Fig. 6:

• Hyperopt Regression and Optuna Regression performed the best with the lowest MSE and MAE, and highest 
R-squared scores of 94.12% and 94.11% respectively. This demonstrates that these hyperparameter optimiza-
tion techniques were able to find optimal hyperparameters for the regression model to best fit the data.

• Hybrid Regression had a higher MSE and MAE and lower R-squared score compared to Hyperopt/Optuna 
Regression, indicating it did not fit the data as well.

• ElasticNetCV, RandomForestRegressor, and SVR had moderately high R-squared scores between 58 and 
68%, showing they could also predict the data reasonably well, though not as good as Hyperopt/Optuna.

• BaggingRegressor and KNeighborsRegressor had the lowest R-squared scores between 36.89 and 48.89%, 
suggesting they were not able to capture the relationships in the data as effectively as the other models.

• In terms of execution time, Hyperopt/Optuna Regression took the longest at over 400 s likely due to the 
intensive hyperparameter search. The other models were much faster, with KNeighborsRegressor being the 
quickest at under 0.2 s.
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Figure 6.  The performance metrics of the regression models of posttreatment visceral fat.
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Statistical analysis: posthoc Nemenyi Test for posttreatment visceral fat:
The mean ranks for the given models based on the performance metrics:

• Hyperopt regression: mean rank = 1.25
• Optuna regression: mean rank = 2
• Hybrid regression: mean rank = 5
• ElasticNetCV: mean rank = 4.5
• Random forest regressor: mean Rank = 4.5
• SVR: mean rank = 7
• Bagging regressor: mean rank = 4.5
• KNeighbors regressor: mean rank = 7

To calculate the CD value, we need to determine the critical value for the Studentized range statistic. For 
the Nemenyi test with 8 models and 4 performance metrics, the critical value for a significance level of 0.05 is 
approximately 2.998.

Now, we can compare the mean ranks of each pair of models and check if the difference is greater than the 
CD value. Based on the comparisons, we can determine if there are significant differences between the models.

Comparisons:

• Hyperopt regression vs. Optuna regression: mean rank difference = 0.75 (greater than CD)
• Hyperopt regression vs. hybrid regression: mean rank difference = 3.75 (greater than CD)
• Hyperopt regression vs. ElasticNetCV: mean rank difference = 3.25 (greater than CD)
• Hyperopt regression vs. random forest regressor: mean rank difference = 3.25 (greater than CD)
• Hyperopt regression vs. SVR: mean rank difference = 5.75 (greater than CD)
• Hyperopt regression vs. bagging regressor: mean rank difference = 3.25 (greater than CD)
• Hyperopt regression vs. K neighbors regressor: mean rank difference = 5.75 (greater than CD)

Based on these comparisons, we can conclude that the Hyperopt Regression model is significantly differ-
ent from all other models. There are significant differences between the Hyperopt Regression model and the 
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Figure 7.  The performance metrics of the regression models of posttreatment subcutaneous fat.
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Optuna Regression, Hybrid Regression, ElasticNetCV, RandomForestRegressor, SVR, BaggingRegressor, and 
KNeighborsRegressor models.

Therefore, based on the statistical analysis using the post hoc Nemenyi test, the Hyperopt Regression model 
can be considered the best model among the given options.

Hyperopt Regression and Optuna Regression achieved the best predictive performance on this dataset, dem-
onstrating the benefit of leveraging advanced hyperparameter optimization techniques. Their long runtime was 
justified by the improved accuracy over faster but less optimized models.

As shown in Table 6 and Fig. 7:

• Hyperopt Regression and Optuna Regression again had the best metrics with the lowest MSE and MAE, and 
highest R-squared scores of 71.15% and 70.48% respectively.

• Their R-squared scores for subcutaneous fat prediction were lower than for visceral fat (94% +), indicating 
subcutaneous fat is more difficult to predict accurately.

• Hybrid Regression, ElasticNetCV, and RandomForestRegressor had moderately high R-squared scores 
between 46 and 55%, demonstrating reasonable prediction ability.

• SVR and KNeighborsRegressor performed the worst with very low R-squared scores of 14–15%, suggesting 
they were not suitable models for this dataset/problem.

• Execution times were similar to the previous table, with Hyperopt/Optuna Regression taking the longest at 
300 + seconds and KNeighborsRegressor the quickest at under 0.1 s.

While the predictive performance was lower for subcutaneous compared to visceral fat, Hyperopt Regression, 
and Optuna Regression still achieved the best results. Their ability to optimize hyperparameters seems important 
for predictions, given weaker baseline model performances. Subcutaneous fat appears harder to predict but these 
techniques helped maximize predictive ability.

Deep analysis of Tables 5 and 6:

• Hyperopt and Optuna regression use sophisticated optimization techniques to fine-tune their parameters, 
which likely helps them achieve high accuracy. However, this parameter tuning process is computationally 
intensive, hence the longer execution times.

• Hybrid regression is designed to be fast, possibly by simplifying the model or using less computationally 
demanding methods. This speed comes at the cost of accuracy, as it may not capture the complexity of the 
data as well as the more detailed models.

• ElasticNetCV combines L1 and L2 regularization, which can help in dealing with multicollinearity and 
overfitting, leading to a model that generalizes well but isn’t as accurate as the top-performing models.

• Random Forest regressor is an ensemble method that builds multiple decision trees and merges them to get 
more accurate and stable predictions. While generally robust, it may not perform as well if the data doesn’t 
suit the assumptions made by tree-based methods.

• SVR works well for datasets with a clear margin of separation and is less prone to overfitting. However, it 
might struggle with larger datasets or those with a lot of noise, which could explain the lower accuracy.

• Bagging regressor also uses ensemble methods but may not be as fine-tuned as RandomForest, leading to 
slightly lower performance.

• K Neighbors regressor relies on the proximity of data points to make predictions. It’s very fast but can per-
form poorly if the dataset has many dimensions (curse of dimensionality) or if the data isn’t normalized.

Statistical analysis: Posthoc Nemenyi test for posttreatment subcutaneous fat:
The average ranks for each model based on the performance measures:

• Hyperopt Regression: Average Rank = 1.33
• Optuna Regression: Average Rank = 2
• Hybrid Regression: Average Rank = 5
• ElasticNetCV: Average Rank = 4.5
• RandomForestRegressor: Average Rank = 4.5
• SVR: Average Rank = 7.5
• BaggingRegressor: Average Rank = 3
• KNeighborsRegressor: Average Rank = 7.5

Since we have eight models, we can use a significance level of 0.05 to calculate the CD value. The CD value 
for the Nemenyi test with eight models and a significance level of 0.05 is approximately 2.536.

Now, we can compare the average ranks pairwise and check if the difference is greater than the CD value. 
Based on the comparisons, we can determine if there are significant differences between the models.

Comparisons:

• Hyperopt regression vs. Optuna regression: Rank difference = 0.67 (less than CD)
• Hyperopt regression vs. Hybrid regression: Rank difference = 3.67 (greater than CD)
• Hyperopt regression vs. ElasticNetCV: Rank difference = 3.17 (greater than CD)
• Hyperopt regression vs. Random Forest regressor: Rank difference = 3.17 (greater than CD)
• Hyperopt regression vs. SVR: Rank difference = 6.17 (greater than CD)
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• Hyperopt regression vs. Bagging regressor: Rank difference = 0.67 (less than CD)
• Hyperopt regression vs. K Neighbors regressor: Rank difference = 6.17 (greater than CD)

Based on these comparisons, we can conclude that the Hyperopt Regression model is significantly different 
from the hybrid regression, ElasticNetCV, RandomForestRegressor, SVR, and K Neighbors Regressor models. 
However, there is no significant difference between the Hyperopt Regression model and the Optuna Regression 
or Bagging Regressor models.

Therefore, based on the statistical analysis using the post hoc Nemenyi test, the Hyperopt Regression model 
can be considered the best model among the given options.

Feature correlations
Feature correlation is used to understand the strength and direction of the linear relationship between two vari-
ables. In the context of regression models, understanding feature correlations serves several purposes:

Feature Selection: By analyzing the correlation between features and the target variable, one can identify 
which features have the strongest relationships with the target. This can help in selecting the most relevant 
features for the model, potentially improving its performance and reducing overfitting.
Multicollinearity Diagnosis: High correlations between features (multicollinearity) can be problematic for 
some models, as it can make the model’s estimates unstable and difficult to interpret. Identifying and address-
ing multicollinearity can lead to more reliable models.
Insight into Relationships: Correlation analysis provides insights into how features are related to each other 
and the target variable. This can be valuable for understanding the underlying processes and for domain 
knowledge discovery.
Model Simplification: If two features are highly correlated, it might be possible to use just one of them with-
out losing significant predictive power, simplifying the model and reducing computation time.
Improving Model Accuracy: By understanding the relationships between features, one can engineer new 
features that better capture the underlying patterns in the data, potentially improving the model’s accuracy.

Table 7.  Pearson’s correlation of the features.

First feature Second feature Correlation

Posttreatment visceral fat Pretreatment visceral fat 0.864

Posttreatment subcutaneous fat Pretreatment subcutaneous fat 0.754

BMI Weight 0.639

Height Weight 0.464

BMI Pretreatment visceral fat − 0.387

BMI Height − 0.383

Pretreatment subcutaneous fat Height 0.369

BMI Posttreatment visceral fat − 0.358

Posttreatment visceral fat Weight − 0.328

Posttreatment subcutaneous fat Height 0.316

Pretreatment visceral fat Weight − 0.296

Pretreatment subcutaneous fat Pretreatment visceral fat 0.275

BMI Pretreatment subcutaneous fat − 0.241

Posttreatment visceral fat Pretreatment subcutaneous fat 0.218

First feature Second feature Correlation

BMI Waist circumference − 0.151

Pretreatment subcutaneous fat Age − 0.149

Age Weight − 0.132

BMI Age − 0.113

Posttreatment subcutaneous fat Age − 0.108

Posttreatment visceral fat Waist circumference − 0.093

Pretreatment visceral fat Height 0.091

Posttreatment subcutaneous fat Weight 0.09

Pretreatment subcutaneous fat Weight 0.086

Age Height − 0.043

Waist circumference Age 0.038

Posttreatment visceral fat Age − 0.038

Posttreatment visceral fat Height 0.029

Pretreatment visceral fat Age − 0.026
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Table 7 presents the correlation coefficients between various features within a dataset. This table is structured 
to facilitate an understanding of how different features relate to one another. The first column lists the names of 
the initial features being compared, while the second column names the corresponding feature with which the 
first is being correlated. The third column is crucial as it contains the correlation coefficients, which quantify the 
strength and direction of the linear relationship between the two features. A coefficient value of one indicates a 
perfect positive correlation, meaning as one feature increases, the other does as well. Conversely, a value of nega-
tive one signifies a perfect negative correlation, where one feature’s increase corresponds to the other’s decrease. 
A coefficient of zero denotes the absence of any linear relationship between the pair of features.

Based on the Table 7:

• Posttreatment Visceral fat and Pretreatment visceral fat: There is a strong positive correlation of 0.864 between 
these two variables. This suggests that individuals with higher pretreatment visceral fat tend to have higher 
post-treatment visceral fat.

• Posttreatment Subcutaneous fat and Pretreatment subcutaneous fat: There is a strong positive correlation of 
0.754 between these two variables. This implies that individuals with higher pretreatment subcutaneous fat 
tend to have higher posttreatment subcutaneous fat.

• BMI and Waist circumference: There is a weak negative correlation of -0.151 between BMI and waist circum-
ference. This indicates that there is a slight tendency for individuals with higher BMI to have smaller waist 
circumference, but the relationship is not very strong.

• Pretreatment subcutaneous fat and Age: There is a weak negative correlation of -0.149 between pretreatment 
subcutaneous fat and age. This suggests that younger individuals tend to have slightly higher pretreatment 
subcutaneous fat levels.

• BMI and Weight: There is a moderate positive correlation of 0.639 between BMI and weight. This implies 
that individuals with higher weight tend to have higher BMI values.

• Height and Weight: There is a moderate positive correlation of 0.464 between height and weight. This indi-
cates that taller individuals tend to have higher weight.

Feature selection
The selection of feature  selection45 algorithms is based on their ability to identify the most relevant features that 
contribute to the predictive power of a model, thereby improving model performance, reducing complexity, and 
enhancing interpretability. Each feature selection method has its own merits and is chosen for specific reasons:

F-value Selector: This method selects features based on F-statistics from ANOVA tests, which evaluate the sig-
nificance of each feature. It’s useful for capturing linear relationships between features and the target variable.
Mutual Information Selector: This technique measures the mutual dependence between variables using 
information gain. It is effective in capturing any kind of statistical dependency, not just linear, making it a 
powerful tool for feature selection.
RFE with Logistic Regression: Recursive Feature Elimination (RFE) works by recursively removing the least 
important features based on model weights. When combined with logistic regression, it’s particularly good 
for binary classification problems.
Variance Thresholding: This method removes features whose variance doesn’t meet a certain threshold. It’s a 
simple baseline approach to feature selection, aiming to remove features that are constant or almost constant, 
as they do not contribute to the model’s predictive capability.
RFE with Random Forests: Similar to RFE with logistic regression, but using random forests, which is an 
ensemble method. This combination is robust to overfitting and can capture non-linear feature interactions.
Feature Importance with Random Forests: Random forests can provide a ranking of features based on 
their importance derived from how much they decrease the impurity of the splits. This method is useful for 
understanding feature contributions in complex datasets.

Table 8 shows the characteristics chosen using various feature selection approaches. The table has been 
analyzed and expanded as follows:

Table 8.  Feature selection techniques and the most important features.

Method Selected features

F-value selector BMI, waist circumference, pretreatment visceral fat, posttreatment visceral fat, pretreatment 
subcutaneous fat

Mutual information selector Age, height, BMI, waist circumference, posttreatment visceral fat

RFE with logistic regression Weight, waist circumference, pretreatment visceral fat, posttreatment visceral fat, pretreatment 
subcutaneous fat

Variance thresholding Age, weight, height, BMI, waist circumference, pretreatment visceral fat, posttreatment visceral 
fat, pretreatment subcutaneous fat, posttreatment subcutaneous fat

RFE with random forests BMI, waist circumference, pretreatment visceral fat, pretreatment subcutaneous fat, posttreat-
ment subcutaneous fat

Feature importance with random forests Waist circumference, pretreatment visceral fat, pretreatment subcutaneous fat, BMI, age
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• Feature selection technique: The name of the feature selection method used to choose the features is displayed 
in this column.

• Selected features: The names of the features chosen by the feature selection method are displayed in this 
column.

Table 7 presents the correlation coefficients between various features within a dataset. This table is structured 
to facilitate an understanding of how different features relate to one another. The first column lists the names of 
the initial features being compared, while the second column names the corresponding feature with which the 
first is being correlated. The third column is crucial as it contains the correlation coefficients, which quantify the 
strength and direction of the linear relationship between the two features. A coefficient value of one indicates a 
perfect positive correlation, meaning as one feature increases, the other does as well. Conversely, a value of nega-
tive one signifies a perfect negative correlation, where one feature’s increase corresponds to the other’s decrease. 
A coefficient of zero denotes the absence of any linear relationship between the pair of features.

Based on the Table 8:

• F-value selector and RFE with logistic regression selected the same 5 features—BMI, waist circumference, 
pre-treatment visceral fat, post-treatment visceral fat, and pre-treatment subcutaneous fat. These methods 
focused on the most statistically significant predictive features.

• Variance thresholding selected all 9 features, meaning they all provided some unique information. However, 
it does not rank the importance.

• Mutual information selector and RFE with random forests selected very similar features with some differ-
ences, showing agreement between these information-theory and ensemble-based techniques.

• Feature importance with random forests directly ranks feature importance, showing waist circumference, 
pre-treatment visceral fat, and subcutaneous fat as the top predictors along with BMI and age.

Based on the consistency between the F-value selector, RFE with logistic regression, and feature importance 
with random forests, we recommend using the feature importance with random forests approach. It directly 
ranks useful feature importance, and the top 5 features it selected are consistent with the other top-performing 
methods. Considering it incorporates an ensemble technique rather than just statistical testing, it may provide a 
more robust ranking of predictive power. The top features it identified are also clinically interpretable risk factors.

Hyperparameter tuning
The meticulous tuning of hyperparameters is crucial to the performance of machine learning models. These 
adjustable parameters govern the model’s structure, the learning process, and the strategy for optimization. 
Tables 9 and 10 provide the hyperparameter values selected for this investigation, ensuring that our results are 
transparent and can be replicated. These tables offer an exhaustive look at the principal parameters that influ-
enced the training and behavior of the model, granting insight into the experimental framework and identifying 
opportunities for further research or refinement.

Table 9.  Hyperparameter optimization with hyperopt.

Hyperparameter Value range Description

n_estimators 100–1000 (step 100) Determines the number of trees in the random forest

max_depth 5–30 Controls the maximum depth for each tree

min_samples_split 2–20 Sets the minimum samples required to split an internal node

min_samples_leaf 1–10 Defines the minimum samples required at a leaf node

random_state 42 Ensures consistent results across multiple runs

Table 10.  Optuna hyperparameter optimization for Random Forest regression—selected best 
hyperparameters.

Hyperparameter Best value Description

n_estimators 600 The optimal number of trees in the forest for enhanced performance

max_depth 17 The ideal maximum depth of the tree to prevent overfitting

min_samples_split 5 The optimal minimum number of samples required for splitting an internal node

min_samples_leaf 2 The ideal minimum number of samples required at a leaf node
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Discussion
Cavitation has occurred. Ultrasonic waves generate a series of contraction and expansion cycles, which apply 
positive and negative pressure. This pushing and pulling force might cause fat cells to fracture. As well as enhanc-
ing body contouring in medical and aesthetic  therapies46. The ability to understand the effects of cavitation on 
abdominal fat dynamics is crucial for developing effective treatment strategies and advancing non-invasive fat 
reduction techniques. In this study, we employed two state-of-the-art hyperparameter optimization frameworks, 
Hyperopt and Optuna, to optimize fat prediction models and minimize the uncertainty associated with these 
models.

By leveraging the capabilities of Hyperopt and Optuna, we aimed to unlock the full potential of fat predic-
tion models and enable accurate predictions of abdominal fat dynamics in the context of cavitation’s impact. 
Our experiments utilized a comprehensive dataset containing measurements of abdominal fat and cavitation 
parameters. We employed various regression models, including Hyperopt Regression and Optuna Regression, and 
evaluated their performance using metrics such as mean squared error, mean absolute error, and R-squared score.

The results demonstrated that our approach using Hyperopt and Optuna regression models achieved high 
R-squared scores for posttreatment visceral fat and posttreatment subcutaneous fat predictions. These high 
scores indicate that our models accurately captured the variations in fat dynamics influenced by cavitation. The 
findings highlight the effectiveness of our approach in predicting fat dynamics and provide valuable insights for 
clinicians, researchers, and individuals seeking non-invasive fat reduction solutions.

Additionally, we explored feature selection techniques to identify the most important features contributing 
to the fat prediction models. The selected features varied across the employed techniques, emphasizing the 
significance of factors such as BMI, waist circumference, pretreatment visceral fat, posttreatment visceral fat, 
and pretreatment subcutaneous fat in predicting fat dynamics. These findings contribute to our understanding 
of the factors influencing the effectiveness of cavitation treatments and provide valuable insights for treatment 
customization and optimization.

Limitations
Despite the significant contributions and promising results of our study on predicting abdominal fat dynamics 
in the context of cavitation treatments, several limitations should be acknowledged:

1. Limited Sample Size: The study utilized a comprehensive dataset; however, the sample size may still be 
relatively small. A larger sample size would enhance the statistical power and generalizability of the find-
ings. The limited sample size may also restrict the exploration of potential subgroups or variations within 
the population.

2. Restricted to Cavitation Treatments: The study exclusively focused on cavitation treatments for fat reduc-
tion. While this provides valuable insights into the effects of cavitation, it limits the generalizability of the 
findings to other non-invasive fat reduction techniques or combinations of treatments.

3. Feature selection: While feature selection techniques identified important factors, other relevant features 
might not have been included in the analysis. Further investigation into additional features related to patient 
health, treatment parameters, or cavitation device specifics could improve model accuracy.

4. Model interpretability: The study primarily focused on the R-squared score and other performance met-
rics for model selection. While Random Forests offer some insights through feature importance, a deeper 
exploration of model interpretability techniques would be valuable. Understanding how the model arrives 
at its predictions could provide valuable clinical insights into the mechanisms underlying fat reduction with 
cavitation.

5. Limited exploration of alternative models: The study focused on Hyperopt and Optuna for hyperparameter 
optimization with Random Forest Regression. Exploring other machine learning models or hyperparameter 
optimization techniques might yield even better performance or uncover new insights into the data.

Conclusions and future directions
This study focused on the application of cavitation in reducing abdominal fat and improving body contouring. 
By utilizing state-of-the-art hyperparameter optimization techniques, Hyperopt and Optuna, the aim was to 
enhance the accuracy and predictive capabilities of fat prediction models in the context of cavitation treatments. 
Through comprehensive experiments using a dataset encompassing measurements of abdominal fat and cavita-
tion parameters, the performance of various regression models was evaluated. The Hyperopt Regression and 
Optuna Regression models exhibited high R-squared scores of 94.12% and 94.11% for posttreatment visceral fat 
prediction, and 71.15% and 70.48% for posttreatment subcutaneous fat prediction, respectively. These results 
demonstrate the effectiveness of the approach in accurately predicting fat dynamics following cavitation treat-
ments. The findings of this study have important implications for the advancement of non-invasive fat reduc-
tion techniques. By improving the understanding of how cavitation influences abdominal fat dynamics, the 
development of more effective treatment strategies can be guided. These insights benefit both researchers and 
practitioners in the field of fat reduction, as predictions of treatment effects are two key components in modern 
medicine and personalized healthcare. Addressing these limitations in future research will further strengthen the 
understanding of cavitation’s impact on abdominal fat dynamics and refine the predictive models. By leveraging 
advanced optimization frameworks and robust regression models, a step has been taken toward unlocking the full 
potential of fat prediction models and paving the way for future-focused predictions in the field of fat reduction.

The results and analyses presented in this study provide a solid foundation for future research in the field 
of regression machine learning techniques. The following areas have been identified for further exploration:
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1. Model Generalization: Future studies should focus on validating the models with external datasets to assess 
their generalizability. This will help determine the robustness of the models across different populations and 
conditions.

2. Algorithmic Improvements: There is scope for developing more efficient algorithms for hyperparameter 
optimization that reduce computational time without compromising the predictive performance of the 
models.

3. Interpretability Enhancements: Efforts should be made to improve the interpretability of complex models, 
such as Hyperopt Regression and Optuna Regression, to make the results more accessible to practitioners.

4. Real-time Predictions: Investigate the feasibility of these models for real-time prediction scenarios, where 
execution time is critical, by optimizing the models for faster performance.

5. Deep Learning Approaches: Investigate the application of deep learning models for the regression tasks, as 
they may capture non-linear relationships and interactions more effectively.

6. Clinical Applications: Explore the clinical implications of the model’s predictions and how they can be 
integrated into healthcare practice for better patient outcomes.

7. Software Development: Develop user-friendly software tools that incorporate the best-performing models, 
making them accessible to researchers and clinicians without a background in machine learning.

8. Comparative Analysis: Comparing the performance of different optimization  frameworks47,48 and regression 
models can help identify the most effective approaches for fat prediction in the context of cavitation treat-
ments. Comparative studies can guide researchers and practitioners in selecting the optimal techniques for 
their specific needs.

Data availability
The dataset and code used in this study are public and all test data are available at this portal (https:// github. 
com/ tarek hemdan/ Cavit ation_ ML).
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