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Spatial–temporal combination 
and multi‑head flow‑attention 
network for traffic flow prediction
Lianfei Yu 1, Wenbo Liu 1, Dong Wu 2, Dongmei Xie 1, Chuang Cai 1, Zhijian Qu 1* & Panjing Li 1

Traffic flow prediction based on spatial–temporal data plays a vital role in traffic management. 
However, it still faces serious challenges due to the complex spatial–temporal correlation in nonlinear 
spatial–temporal data. Some previous methods have limited ability to capture spatial–temporal 
correlation, and ignore the quadratic complexity problem in the traditional attention mechanism. To 
this end, we propose a novel spatial–temporal combination and multi‑head flow‑attention network 
(STCMFA) to model the spatial–temporal correlation in road networks. Firstly, we design a temporal 
sequence multi‑head flow attention (TS‑MFA), in which the unique source competition mechanism 
and sink allocation mechanism make the model avoid attention degradation without being affected 
by inductive biases. Secondly, we use GRU instead of the linear layer in traditional attention to map 
the input sequence, which further enhances the temporal modeling ability of the model. Finally, we 
combine the GCN with the TS‑MFA module to capture the spatial–temporal correlation, and introduce 
residual mechanism and feature aggregation strategy to further improve the performance of 
STCMFA. Extensive experiments on four real‑world traffic datasets show that our model has excellent 
performance and is always significantly better than other baselines.

Intelligent Transportation System (ITS)1 plays an important role in road traffic management. It combines some 
advanced science and technology such as information technology and sensor  technology2, and is effectively 
applied to traffic management and transportation. Traffic prediction is one of the important components of ITS, 
and it is also the issue that many researchers are scrambling to study. With the continuous progress and develop-
ment of the times, road transportation plays an increasingly important role in people’s lives, and the pressure on 
road traffic is also increasing. On the other hand, traffic accidents and road congestion are also happened more 
frequently, which greatly affects people’s travel efficiency and safety. Especially on highways with high speed, 
road congestion will seriously affect road traffic and even cause traffic accidents. With the maturity of sensor 
technology, the collection and storage of traffic data are more convenient. Traffic flow, traffic speed, and traffic 
occupancy data can be collected and used in traffic prediction research. Among them, traffic flow is the most 
intuitive indicator to reflect road conditions.

Traffic flow prediction is a typical spatial–temporal data prediction  problem3–5. How to capture the spa-
tial–temporal correlation from traffic data is a major challenge for traffic flow prediction. Temporal correlation 
is that different traffic conditions will occur at different times. For example, the traffic flow on the road in the 
morning, noon, and evening is usually larger than other time periods. In holidays, the traffic flow is also different 
from that in normal working days. If a traffic accident happens at a certain time and causes traffic congestion, then 
the traffic flow of this section in the next time period will be affected. Spatial dependence means that if different 
roads are connected to each other, the traffic state of a certain road will have a range of effects on the connected 
roads. Specifically, the upstream road will affect the downstream road, and the downstream road will in turn affect 
the upstream road because of the feedback  effect6. As shown in Fig. 1: The purple circle represents node A, and 
the red circles B, C, and D represent nodes directly connected to node A in space. The blue arrow indicates spatial 
dependence, the green arrow indicates temporal correlation, and the yellow arrow indicates spatial–temporal 
correlation. t  and t + 1 are two adjacent moments on the time axis. Specifically, node A will affect the nodes B, 
C, and D connected to it in space at moment t  , and will also affect the node A itself at moment t + 1 . Due to the 
spatial–temporal correlation, the node A at moment t  will even affect the nodes B, C, and D at moment t + 1.

In recent years, deep learning have been widely applied to traffic flow prediction, such as Recurrent Neural 
Network (RNN) and its variant Long Short-Term Memory network (LSTM)7. However, these methods have a 
slower calculation speed, and there is a risk of gradient disappearance or gradient explosion when capturing the 
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correlation of long-term sequences. Moreover, they can only capture the temporal correlation of sequences and 
cannot process the spatial information of traffic data, which leads to their poor prediction performance. Research-
ers also try to capture the spatial dependence of traffic data by using the spatial network topology generated by the 
actual spatial connection state of the road sensor. Graph Convolutional Network (GCN) is the most commonly 
used method for processing spatial information. The spatial–temporal synchronous graph convolutional network 
(STSGCN)8 was proposed to capture the complex spatial–temporal heterogeneities in the sequence by generat-
ing multiple local spatial–temporal subgraphs, but it only considered the local correlation of spatial–temporal 
information and ignored the global spatial–temporal correlation. The spatial–temporal graph ODE networks 
(STGODE)9 uses ordinary differential equation based on tensor to capture the spatial–temporal correlation of 
information, but its ability to capture spatial–temporal correlation can still be improved. The spatial–temporal 
dynamic semantic graph neural network (STDSGNN)10 captures spatial–temporal correlation by combining 
multi-head graph attention and full convolution, but it does not consider the influence of inductive biases and 
quadratic complexity in attention. The spatio-temporal shared GRU (STSGRU)11 improves the prediction scale 
by designing a shared weight mechanism, and captures the long-term dependence on the time dimension by 
modeling periodicity, but the type of captured long-term dependence is relatively single.

Attention mechanism is often applied to the related research of traffic flow  prediction12–14. It can adaptively 
calculate the weights of different positions according to the characteristics of different positions in the input 
sequence, thereby concentrating more attention on the relatively important positions. Although the attention 
mechanism can improve the prediction performance of the model by capturing the key information in the 
sequence, it usually introduces specific inductive biases in order to avoid attention degradation, which reduces 
the versatility of the model to a certain extent. In addition, the calculation burden corresponding to the atten-
tion weight will increase quadratically when processing long sequence data, causing the quadratic complexity 
 problem15.

Aiming at the above limitations, we proposed the spatial–temporal combination and multi-head flow-atten-
tion network (STCMFA). STCMFA introduces the idea of flow conservation into the attention mechanism, so 
that the model can form a natural competition mechanism without specific inductive biases. The unique com-
petition mechanism in STCMFA can effectively solve the quadratic complexity problem caused by calculating 
the attention weight in the traditional attention mechanism. In addition, it combines the temporal sequence 
model with the multi-head flow attention, which can capture a variety of changes and long-term dependencies 
in the time dimension, thus improving the prediction performance of the model. Our contributions are sum-
marized as follows:

(1) We design a temporal sequence multi-head flow attention (TS-MFA), in which the unique source competi-
tion mechanism and sink allocation mechanism replace the traditional attention weight calculation module, 
thus avoiding the impact of specific inductive biases.

(2) We use GRU to replace the linear transformation in traditional attention, thereby enhancing the ability of 
attention to capture temporal correlation when dealing with long-term sequences.

(3) We combine TS-MFA with GCN to capture complex spatial–temporal correlations. The residual mechanism 
and feature aggregation strategy are introduced into STCMFA to further improve its performance.

(4) Extensive experiments are conducted on four real-world traffic datasets. The experimental results show 
that our model always outperforms the baseline models.

The structure of this paper is as follows: “Related work” section introduces the related work of traffic flow 
prediction in recent years. “Methodology” section gives the relevant definitions and specific method implemen-
tations. A large number of experiments were carried out in the “Experiments” section, and the experimental 
results were analyzed. Finally, “Conclusions” section summarizes this work.

Figure 1.  Spatial–temporal correlation.
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Related work
Traffic flow prediction
Traffic flow prediction is to use the spatial–temporal data collected by road sensors to make as accurate a predic-
tion as possible for the traffic state in the future. There are many methods have been presented for traffic flow 
prediction. The early prediction methods include statistical models such as Historical Average model (HA)16 
and Autoregressive Integrated Moving Average (ARIMA)17. The statistical models are mainly based on statisti-
cal knowledge for mathematical derivation. Although it does not require a lot of training and iteration, it is not 
suitable for traffic flow prediction of complex road sections with a large amount of data. The related methods of 
machine learning were also applied to traffic flow prediction, such as K-Nearest Neighbor algorithm (KNN)18. 
This method needs to find the nearest neighbour value, so the calculation speed is slow, and the selection of K 
value will also affect the prediction accuracy. The Support Vector Machine algorithm (SVM)19 is difficult to find 
the optimal parameters when the amount of data is large. Later, researchers began to try to use deep learning 
methods for traffic flow prediction, including RNN. In order to solve the problems of gradient disappearance 
and gradient explosion, variant LSTM and gated recurrent unit (GRU)20 based on RNN were proposed. How-
ever, these models can only capture temporal correlation and cannot process spatial information. The fully-
connected LSTM (FC-LSTM)21 integrates full connectivity on the basis of LSTM to model spatial–temporal 
correlation. Convolutional Long Short-Term Memory network (ConvLSTM)22 employs Convolutional Neural 
Network (CNN) to replace the Hadamard product operation in LSTM, and the prediction effect is better than 
FC-LSTM. Zhang et al.23 proposed the deep spatio-temporal residual networks (ST-ResNet), which combines 
with deep residual network to predict crowd flow. However, these above methods were only applicable to grid 
data, and cannot deal with complex spatial topology information. Yao et al.24 proposed the deep multi-view 
spatial–temporal network (DMVST-Net), which uses local CNN to capture the local features of the region and 
expresses the semantic information of the region features by constructing a region graph. Xu et al.25 proposed 
the spatiotemporal convolution network based on long-term, short-term, and spatial features (GCGRU), which 
uses GNN and RNN to capture the spatial dependence and temporal correlation, respectively.

Graph convolutional network
Traditional CNNcannot to process graph-structured data well. GCN based on CNN can process non-Euclidean 
graph-structured data. In recent years, many researchers have tried to use GCN for traffic flow prediction. For 
example, the heuristic linear method proposed by Niepert et al.26 to select the neighborhood of each node has 
achieved good prediction results. The diffusion convolutional recurrent neural network (DCRNN) proposed 
by Li et al.27 models traffic flow in the form of diffusion, capturing the spatial dependence of directed graphs. 
Yu et al.28 proposed spatio-temporal graph convolutional networks (STGCN), which uses graph convolution to 
capture spatial dependence and uses one-dimensional convolution to capture temporal correlation. The model is 
constructed with pure convolution structure, and the small number of parameters leads to its very fast training 
speed. Wu et al.29 proposed a new graph convolutional network architecture (Graph WaveNet) for spatial–tem-
poral graph modeling. By developing a new adaptive dependency matrix to accurately capture the hidden spatial 
dependencies in traffic data, and using stacked 1D-CNN components to expand the receptive field. Bai et al.30 
proposed an adaptive graph convolutional recurrent network (AGCRN), in which two adaptive modules are 
designed: the node adaptive parameter learning module is used to capture the specific traffic patterns of different 
road nodes, and the adaptive graph generation module is used to automatically capture dynamic spatial depend-
encies. Song et al.8 proposed a spatial–temporal synchronous graph convolutional networks (STSGCN), which 
constructs multiple local spatial–temporal subgraphs and captures local spatial–temporal correlation through 
spatial–temporal synchronization modeling mechanism, but it ignores the complex spatial–temporal correlation 
in the global. Fang et al.9 proposed spatial–temporal graph ODE networks (STGODE), which uses tensor-based 
ordinary differential equations to capture complex spatial–temporal correlation. Lan et al.31 proposed a novel 
dynamic spatial–temporal aware graph neural network (DSTAGNN), which replaces the traditional predefined 
graph by constructing a dynamic spatial–temporal perception graph based on data-driven strategy, and obtains 
a wide range of dynamic temporal correlation from multiple receptive field features through multi-scale gated 
convolution. Tan et al.32 proposed a spatial–temporal graph product convolutional network (STGPCN), which 
can obtain different cross-spacetime graphs by defining different forms of graph product, so as to capture complex 
cross-spacetime node relationships.

Attention mechanism
In recent years, attention mechanism has been widely used in speech recognition and traffic flow  prediction33,34. 
The attention mechanism is to filter out the information that is critical to the current task by assigning differ-
ent weights to the input data, and then use the limited resources to focus on critical information. The attention 
mechanism can not only improve the computational speed, but also model the variable long sequence, which 
makes it have ability to capture long-term dependence. Xu et al.35 proposed an image caption generator based 
on two attention mechanisms: “soft” certainty and “hard” randomness, and analyzed the prediction results in a 
visual way. The graph attention network proposed by Velickovic et al.36 combines graph convolution with self-
attention to process graph structure data and achieves good prediction results. Guo et al.37 proposed attention 
based spatial–temporal graph convolutional networks (ASTGCN), which proposes a novel spatial–temporal 
attention mechanism to adaptively capture dynamic spatial–temporal correlation. However, a single attention 
mechanism can only map features into one space, which leads to its weak modeling ability. Li et al.38 proposed 
a transformer-enhanced spatial temporal graph neural network (DetecorNet), which models the temporal cor-
relation of long-distance and short-distance by constructing multi-view temporal attention module and dynamic 
attention module. Zhang et al.39 proposed a self-attention based ChebNet recurrent network (SACRN), which 
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captures spatial–temporal correlation by designing a spatial self-attention mechanism and fusing it with Cheby-
shev network and LSTM. Qin et al.40 proposed the linear transformer based on reweighting mechanism, which 
achieved excellent performance, but reduced the versatility of the model. Therefore, Wu et al.41 introduced flow 
conservation into the attention mechanism and proposed the flow attention mechanism, which improved the 
versatility of the model and reduced the complexity.

Although the above attention variants improved by traditional attention mechanisms solve a variety of prob-
lems, they still lack the ability to capture spatial–temporal correlation. Inspired by these studies, we consider 
combining flow attention mechanism, temporal model, and graph convolutional network to capture more com-
prehensive spatial–temporal correlation. At the same time, the multi-head attention mode is retained to improve 
the expression ability of the model.

Methodology
Preliminaries
Traffic network
As shown in Fig. 2, the corresponding road network topology is generated according to the road connection 
relationship between each sensor in the actual road network, which is represented by G = (V ,E,A) , where 
V = {v1, v2, . . . , vN } represents the set of all nodes (road sensors) in the entire road network, and N represents 
the number of nodes. E is a set of edges representing the connectivity between nodes. If there are two nodes 
connected by a road, then there is an edge in G connecting the two nodes. A ∈ RN×N is the adjacency matrix, 
aij is an element in A , which represents the spatial connection state between node vi and node vj . If there exist 
vi , vj ∈ V  and 

(
vi , vj

)
∈ E , then the value of aij is 1, otherwise it is zero.

Construction of time characteristics
The time characteristics of all nodes in the topological graph G are represented by X ∈ RN×L×F , where L denotes 
the total length of time series of each node, F denotes the number of types of characteristics of nodes. The process 
of traffic flow prediction can be described by Eq. (1):

where t  denotes a moment, T is the length of historical traffic data, and T ′ is the length of future traffic data to be 
predicted. Given continuous time steps (Xt−T+1,Xt−T+2, . . . ,Xt) and topological graph G , by training a model 
F  , we can predict the future T ′ continuous time steps (Xt+1,Xt+2, . . . ,Xt+T ′).

STCMFA model
Figure 3 shows the overall framework of STCMFA, which is mainly composed of input layer (Multi-Layer 
Perceptron, MLP1), GCN, aggregation layer, TS-MFA module, and output layer (MLP2). We will describe each 
module of STCMFA in detail below.

Graph convolutional network
The spectral graph theory studies the influence of the eigenvalues and corresponding eigenvectors of the Lapla-
cian matrix of the graph on the topological properties of the  graph42. In spectral analysis, for a graph G , its 
Laplacian matrix can be expressed as:

(1)(Xt+1,Xt+2, . . . ,Xt+T ′) = F[(Xt−T+1,Xt−T+2, . . . ,Xt);G],

Figure 2.  Road network generates spatial topography.
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where A is an adjacency matrix, and the degree matrix D ∈ RN×N is a diagonal matrix, defined as Dii =
∑

j Aij . 
IN is a unit matrix of size N × N , L ∈ RN×N . The eigenvalue decomposition of the Laplacian matrix is obtained:

In Eq. (3), � is a diagonal matrix composed of eigenvalues of L , as shown in Eq. (4). U = {u1, u2, . . . , uN } is 
the eigenvector of L.

We set x = Xt ∈ RN as the signal of the whole graph, and define the Fourier transform of the signal as 
x̂ = UTx . The signal x on G can be filtered by the convolution kernel gθ:

where ∗G denotes the graph convolutional operation. To speed up the solution of the characteristic matrix, 
we use the Chebyshev polynomial to approximate the eigenvalue matrix. The Chebyshev polynomials can be 
expressed by Eq. (6):

where θ ∈ RK is the vector of Chebyshev polynomial coefficients, and Tk

(
�̃

)
∈ RN×N is the Chebyshev poly-

nomial of order K of �̃ . And �̃ = 2
�max

�− IN , that is, the eigenvalue diagonal matrix after the range normaliza-
tion, �max is the maximum value of the eigenvalue. The recurrence formula of Chebyshev polynomials of order 
k is Tk = 2xTk−1(x)− Tk−2(x) . The first two terms of the recurrence equation are T0(x) = 1,T1(x) = x . The 
graph convolutional operation after Chebyshev approximation can be defined as the following equation:

where L̃ = 2
�max

L− IN . Equation (7) can be understood as extracting the information of 0 to K − 1 neighbors 
around each node in the topology graph through the convolution kernel gθ . After each graph convolutional 
operation, we use the Rectified Linear Unit (ReLU) as the activation function to activate, that is, ReLU ( gθ ∗ Gx).

(2)L = IN − D− 1
2AD− 1

2 ,

(3)L = U�UT ,

(4)� = diag([�0, �1, . . . , �N−1]) ∈ RN×N .

(5)gθ ∗ Gx = Ugθ (�)UTx,

(6)gθ (�) =
∑K−1

k=0 θkTk

(
�̃

)
,

(7)gθ ∗ Gx = Ugθ (�)UTx = U
(∑K−1

k=0 θkTk

(
�̃

))
UTx ≈

∑K−1
k=0 θkTk

(
L̃
)
x,

Figure 3.  The overall structure of STCMFA.
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Temporal correlation modeling
There are many methods that can model temporal correlation, such as one-dimensional convolutional neural 
network (1D-CNN), RNN, LSTM, and GRU. However, the convolution operation of 1D-CNN only focuses on 
local feature information, and its ability to model long-term dependencies in sequences is limited. Due to the 
special cyclic structure and back propagation algorithm of RNN, it has the exploding and the vanishing gradi-
ent problems when dealing with long sequences. Therefore, the variants of RNN, LSTM and GRU, have been 
proposed one after another. Compared with the LSTM with complex structure and slow training speed, GRU 
has relatively simple structure, less parameters, and fast training speed. In addition, its special gating mechanism 
can flexibly control the flow of information, and has the ability to capture long-term dependencies. Therefore, we 
use GRU to capture the temporal correlation of traffic flow. The specific calculation process of GRU is as follows:

where Wz ,Wr ,Wh and Uz ,Ur ,Uh are weight matrices, bz , br , bh are biases, and σ is a sigmoid function. Let 
x = {. . . , xt−1, xt , xt+1, . . . } denote the continuous sequence information of a node in the data set, xt is the input 
at time t, ht−1 is the hidden state of the output at the previous time, h̃t is the candidate hidden state at the current 
time, ht is the hidden state of the output at the current time, ⊗ is the Hadamard product. zt and rt represent the 
update gate and reset gate respectively. The update gate controls the retention degree of new and old information, 
and the reset gate controls the retention degree of input at the previous moment.

Temporal sequence multi‑head flow attention
The attention mechanism can be described as a mapping mechanism between the query vector (Q) and a series 
of key-value vector pairs (K ,V) and the output vector, where the weighting coefficients of each value vector are 
obtained by the scaled dot product of the query vector and the key vector, and the output vector is obtained by 
the weighted sum of the value vectors.

The traditional attention mechanism needs to calculate the similarity between the query at each location and 
the keys at all locations, which leads to a quadratic increase in the amount of computation required to calculate 
the attention weight when dealing with long sequences. The flow attention mechanism introduces the idea of 
flow conservation into both source and sink, and proposes a source competition mechanism and a sink allocation 
mechanism to achieve competition between tokens without using inductive biases. Flow attention can effectively 
solve the quadratic complexity problem caused by similarity calculation in traditional attention.

A single attention mechanism often only establishes a dependency between the query vector and the key 
vector, which leads to its limited modeling ability. We use multi-head flow attention to learn different dependen-
cies from the same attention aggregation. Like traditional attention, flow attention obtains Q , K , and V  by linear 
transformation through the fully connected layer, which limits its ability to model temporal sequence data. To 
further enhance the temporal modeling ability of the model, we propose a temporal sequence multi-head flow 
attention (TS-MFA) using GRU to map input data, as shown in Fig. 3.

To achieve the competition between information, the flow attention mechanism introduces conservation 
properties in both the source (the process of obtaining information from the previous layer) and the sink (the 
process of providing information to the next layer). Specifically, by setting the incoming flow of each sink to 1, 
the outgoing flow of the source will compete with each other because of the only location. Similarly, by setting 
the source outgoing flow to 1, the sink will compete for the only flow. After obtaining Q , K , and V  through GRU 
mapping, we achieve the conservation of the above two aspects of source and sink by performing a normalization 
operation on Q and K  respectively. Suppose there are n sinks and m sources, the two normalization processes 
are shown in Eqs. (12) and (13).

where ϕ denotes a nonnegative nonlinear function, I ∈ Rn×1 and O ∈ Rm×1 represent the incoming flow of 
sink and the outgoing flow of source, respectively. ϕ(Q)I  denotes the sink conservation, ϕ(K)O  denotes the source 
conservation.

Through standardization, the source outgoing flow conservation and sink incoming flow conservation are 
realized. The specific calculation process is as shown in Eqs. (14) and (15).

(8)zt = σ(Wzxt + Uzht−1 + bz),

(9)rt = σ(Wrxt + Urht−1 + br),

(10)h̃t = tanh
(
Whxt + Uh

(
rt ⊗ ht−1

)
+ bh

)
,

(11)ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t ,

(12)ϕ(Q)
I ,

(13)ϕ(K)
O ,

(14)I′ = ϕ(Q)
∑m

j=1

ϕ(Kj)
T

Oj
,



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9604  | https://doi.org/10.1038/s41598-024-60337-7

www.nature.com/scientificreports/

where i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m} , I′ ∈ Rn×1 and O′ ∈ Rm×1 represent the amount of information of 
the conserved incoming flow and outgoing flow, respectively.

TS-MFA mainly includes three parts: competition, aggregation, and allocation, the equations are as follows:

where ⊙ denotes the element-wise multiplication, H represents the input of the TS-MFA module. Competition 
is achieved by nontrivial reweighting based on input flow conservation. Information aggregation is carried out 
according to the associativity of matrix multiplication. The allocation mechanism uses I′ to filter the incoming 
flow of each sink to obtain the final output of the TS-MFA module. We integrate the residual mechanism to solve 
the problem of network degradation to a certain extent, and reduce the risk of gradient disappearance through 
layer normalization.

Extra components
Input layer. We use a fully connected layer as the input layer of the model, which can convert low-dimensional 
input data into higher dimensions, thereby improving the expression ability and prediction accuracy of the 
model.

Aggregating layer. As shown in Fig. 3, AGG represents the aggregation layer, and we use max pooling as the 
specific method of aggregation. The output data of the graph convolutional networks is subjected to a one-
dimensional max pooling operation in the time dimension, that is, an element with the largest value is selected 
in each sliding window, and the max pooling sliding window size is set to 2.

Output layer. The output of the TS-MFA module passes through the output layer MLP2 to obtain the final 
output of the STCMFA model.

Loss function. We use MAE as the loss function.
The training process of the model is shown in Algorithm 1.

Input: Number of nodes , historical sequence length , predicted sequence length , traffic 

flow data , traffic graph features, training epochs ;

Output: learned STCMFA model;

1: Randomly initialize learnable parameters of STCMFA;

2: ←∅;

3: The sliding window constructs the training set ← ( ∈ × , ∈ × ′) 

based on traffic flow data;

4: Generate adjacency matrix ∈ × ;

5: for = 0; < ; + +  do
6: Spatial feature output  = GCN (MLP1 ( ), );

7: Aggregating layer output  = Max-pooling ( );

8: , ,  = GRU ( );

9: Source competition:  = Competition ( , , );

10: Aggregation:  = Aggregation ( , , );

11: Sink allocation:  = Allocation ( , );

12: Prediction result output ∈ × ′ = MLP2 ( );

13: Compute loss ℒ =  ( , );

14: Update trainable parameters with gradient descent;

15: end for
16: Output the learned STCMFA model;

Algorithm 1.  Training algorithm of STCMFA.

Experiments
Datasets
To fully prove the prediction performance and generalization ability of the proposed model, we conduct extensive 
experiments on four real-world traffic datasets: PeMS03, PeMS04, PeMS07, and  PeMS088. These datasets are 

(15)O′ = ϕ(K)
∑n

i=1
ϕ(Qi)

T

Ii
,

(16)Competition : V ′ = softmax
(
O′
)
⊙ V ,

(17)Aggregation : A =
ϕ(Q)
I

(
ϕ(K)TV ′

)
,

(18)Allocation : R = LayerNorm
(
sigmoid

(
I ′
)
⊙ A+H

)
,
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collected by the Caltrans performance measurement system (PeMS) on highways in California, which deployed 
more than 39,000 sensors on some major highways in California. The system collects data in real time every 30 
s. Once the data set of 30 s is compiled, the original data will be aggregated into a 5-min interval without any 
gap. That is, there are 288 time steps in the data collected by each sensor in 1 day.

The original data of the PeMS series include three indicators: traffic flow, speed, and occupancy. In this paper, 
we only use traffic flow data for traffic prediction research. The details of these datasets are shown in Table 1, 
where nodes is the number of road sensors, time steps is the complete time steps of the data collected by each 
sensor, edges is the number of connections between sensors. The spatial connection relationship of each dataset 
is constructed based on the actual road connection network. If two sensors are on the same road, we think they 
are spatially connected.

Experiment settings
To be fair, we maintain the same data partitioning method as other baselines, and divide all datasets into train-
ing set, validation set, and test set according to the ratio of 6:2:2. We use one hour of historical data to predict 
traffic flow in the next hour, that is, we use the past 12 continuous time steps to predict the next 12 continuous 
time steps.

All experiments are conducted on a server with NVIDIA GeForce RTX3090 GPU. We use one layer of GRU, 
and its number of hidden units is 64. The number of terms of the Chebyshev polynomial is K = 3, and the number 
of attention heads in the attention module is 4. Our model contains three graph convolutional operations. We 
use the Adam optimizer to train our model with a learning rate of 0.001. The batch size is 16.

We use the following three indicators to evaluate the performance of the model:

Baseline methods
We compare STCMFA with following baseline models:

 (1) LSTM7: Long short-term memory network is used to capture the correlation of traffic data in the time 
dimension.

 (2) DCRNN27: The traffic flow is modelled as a diffusion process on a directed graph, and the spatial depend-
ence is captured by bidirectional random walk on the graph, and the temporal correlation is captured by 
using the seq2seq architecture with predetermined sampling.

 (3) STGCN28: STGCN combines graph convolution and 2D convolution to effectively capture comprehensive 
spatial–temporal correlation.

 (4) ASTGCN(r)37: ASTGCN models three time attributes of recent, daily, and weekly periodicity respectively, 
and uses the spatial–temporal attention mechanism to effectively capture the dynamic spatial–temporal 
correlation in traffic flow data. To be fair, we only use it to model the latest component of periodicity 
(ASTGCN(r)).

 (5) STG2Seq43: Combining the graph volume product with attention mechanism and seq2seq to capture the 
temporal-spatial correlation.

 (6) Graph  WaveNet29: An adaptive adjacency matrix is proposed to capture the hidden spatial dependence, 
and the graph convolution and dilated casual convolution are combined to capture the spatial–temporal 
correlation.

 (7) STSGCN8: Spatial–temporal synchronous graph convolutional networks uses multiple local spatial–tem-
poral subgraph modules to synchronously capture the heterogeneity in the local spatial–temporal graph.

 (8) STGODE9: Spatial–temporal graph ODE networks captures spatial–temporal dynamics through ten-
sor-based ordinary differential equations (ODE) and captures long-term temporal correlation based on 
semantic adjacency matrix.

(19)MAE = 1
N×T

∑T
t=1

∑N
n=1

∣∣∣Yn
t − Ŷn

t

∣∣∣,

(20)MAPE = 1
N×T

∑T
t=1

∑N
n=1

∣∣∣Yn
t −Ŷn

t

∣∣∣
Yn
t

,

(21)RMSE =

√
1

N×T

∑T
t=1

∑N
n=1

(
Yn
t − Ŷn

t

)2
.

Table 1.  Dataset description.

Datasets Nodes Days Time steps Time range Edges

PeMS03 358 91 26,208 9/1/2018–11/30/2018 547

PeMS04 307 59 16,992 1/1/2018–2/28/2018 340

PeMS07 883 98 28,224 5/1/2017–8/31/2017 866

PeMS08 170 62 17,856 7/1/2016–8/31/2016 295
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 (9) STDSGNN10: Spatial–temporal dynamic semantic graph neural network captures semantic features by 
constructing two semantic adjacency matrices, and uses multi-head graph attention and full convolution 
to capture spatial correlation and temporal correlation respectively.

 (10) STGPCN(Kronecker)32: A general framework for modeling dynamic spatial–temporal graphs is con-
structed, and a spatial–temporal adjacency graph construction method is proposed to increase the spa-
tial–temporal receptive field.

 (11) LEISN-ED44: A long-term explicit–implicit spatial–temporal network is proposed, which promotes the 
transmission of long-term features through a long-term dependency module, and two spatial feature 
extraction branches are designed to extract explicit and implicit spatial features respectively.

 (12) STSGRU 11: A spatial–temporal shared GRU is proposed, which captures long-term temporal features by 
modeling weekly traffic patterns, and a shared weight mechanism is designed to achieve many-to-many 
prediction.

Experiment results and analysis
Results on PeMS series datasets
Table 2 shows the traffic flow prediction results of STCMFA and baseline models. The bold marker represents 
the best indicator in all results, “–” represents the corresponding baseline uncalculated indicator. Overall, the 
prediction results of our STCMFA model on four datasets are significantly better than all baseline models.

Specifically, LSTM as a temporal sequence model can only capture the temporal correlation in traffic data, 
and does not have the ability to capture spatial dependence. Other baselines can capture both temporal correla-
tion and spatial dependence at the same time, so LSTM has the worst effect in all baseline models. In contrast, 
baseline models such as Graph WaveNet and STGCN both take into account the influence of time and space on 
traffic flow changes, so they achieve better prediction results. However, the time and space modeling modules in 
these models are very basic and simple, so their prediction performance still has great limitations.

STSGCN uses multiple local spatial–temporal subgraphs to capture the heterogeneity of spatial–temporal 
data, which can better mine the interaction between spatial–temporal data. STGODE combines tensor-based 
ordinary differential equations to extract long-term spatial–temporal correlation. Compared with the local 
spatial–temporal correlation captured by STSGCN, STGODE has greater advantages in global dependence. 
STDSGNN, STGPCN, LEISN-ED, and STSGRU reported recently have further improved the ability to model 
spatial–temporal correlation through feature construction and feature extraction, and achieved better prediction 
results. Among them, the prediction result of STSGRU is the best, which improves the flexibility and performance 
of the model by modeling periodicity and designing a shared weight mechanism.

Compared with STSGRU, the prediction results of STCMFA are significantly better. This is because STCMFA 
captures the key information in the sequence by introducing the flow attention mechanism, and avoids the cal-
culation of attention weight, which effectively reduces the complexity of the model. In addition, the temporal 
sequence model is integrated into the flow attention and combined with the graph convolutional module, which 
greatly enhances the ability of the model to capture long-term dependency and spatial–temporal correlation, 
and improves the accuracy of traffic flow prediction.

Visualization
To compare the performance of the model more intuitively, we draw the Taylor diagram of the STCMFA and 
baseline models, as shown in Fig. 4. The correlation coefficient of the proposed model is significantly higher 
and its standard deviation is closer to the observation, indicating that its prediction performance is the best.

Table 2.  Comparison of traffic flow prediction performance between STCMFA and baseline models.

Model

PeMS03 PeMS04 PeMS07 PeMS08

MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE

LSTM 21.33 23.33 35.11 27.14 18.20 41.59 29.98 13.20 45.84 22.20 14.20 34.06

DCRNN 18.18 18.91 30.31 24.70 17.12 38.12 25.30 11.66 38.58 17.86 11.45 27.83

STGCN 17.49 17.15 30.12 22.70 14.59 35.55 25.38 11.08 38.78 18.02 11.40 27.83

ASTGCN(r) 17.69 19.40 29.66 22.93 16.56 35.22 28.05 13.92 42.57 18.61 13.08 28.16

STG2Seq 19.03 21.55 29.73 25.20 18.77 38.48 32.77 20.16 47.16 20.17 17.32 30.71

Graph WaveNet 19.85 19.31 32.94 25.45 17.29 39.70 26.85 12.12 42.78 19.13 12.68 31.05

STSGCN 17.48 16.78 29.21 21.19 13.90 33.65 24.26 10.21 39.03 17.13 10.96 26.80

STGODE 16.50 16.69 27.84 20.84 13.77 32.82 22.99 10.14 37.54 16.81 10.62 25.97

STDSGNN 16.12 16.15 25.59 20.67 13.83 32.40 22.91 10.06 34.95 16.73 10.84 25.59

STGPCN (Kronecker) 17.11 16.48 28.99 20.96 13.78 33.35 24.02 10.08 38.77 16.41 10.43 25.60

LEISN-ED 15.83 14.66 26.05 – – – – – – 15.94 10.18 24.96

STSGRU 15.45 15.85 24.13 20.11 13.86 31.80 21.50 9.08 34.40 15.68 10.67 25.12

STCMFA(our) 15.48 13.52 22.91 19.78 12.51 29.51 21.34 8.39 33.39 16.09 9.27 24.12
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Figure 5 is the scatter plot of STCMFA and STGODE on four datasets. The horizontal axis and the vertical 
axis are the predicted value and the true value, respectively. It can be seen that the scatter plot of the proposed 
model is more aggregated, indicating that its prediction accuracy is higher than that of STGODE.

Figure 6 shows the absolute error heatmaps of the predicted values and true values of the STCMFA model on 
four datasets. Due to large datasets, we selected the first 60 time steps of 12 roads in each dataset for display, and 
drew four different prediction horizon heatmaps on each dataset. Usually, as the prediction horizon increases, 
the prediction performance of the model will gradually decrease. However, we can find from the heatmaps that 
STCMFA has good results in both short-term and long-term prediction horizons. This is due to the fact that we 
have improved the flow attention mechanism based on GRU. The special gating mechanism in GRU can flexibly 
control the transmission of feature information, enhance the ability of modeling long-term dependence, and 
improve the prediction effect of long horizons.

In Fig. 7, we cut out the time period of one day on the test set of PeMS03 and PeMS04, and then draw the 
5-min and 60-min prediction curves of STCMFA and STGODE respectively, and compare them with the ground 
truth. From the red dotted line box in Fig. 7, it can be found that when the traffic data suddenly rises or falls, our 
STCMFA predicts this change more sensitively and quickly than STGODE, and the predicted values are more 
accurate. This is because STCMFA integrates the temporal sequence model into the flow attention mechanism, 
so that the model can pay attention to the special change patterns of the sequence in the time dimension, so as to 
predict these changes more quickly and accurately. As shown in the blue dotted box in Fig. 7, STCMFA not only 
performs well in the short-term prediction of 5 min, but also has a better effect than STGODE in the long-term 
prediction of 60 min. Figure 8 shows the prediction curves for all datasets.

In addition, we cut out the time period of PeMS04 and PeMS08 on the weekend day, and draw the 5-min 
and 60-min prediction curves of STCMFA, as shown in Fig. 9. It can be found that the traffic flow curve during 

Figure 4.  The Taylor diagrams on four datasets.
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the working day in Fig. 8 usually has two peaks due to commuting, while the traffic flow during the weekend in 
Fig. 9 has remained at a high level during the day, which is very consistent with the reality. From Fig. 9, it can 
also be found that STCMFA also has a good fitting effect in the special time period of the weekend. This is due 
to the special multi-head flow attention mechanism in the model. The multi-head parallel learning of different 
feature information in multiple subspaces enables the model to accurately predict different types of sequence 
changes, and enhances the generalization ability of the model.

Ablation analysis
Ablation experiments mainly evaluate the degree of influence on the function of the whole system by systemati-
cally stripping or changing a factor. In traffic flow prediction, ablation experiments are usually used to determine 
the role and contribution of specific modules in the entire model. Therefore, to verify the effectiveness of dif-
ferent modules of STCMFA, we design four variants of the STCMFA model. All these model variants are tested 
under the best parameters. We compare the prediction results of these four variants and STCMFA on PeMS04 
and PeMS08 datasets.

(1) Only‑spatial Only spatial graph convolution network is used to capture the dependence of spatial informa-
tion without considering the correlation of time series, so as to verify the necessity of spatial–temporal 
combination.

(2) REPL‑FAtt Replace the flow attention mechanism with traditional attention to prove the advantages of flow 
attention.

(3) RM‑TS The temporal sequence module of TS-MFA is removed to verify the necessity of enhancing the 
ability of flow attention to capture temporal correlation.

(4) REPL‑Agg Remove the max pooling aggregation layer and use the ordinary fully connected layer to reduce 
the dimension.

Figure 10 shows the results of the ablation experiment. On the whole, the prediction effect of STCMFA is 
significantly better than that of the four variant models. This proves the effectiveness of each key module in 
STCMFA, which plays an active role in improving the prediction accuracy of the model.

Specifically, the prediction effect of the only-spatial variant is the worst, because it only considers spatial 
dependence and ignores temporal correlation. This shows that it is necessary to capture the spatial–temporal 
correlation in traffic sequences. After replacing the flow attention with ordinary attention, the prediction effect 
becomes worse, which indicates the superiority of the unique competition and allocation mechanism within 
the flow attention mechanism. In addition, we calculated the model parameters of REPL-FAtt and STCMFA, 
which are 2,874,254 and 2,184,472, respectively. Under the condition that the other parts of the model remain 
unchanged, only replacing traditional attention with flow attention significantly reduces the number of model 
parameters, which shows that flow attention can indeed solve the quadratic complexity problem of traditional 
attention. We integrate the temporal sequence model into the flow attention to effectively enhance the temporal 
sequence modeling ability of the flow attention. Compared with the use of ordinary full connection layer to 
reduce the dimension, the effect of selecting the max pooling as the aggregation operation is obviously better. 
This is because max pooling can reduce the dimension while retaining the salient features to the maximum extent, 
which can improve the training speed and prediction performance of the model.

Figure 5.  The scatter plot of STCMFA and STGODE.
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Effect of hyperparameters
Setting different hyperparameters in the same model will have a certain impact on the prediction effect of the 
model. As shown in Fig. 11, we set different attention heads on PeMS04 and PeMS08 respectively and compare 
their prediction results. It can be found that appropriately increasing the number of attention heads will improve 
the prediction effect of the model, but if too much is added, the model will lead to a decline in its prediction 
performance due to overfitting.

Figure 6.  Heatmaps on different prediction horizons.
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Training process and cost
Figure 12 shows the change of STCMFA loss during training. With the increase of training epochs, the loss 
of STCMFA on each dataset shows a gradual downward trend. When the loss decreases to a certain extent, it 
gradually converges to a smooth state.

Table 3 shows the time consumption and memory usage of STCMFA on four datasets. Obviously, in the case 
of the same batch size, the larger the dataset, the higher the time and memory consumption. The internal com-
petition mechanism of the proposed model avoids the calculation of attention weight, reduces the complexity 
of the model to a certain extent, and accelerates the training speed of the model.

Conclusions
In this paper, we propose a novel spatial–temporal combination and multi-head flow-attention network (STC-
MFA) for traffic flow prediction. Extensive experiments were conducted on four real traffic datasets, and the 
experiment results were compared and analyzed with baseline models, and the following conclusions were 
obtained:

(1) The traditional attention mechanism often suffers from attention degradation when dealing with long 
sequence data. Although the introduction of specific inductive biases can avoid this problem, it abandons 
the universality and expressiveness of the model. Therefore, this paper introduces the flow attention mecha-
nism based on the “flow conservation” theory, which avoids the influence of specific induction biases. Its 
special source competition mechanism and sink allocation mechanism replace the traditional attention 
weight calculation module, which effectively solves the quadratic complexity problem faced by traditional 
attention. The experiment results show that flow attention has better prediction performance.

(2) There are usually complex nonlinear relationships in traffic flow data, and the traditional linear trans-
formation method in flow attention cannot effectively capture them. Therefore, we design a temporal 
sequence multi-head flow attention (TS-MFA) module, which uses the temporal model GRU to replace 
the traditional fully connected layer for nonlinear feature mapping, thereby enhancing the ability of flow 
attention to model temporal correlation and effectively capturing long-term dependencies in the sequence. 
The experiment results show that the proposed model has a significant effect in long step prediction.

(3) The change of traffic flow data will be affected by time and space at the same time. Therefore, this paper 
combines the TS-MFA module with GCN to effectively capture the hidden spatial–temporal correlation in 
traffic flow. In addition, the residual mechanism and feature aggregation strategy are introduced to promote 
the transmission of feature information and further improve the performance of the model.

(4) Through ablation experiments, we prove that each key module in STCMFA plays an active role in traffic 
flow prediction tasks. The experiment results show that the prediction effect of STCMFA on the four data-
sets is significantly better than that of the baseline models, which fully proves that the model has strong 
generalization ability and prediction performance.

Although the proposed model has achieved some research results, it still has some shortcomings. For example, 
there are different traffic patterns between roads in the traffic network, and the shared parameters in the model 
cannot model these differences well. In the future, we plan to capture the specific traffic patterns of each road by 
assigning independent parameters to different roads. In addition, we can try to integrate additional environmen-
tal data such as weather and climate into the model as feature information, and further improve the expression 
ability and prediction accuracy of the model from the perspective of data-driven.

Figure 7.  Comparison of prediction curves between STCMFA and STGODE.
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Figure 8.  The prediction curves of four datasets.
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Figure 9.  The prediction curves of weekend time period.

Figure 10.  The results of ablation experiments on each prediction horizon.
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Data availability
Data are available from the corresponding author upon request.

Code availability
The code and visualization program has been published on GitHub (https:// doi. org/ 10. 5281/ zenodo. 10902 016). 
There are no access restrictions.
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