
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11300  | https://doi.org/10.1038/s41598-024-60327-9

www.nature.com/scientificreports

Autonomous navigation 
and collision prediction of port 
channel based on computer vision 
and lidar
Zhan Zhang 1*, NanWu Yang 2 & YiJian Yang 2

This study aims to enhance the safety and efficiency of port navigation by reducing ship collision 
accidents, minimizing environmental risks, and optimizing waterways to increase port throughput. 
Initially, a three-dimensional map of the port’s waterway, including data on water depth, rocks, 
and obstacles, is generated through laser radar scanning. Visual perception technology is adopted 
to process and identify the data for environmental awareness. Single Shot MultiBox Detector 
(SSD) is utilized to position ships and obstacles, while point cloud data create a comprehensive 
three-dimensional map. In order to improve the optimal navigation approach of the Rapidly-
Exploring Random Tree (RRT), an artificial potential field method is employed. Additionally, the 
collision prediction model utilizes K-Means clustering to enhance the Faster R-CNN algorithm for 
predicting the paths of other ships and obstacles. The results indicate that the RRT enhanced by the 
artificial potential field method reduces the average path length (from 500 to 430 m), average time 
consumption (from 30 to 22 s), and maximum collision risk (from 15 to 8%). Moreover, the accuracy, 
recall rate, and F1 score of the K-Means + Faster R-CNN collision prediction model reach 92%, 88%, 
and 90%, respectively, outperforming other models. Overall, these findings underscore the substantial 
advantages of the proposed enhanced algorithm in autonomous navigation and collision prediction in 
port waterways.
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Port channel is the key hub of global trade, so it is very important to ensure the safe navigation and collision 
prediction of ships. Port navigation is highly complex, influenced by maritime traffic density and meteorological 
conditions, and there are various  obstacles1. The traditional navigation system relies on radar, Global Position-
ing System (GPS) and other technologies, but there are limitations in the complex port environment, such as 
difficulty in realizing high-precision perception and accurate collision  prediction2,3. In addition, at present, 
most of the methods for detecting obstacles in port waterways rely on machine vision or radar images, but the 
shortcomings of using machine vision or radar to detect obstacles alone are very  obvious4. Compared with radar, 
machine vision has many advantages, such as a large detection range, rich original information, accurate angle 
measurement, and strong target classification ability. However, using machine vision sensors alone leads to poor 
detection results in extreme weather such as fog, which seriously interferes with the effective acquisition of visual 
 images5,6. When radar is used alone for target detection, although the speed of the target can be measured at the 
same time, it leads to low angular resolution, large signal loss and poor target classification ability. Therefore, 
no matter which target detection method is chosen, it is not the best choice, which greatly limits the ability of 
port channel to detect and identify obstacles. And it cannot meet the current needs of port channel obstacle 
 identification7,8.

Firstly, regarding the application of computer vision and laser radar in autonomous navigation and collision 
prediction in port waterways, compared to traditional technologies like radar and GPS, computer vision and 
laser radar can offer more detailed and high-resolution environmental perception. Laser radar provides precise 
distance measurements, while computer vision can perform real-time analysis of visual information around ships, 
allowing for a more comprehensive understanding of the relationship between ships and their environment. 
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Moreover, in handling complex scenes and multimodal information, computer vision demonstrates more robust 
capabilities than sensor technologies. Although laser radar is highly accurate in distance measurement, it may 
have limitations in certain situations, such as dense fog or intense light exposure. In contrast, computer vision 
systems, leveraging techniques like deep learning, can learn and adapt to various complex environments, enhanc-
ing perceptual performance under adverse weather conditions. In addition, Iran’s “Morvarid” project uses posi-
tioning radar and detection equipment to research autonomous robots at sea. This also illustrates how radar 
technology assist in locating collisions within port navigation. Previous research has indicated that radar and 
laser monitoring technologies may face limitations in resolution and accuracy in certain scenarios. Particularly in 
complex environments, accurately identifying small-sized or densely packed targets may be challenging, impact-
ing the performance of target detection and tracking. Radar systems may also experience significant performance 
degradation in adverse weather conditions like rain, snow, or fog due to electromagnetic wave interference. 
Laser monitoring systems may face limitations in atmospheric scattering and absorption. Moreover, radar and 
laser monitoring primarily rely on target reflection or scattering of electromagnetic waves, limiting their detec-
tion capabilities for non-cooperative targets such as potential threats or stealthy objects. In comparison to past 
research primarily based on a single sensor, this study achieves a more comprehensive perception of the port 
environment by integrating radar, laser, and image sensors, and enhancing the global awareness of the naviga-
tion system. In contrast to traditional RRT algorithms, this study introduces the artificial potential field method 
for optimization, generating safer and more effective navigation paths in dynamic waters. The incorporation of 
real-time decision-making algorithms enables the system to autonomously adjust navigation strategies based 
on real-time collision predictions. This is relatively uncommon in previous research and provides more flexible 
navigation strategies for the practical application of autonomous navigation systems.

The motivation of this study is to enhance the safety of port navigation by reducing collision accidents, lower-
ing environmental risks, optimizing waterways, and ultimately increasing port throughput. The study focuses 
on three main objectives: firstly, an advanced path planning algorithm is employed to considerthe dynamic 
characteristics of vessels and environmental conditions to determine the optimal navigation path. Secondly, 
a collision prediction model using historical data and real-time sensor information is established to forecast 
potential collision risks. Lastly, a real-time decision-making algorithm is designed to allow the system to autono-
mously adjust navigation strategies based on collision prediction results and avoid potential collisions. In order 
to achieve these goals, visual perception technology is applied to process lidar data and camera images for a 
better understanding of the port channel environment. Specific applications include point cloud data process-
ing, target detection, and tracking. Considering vessel dynamics, channel complexity, and safety requirements, 
the artificial potential field method is introduced to enhance the capability of the Rapidly-Exploring Random 
Tree (RRT) in generating optimal navigation paths. In collision prediction, K-Means clustering improves the 
Fast Region-based Convolutional Network (Fast R-CNN) algorithm, constructing a robust collision prediction 
model. This model uses historical data and real-time sensor information for training to predict future trajectories 
of other vessels and obstacles.

The study utilizes a comprehensive fusion of radar, lidar, and image sensor data. Lidar scanning is employed 
to obtain a three-dimensional map of the port channel, followed by environmental perception through visual 
perception technology. This sensor data fusion enhances a comprehensive understanding of the port environ-
ment, facilitating more accurate navigation and collision prediction. The introduction of a real-time decision-
making algorithm allows the system to autonomously adjust navigation strategies based on collision prediction 
results, promptly avoiding potential collision events. However, there are technical challenges, such as effectively 
integrating data from radar, lidar, and image sensors. It needs to overcome heterogeneity, noise issues, and real-
time requirements of different sensors. High-precision collision prediction is crucial for avoiding potential col-
lisions, particularly in complex water environments where accurately predicting the future trajectories of other 
vessels and obstacles is challenging. The study combines advanced image processing and autonomous navigation 
algorithms to improve the safety and efficiency of port navigation, reducing the risk of collision accidents and 
safeguarding lives and the environment. The innovation lies in the integration of multisensory data, enhanced 
path planning, and efficient collision prediction, providing a comprehensive and viable solution for autonomous 
navigation and collision prediction in port channels. The expected outcome is a substantial improvement in the 
safety and efficiency of port navigation.

Literature review
The discipline of ship navigation is becoming more and more interested in autonomous navigation technologies. 
A new autopilot system that connected wave height prediction and ship driving was put forth by Lou et al.  in9. 
The wave height may be precisely anticipated using Long Short-Term Memory (LSTM), and the ship can change 
its path in real-time to always travel in the region with the lowest wave  height9.  Gucma10 used the technique of 
computer-simulating ship traffic flow and split the approach channel into one-way and two-way segments in the 
best possible way. A unique two-stage simulation optimization method was used to find the ideal port entrance, 
steering pool, and port pool characteristics, and simulation tests were run on a three-dimensional visual ship 
manoeuvring simulator. The study has established the outer container terminal in Swinnuisi’s best specifica-
tions, and the terminal’s anticipated annual container handling capacity was 1.5 million TEUs. An ocean-going 
container  ship10 with a length of 400 m and a width of 60 m was anticipated to be operated by the port. In their 
investigation of a reliable control system for unmanned surface vehicles in urban waterways, Cortes-Vega et al. 
suggested using a visual odometer to assess the position of the vehicles rather than conventional  sensors11. 
Mansuy et al. simulated the turning manoeuvres of two typical inland river shipping vessels under different 
hydrometeorological conditions in real time, and proposed a step-by-step method to select the optimized turning 
pool geometry according to the field conditions. This step-by-step design of the turning pool method can reduce 
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the real-time simulation required for upgrading the waterway  network12. Sinohara et al. analyzed the specific 
needs of autonomous ships for external and environmental information in restricted pilotage waters, and put 
forward targeted technical solutions in Paranagua and Antonina,  Brazil13. Nzengu et al. analyzed the regulatory 
framework related to the operation and testing of unmanned Inland Waterway (IWW) ships in Flanders. A 
three-stage strategy is put forward as a road map for formulating the regulatory framework to adapt to IWW 
autonomous ships more  widely14.

Computer vision technology and lidar have made remarkable progress in the field of navigation. Hu et al. used 
lidar to monitor the visibility of sea fog in Beilun area of Zhoushan Port in Ningbo, China, and compared the data 
of lidar with that of forward scattering visibility sensor. The results showed that the visibility lidar instrument 
had advantages in sea fog monitoring, and the correlation between lidar instrument data and forward scattering 
sensor data proved the practicability and potential of lidar in sea fog  detection15. Lu et al. used Automatic Identifi-
cation System (AIS), video surveillance, laser radar and other intelligent sensing technologies to realize automatic 
and accurate collection of channel traffic data, and built an integrated platform of existing ship channel traffic 
monitoring system in Yancheng, which integrated multi-dimensional sensing, fusion processing and statistical 
 analysis16. Tak et al. monitored the beach width and beach profile along the east coast of Korea by unmanned 
aerial vehicles and ground-based lidar. The results showed that the plane layout of port facilities concentrated 
waves and increased the number of sediments  northward17. Hake et al. used multi-sensor system to scan the 
above-water and underwater port structures, and used Visual Geometry Group19 (VGG19) deep neural network 
and local abnormal factors to identify the grid network of point clouds on the steel sheet pile wall. The results 
showed that the accuracy of VGG19 deep neural network was 8.95%18. Marchel et al. used extended Kalman filter 
and two-dimensional range bearing to evaluate the positioning accuracy of ships following a constant course and 
speed in the port approach channel, which showed that the adopted algorithm could be successfully used to plan 
their deployment to ensure the minimum accuracy requirements of navigation marking service in positioning 
navigation marks on the port approach channel and under restricted  conditions19.

Channel collision is a serious safety problem, so it is very important to study collision prediction and preven-
tion methods. Upadhyay et al. used the collaborative method of computer vision to track the target according 
to the specific position of interest in the image. Compared with the actual measurement, the test results on the 
framework of quadrotor UAV achieved 99% positioning  accuracy20. Padmaja et al. proposed a collision warn-
ing system for self-driving cars based on a new point-to-pixel multi-sensor data fusion algorithm, and used 
MobileNet SSD to classify targets. The results showed that the root mean square error and mean absolute error 
of the proposed fusion algorithm were 2.93 mm and 802.83 mm lower than those of the stereo camera and the 
two-dimensional lidar sensor  respectively21. Miao et al. proposed a UAV obstacle identification based on airborne 
lidar and an improved density-based noisy application spatial clustering algorithm, and the experiments proved 
the effectiveness of the proposed algorithm in identifying the invading mobile  state22. Guan et al. introduced a 
new multi-model full traffic trajectory data, and measured the fluctuation of pedestrian speed by computer lidar 
and computer vision respectively. Compared with the data based on computer vision, the current trajectory data 
based on lidar showed a wider detection range and was less affected by poor lighting  conditions23.

The above literature shows that autonomous navigation technology, computer vision and lidar technology 
are widely used in the field of navigation, which provides strong support for improving the safety and efficiency 
of ship navigation. These studies cover wave height prediction, channel optimization, unmanned surface vehicle 
control, collision prediction and prevention, environmental perception and obstacle detection. However, there 
are still some challenges to be solved, such as environmental changes and sensor errors, to further improve 
the performance of the navigation system. This study continues to explore innovative methods to promote the 
development of navigation field and improve the robustness and applicability of navigation system.

Research methodology
Visual perception technology and port channel environment perception
In port channel perception, point cloud data are obtained from lidar sensors. These data include a large number 
of discrete three-dimensional points, and each point represents a position in space. Point cloud data need to be 
processed and analyzed to create a three-dimensional map of the port channel. The steps of processing point 
cloud data include data acquisition and preprocessing, point cloud segmentation and grouping, and 3D map 
generation. The original point cloud data is obtained from the lidar sensor, and then the preprocessing steps 
such as denoising, filtering and coordinate transformation are carried out to prepare the data for subsequent 
processing. According to the characteristics of point cloud, point cloud data is divided into different objects or 
features, such as water surface, other ships, shore and obstacles. The processed point cloud data are combined 
to generate a three-dimensional map of the port channel, including the location information of waterways, port 
facilities and other  targets24,25. Figure 1 shows the three-dimensional map of the port channel.

Finding the whereabouts of other ships and obstructions in the port channel is crucial. Target recognition 
and tracking technology is used in this study to keep an eye on nearby ships and objects in real time. The Single 
Shot MultiBox Detector (SSD) technique is used in this procedure. SSD is a convolutional neural network-based 
target detection technique. To detect objects of various sizes and forms, it employs multi-scale feature maps, and 
to detect targets of various shapes, it employs multiple anchor frames. By performing a convolution operation on 
feature maps with various levels, SSD achieves multi-scale target  detection26. The SSD structure is shown in Fig. 2.

In Fig. 2, SSD is based on Visual Geometry Group 16 (VGG16) network, and the fully connected layer is 
modified as convolution layer, and then four convolution layers are added, namely, conv6, conv7, conv8_2, 
conv9_2, conv10_2, conv11_2, conv4_3, conv7, conv8_2 and conv. Conv10_2 and conv11_2 are used as the 
detection heads of the network, and the detection results are obtained through the final Non-Maximum Sup-
pression (NMS) non-maximum suppression. SSD starts from Conv4_3 and extracts feature maps. The number 
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of prior frames set on each feature map is different, and the setting of prior frames follows the rule of linear 
increase, that is, the size of feature map decreases and the scale of prior frames increases linearly. Equation (1) 
shows the setting of prior frames:

In Eq. (1), m is the number of feature graphs, sk is the ratio of the prior frame size to the picture, and smin and 
Smax are the minimum and maximum values of the ratio respectively. The center point of the prior box of each 
pixel is distributed in the center of each pixel, and the calculation is shown in Eq. (2):

(1)sk = smin +
Smax − smin

m− 1
(k − 1), k ∈ [1,m]

Figure 1.  Three-dimensional map of port channel.
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Figure 2.  SSD structure.
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In Eq. (2), 
∣∣fk

∣∣ represents the size of the feature map. In the process of prediction, the model is predicted by 
using bounding_box. The purpose of bounding_box regression is: given 
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 is the position offset and scale transformation of Bounding_box 

relative to prior_box. In an ideal state, the position offset and scale transformation of bounding_box relative to 
prior_box is shown in Eqs. (7–10):

Through the above equation, the Loss function can be obtained, through reducing the loss, the convergent 
position offset and scale transformation can be finally obtained, and the final predicted bounding_box can be 
obtained through decoding with prior_box. Equation (11) shows the loss function:

In Eq. (11), N is the number of positive samples in the prior frame, c is the predicted value of category confi-
dence, l is the predicted value of the position corresponding to bounding_box in the prior frame, g is the position 
parameter of ground truth, and α is taken as 1 through cross-verification. The position function of Lloc

(
x, l, g

)
 

is shown in Eqs. (12, 13):

In the above equation, lmi  and ĝmj  are the position parameters after encode, xpij is the i th prior_box matching 
with the j th gt_box, and the category of gt_box is p , with a value of 1, otherwise with a value of 0. The position 
loss function is only for positive samples. For every prior_box matching gt_box, the difference between the offset 
and scaling scale of bounding_box and that of gt_box is calculated by using SmoothL1(x) loss, and the optimiza-
tion is achieved by reducing its value. L2 regularization in Conv4_3 is used, as shown in Eq. (14):
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The Conv4_3 layer has a different feature scale compared with other layers. L2 regularization technology is 
used to normalize the feature of each pixel in conv4_3 feature map to 20 to ensure that there is little difference 
with the following layers. In the process of identifying the positions of other ships and obstacles, SSD algorithm 
inputs the preprocessed point cloud data and camera images into SSD algorithm. SSD algorithm extracts features 
from input data through CNN for target detection. The feature map is used with the anchor frame to locate the 
target and determine the locations of other ships and obstacles. The target tracking algorithm updates the target’s 
position information in real-time for path planning and collision  prediction27.

Path planning algorithm and optimal navigation path generation
In the aspect of path planning, considering the dynamic characteristics of the ship, the complexity of the channel 
environment and the safety requirements, the improved Rapidly-Exploiting Random Trees (RRT) is adopted to 
generate the best navigation  path28,29. Table 1 shows the principle of RRT algorithm.

In Table  1, RANDOM_STATE() function generates random points within the set environment, 
NEAREST_NEIGHBOR() function traverses the random tree to find the node closest to the random point. 
SELECT_INPUT() function expands the random tree according to the set value, NEW_STATE() function gen-
erates xnew , judge ( xnew ) function determines whether the newly generated node satisfies non holonomic con-
straints, T.add_Vertex () insert xnew , T.add_Edge () adds an edge between xnear and xnew , do not add new nodes 
in this loop. Regenerate x in the next loop_New, and then make a judgment if it belongs to Xfree , then keep the 
new node. In summary, after adding xnew , when adding a new node, it needs to be judged twice, namely obstacle 
detection and non-holonomic constraint detection. Only when both meet the requirements can a new node be 
 added30.

However, the initial path generated by RRT algorithm is completely random, and it may not be possible to 
search for navigation tracks in maps with many obstacles. In this paper, the concept of artificial potential field 
method is combined, and the generated track is more in line with the requirements of safety and smoothness 
through the action of repulsion and gravity. By deleting redundant nodes, the efficiency and feasibility of the track 
are further improved. Figure 3 shows the autonomous navigation process of port channel based on improved 
RRT algorithm.

Figure 3 shows an updated RRT method that starts from a beginning point, creates additional nodes in a 
random manner, and tries to connect the new nodes to the preexisting tree structure. The artificial potential field 
approach is used to expand nodes, and each node is subjected to the attraction of the target point and the repul-
sion of barriers, ensuring that the node proceeds to the target point along the safest path. Through the process 
of node expansion, the algorithm gradually generates a series of connected nodes, forming the initial track. In 
order to make the track smoother and safer, some redundant nodes are deleted by line-of-sight algorithm. The 
line-of-sight algorithm checks the nodes on the track. If there is no obstacle between two nodes, the intermediate 
node between them can be deleted. Through the above steps, the improved RRT algorithm of potential field is 
obtained. This algorithm generates a smooth, safe flight path with fewer nodes, which can be used for navigation 
and path planning. Finally, the improved potential field RRT algorithm is applied to the three-dimensional map 
to plan the three-dimensional track of the autonomous navigation process of the port channel.

Collision prediction model and training process
In the autonomous navigation system of port channel, the construction and training process of collision predic-
tion model is very important to ensure that ships can safely avoid collision and plan the best path. In this study, 

(14)
yi = L2Norm(x) =

xi√∑n
k=1 x

2
k

Table 1.  Principle of RRT algorithm.

GENERATE_RRT (xinit ,K ,� t)

1. T.init(xinit );

2. For k=1 to K do

3. If ( �xnew − xgoal� < d)

4. Break;

5. xrand ← RANDOM_STATE();

6. xnear ← NEAREST_NEIGHBOR(xrand ,T);

7. u ← SELECT_INPUT(xrand , xnear);

8.xnew ← NEW_STATE(xnear , u,� t)

9. Judge (xnew);

10. If (judge ( xnew) == false and colision free() == false)

11. Continue;

12. T.add_vertex ( xnew);

13. T.add_edge ( xnear,xnew , u);

14. Return T
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Figure 3.  Autonomous navigation process of port channel based on improved RRT algorithm.
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a collision prediction model is created using an upgraded FAST Region-based Convolutional Neural Network 
(R-CNN). A popular deep learning model for target identification and object recognition is Faster R-CNN, which 
can identify objects in photos and pinpoint their locations. The Faster R-CNN’s construction is depicted in Fig. 4.

In Fig. 4, Fast R-CNN consists of two main components: CNN and Region Proposal Network (RPN). CNN 
is used to extract features from input images. These feature maps contain different levels of information in the 
image and are used for subsequent target detection tasks. RPN is used to generate candidate regions. It slides the 
window on the convolution feature map of the backbone network and outputs the suggested target box through 
classification and regression header. Each suggestion box is accompanied by a candidate box score for subsequent 
screening. The RoI pooling layer is used to cut and standardize candidate frames of different sizes into feature 
maps of the same size for input into the subsequent classification and regression head network. These networks 
receive the characteristic map of RoI pool as input, and carry out target classification and position regression. 
The classification header is used to determine whether the candidate frame contains the target object, and the 
regression header is used to adjust the position of the candidate frame. In the training process of Faster R-CNN, 
the loss calculation of the network is shown in Eqs. (15, 16):

In the above equation, i is the anchors index. pi is the positive softmax probability. p∗i  is the corresponding 
GT predict probability. t  is the predict bounding box, and t∗i  is the corresponding GT box of the positive anchor. 
Lcls is the softmax loss calculated by RPN_cls_loss layer, which is used to classify anchors as positive and negative 
network training, and Lreg is the soomth L1 loss calculated by RPN_loss_bbox layer, which is used to train the 
bounding box regression network. In the actual port navigation collision prediction, Faster R-CNN usually needs 
large-scale tag data for training, but in a specific port channel environment, it may need more model adaptability 
to adapt to different meteorological conditions, port structures and ship types. In this study, K-Means clustering 
algorithm is used to improve Faster R-CNN algorithm for port channel collision prediction, and K-Means algo-
rithm is used to cluster lidar data and image data, and the data points are divided into different clusters. These 
clusters can represent different types of ships and obstacles. In Faster R-CNN, the results of K-Means clustering 
are used to define the category and location information of target detection. This can improve the accuracy of 
target detection. Finally, the improved Faster R-CNN model is used for training, so that the model can detect 

(15)L(
{
pi
}
, {ti}) =

1

Ncls

∑

i

Lcls
(
pi , p

∗
i

)
+ �

1

Nreg

∑

i
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∗
i

)

(16)
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(
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i

)
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∑
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Figure 5.  Collision prediction model based on improved Faster R-CNN algorithm.
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targets and predict collisions according to the K-Means clustering results. Figure 5 shows the collision prediction 
model of the improved Faster R-CNN algorithm.

Results and discussion
The result of SSD algorithm to identify the position of ships and obstacles
Figure 6 shows the comparison results between SSD algorithm and actual results in identifying the positions of 
ships and obstacles. In Fig. 6, in the case of testing data point 1 to data point 3, the performance of using visual 
perception + lidar + SSD algorithm is better than using lidar only. The relative errors are 2.33%, 2.5% and 3.13% 
respectively. This shows that SSD algorithm has achieved good results in identifying the positions of ships and 
obstacles, and its accuracy is relatively higher. With the increase of data points, the relative error increases gradu-
ally. In the case of data point 5, the relative error reaches 5.56%. This may be because the performance of visual 
perception + lidar + SSD algorithm is challenged in a longer distance or in a more complex environment, and 
the error increases slightly. Generally speaking, visual perception + lidar +SSD algorithm performs well in ship 
and obstacle location recognition, and its performance is better than that of using lidar only.

The experimental results indicate that the combination of visual perception, lidar, and SSD algorithm per-
forms better in short distances compared to using only lidar. This suggests that the integrated use of multisensor 
data (visual and lidar) enhances the accuracy of ship and obstacle position identification. The effective fusion 
of information from multiple sources allows the model to more accurately capture target positions in short 
distances. Although there is a slight increase in relative errors in some cases, the overall performance remains 
superior to the scenario using only lidar. Future improvements could involve introducing more training data to 
enhance generalization performance or adjusting algorithm parameters to balance performance under different 
distances and environmental conditions.

Improvement of navigation path generated by RRT by artificial potential field method
The outcome of enhancing RRT to generate a navigation path using an artificial potential field approach is shown 
in Fig. 7. Figure 7 illustrates a considerable improvement in average path length and average time consumption 
between the RRT improved by the artificial potential field method and the conventional RRT algorithm. Average 
time consumption decreases from 30 to 22 s, and average journey length decreases from 500 to 430 m. Thus, 
the enhanced algorithm suggested in this study provides shorter and quicker travel paths and boosts naviga-
tional effectiveness. The RRT improved by artificial potential field method also shows obvious advantages in 
the maximum collision risk. The maximum collision risk is reduced from 15% of the traditional RRT algorithm 
to 8%. This shows that the algorithm in this study has made remarkable progress in reducing collision risk and 
improving navigation safety. Compared with Dijkstra algorithm and A* algorithm, RRT improved by artificial 
potential field method is competitive in average path length and average time consumption, which provides more 
efficient and safer navigation path planning for autonomous navigation of port channels.

Compared to Dijkstra’s algorithm and A* algorithm, the RRT algorithm improved through the artificial 
potential field method demonstrates competitiveness in both average path length and average time consump-
tion. This implies that the enhanced RRT algorithm is more advantageous in terms of efficiency for navigation 
path planning compared to traditional algorithms. This provides a more efficient and secure planning path for 
autonomous navigation in port channels. The RRT algorithm improved through the artificial potential field 
method exhibits enhancements in various aspects, including path length, time consumption, and collision risk. 
This comprehensive improvement positions the enhanced algorithm as a viable choice in autonomous naviga-
tion systems, particularly in scenarios where rapid, secure, and low collision risk navigation paths are required.
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Figure 6.  Comparison of SSD algorithm to identify the position of ships and obstacles with the actual results.
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Performance results of improving the collision prediction model of faster R-CNN based on 
K-means clustering
The study evaluates the model performance using accuracy, recall, and F1 score. Higher values for accuracy 
and recall, closer to 1, indicate better precision or recall rates. The F1 score ranges from 0 to 1, with 1 being the 
maximum value and 0 the minimum. A higher precision and recall are desirable. In the range of 0 to 1, a higher 
F1 score is preferable. Figure 8 shows the performance results of the collision prediction model improved by 
Faster R-CNN based on K-Means clustering. It shows that for the “buoy” type obstacle, the accuracy of the 
model is 95%, the recall rate is 92%, the F1 score is 93%, and the average calculation time is 33 ms. This shows 
that the model has high performance in detecting and locating buoy obstacles, and has high precision and recall 
rate. For the “container” type of obstacles, the performance of the model is relatively good, while for the “fishing 
boat” type of obstacles, the performance of the model is relatively low, with an accuracy of 88%, a recall rate of 
85%, a F1 score of 87% and an average calculation time of 50 ms. This shows that the performance of the model 
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is relatively low in detecting and locating obstacles of fishing boats. Generally speaking, the improved Faster 
R-CNN collision prediction model based on K-Means clustering shows different performance levels under dif-
ferent types of obstacles. The model has excellent performance in detecting buoy obstacles.

Figure 9 shows the performance comparison of different collision prediction models. In Fig. 9, the K-Means 
+ Faster R-CNN algorithm proposed in this paper shows significant advantages in accuracy, recall and F1 score, 
and has higher performance compared with other collision prediction models. Its accuracy is 92%, the recall 
rate is 88%, and the F1 score is 90%, so it is one of the best models. Random forest model and support vector 
machine model also show high performance in accuracy, recall and F1 score, but they are slightly lower than 
K-Means + Faster R-CNN model. The performance of these models is better than that of Faster R-CNN and 
Logistic regression models. Logistic regression model is relatively low in accuracy, recall and F1 score, and its 
performance is the worst. Meanwhile, its average calculation time is also long, 60 ms. On the whole, K-Means + 
Faster R-CNN algorithm has obvious advantages over other collision prediction models in terms of performance 
index and calculation efficiency, and it is a better collision prediction model.

Taking a comprehensive view, the K-Means + Faster R-CNN algorithm demonstrates superiority in both 
performance and computational efficiency, making it a more outstanding collision prediction model. While 
other models perform well, they may not surpass K-Means + Faster R-CNN in certain performance indicators. 
The experimental results in Figs. 8, 9 indicate that the Faster R-CNN model improved by K-Means clustering 
exhibits excellent performance under different types of obstacles, particularly showing significant improvement 
in collision prediction.

Conclusion
The successful integration of computer vision and Lidar technology enables effective perception and analysis of 
the port channel environment. The improved RRT algorithm, employing the artificial potential field method for 
path planning, significantly reduces average path length and time consumption, leading to a substantial improve-
ment in navigation efficiency and safety. Additionally, the collision prediction model based on K-Means clustering 
and Faster R-CNN outperforms other models, demonstrating excellent adaptability to various obstacle scenarios. 
While the proposed algorithmic enhancements represent a significant breakthrough in the field of autonomous 
navigation and collision prediction in port channels, acknowledging the limitations of this study is crucial. Future 
studies should focus on refining path-planning algorithms to adapt to more complex environmental conditions 
and consider the dynamic characteristics of vessels. Furthermore, there is room for optimization in the collision 
prediction model to enhance its adaptability to a broader range of obstacles. Although this study marks significant 
progress, the identified constraints highlight areas for future exploration and improvement. Ongoing research 
can further refine the proposed algorithms to ensure their applicability to various dynamic maritime scenarios, 
ultimately advancing the field of autonomous navigation and collision prediction in port channels.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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