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3SAT on an all‑to‑all‑connected 
CMOS Ising solver chip
Hüsrev Cılasun 1, Ziqing Zeng 1, Ramprasath S 2, Abhimanyu Kumar 1, Hao Lo 1, William Cho 1, 
William Moy 1, Chris H. Kim 1, Ulya R. Karpuzcu 1 & Sachin S. Sapatnekar 1*

This work solves 3SAT, a classical NP‑complete problem, on a CMOS‑based Ising hardware chip with 
all‑to‑all connectivity. The paper addresses practical issues in going from algorithms to hardware. 
It considers several degrees of freedom in mapping the 3SAT problem to the chip—using multiple 
Ising formulations for 3SAT; exploring multiple strategies for decomposing large problems into 
subproblems that can be accommodated on the Ising chip; and executing a sequence of these 
subproblems on CMOS hardware to obtain the solution to the larger problem. These are evaluated 
within a software framework, and the results are used to identify the most promising formulations 
and decomposition techniques. These best approaches are then mapped to the all‑to‑all hardware, 
and the performance of 3SAT is evaluated on the chip. Experimental data shows that the deployed 
decomposition and mapping strategies impact SAT solution quality: without our methods, the CMOS 
hardware cannot achieve 3SAT solutions on SATLIB benchmarks. Under the assumption of some 
hardware improvements, our chip‑based 3SAT solver demonstrates a remarkable 250× acceleration 
compared to Tabu search in dwave‑hybrid on a CPU.

Many combinatorial optimization problems (COPs), including NP-complete and NP-hard problems, can be 
solved using the quantum-inspired Ising  model1, which originated from representations of magnetic interactions 
that settle to a minimum-energy state. These COPs can be written in Ising form via quadratic unconstrained 
binary optimization (QUBO) formulations, and then mapped to a network of coupled oscillators. As these 
oscillators settle to their minimum energy ground state, they solve the COP, potentially with better speed and 
energy than classical computers.

Many efforts have conceived or built Ising solvers in emerging technologies, e.g., quantum, spintronics, 
optics, phase change devices, NEMS, and ferroelectrics. However, these substrates have less desirable scaling 
properties compared to our time-domain coupled oscillator approach based on simple digital-like CMOS circuits; 
some require prohibitively expensive cooling to a few Kelvin. In contrast, CMOS-based Ising  solvers2–5, which 
use coupled ring oscillators (ROs), can make Ising computation practical, delivering high speed, low power 
consumption, accuracy, high integration density, portability, and mass-manufacturability. A mixed-signal 
implementation has also been  proposed6.

A limitation of many Ising machines is the limited connectivity between spin variables: D-Wave’s quantum-
based solutions limit connectivity to 6–20 neighbors per  oscillator7; even many CMOS-based  solutions2–4 are 
limited to 4–8 nearest neighbors on a 2D oscillator mesh. The embedding problem of mapping the couplings 
in an Ising problem to this connectivity-limited structure requires spin replication: a six-variable problem with 
all-to-all interactions requires 18 spins on D-Wave’s Chimera and 30 spins on the King’s  graph5. Replication 
weakens the strength of a spin, leading to suboptimal  solutions8. Recent  work5 breaks through these bottlenecks 
by implementing all-to-all (A2A) connectivity between 50 spins in a 65nm CMOS chip: its A2A connectivity 
makes it very powerful, equivalent to a locally connected architecture (e.g.,2–4) with thousands of  spins9.

The problem of mapping COPs to an Ising hardware substrate is an open problem. First, multiple QUBO 
formulations are available for any COP, and some may perform better on hardware than others. Second, hardware 
engines operate under restrictions, e.g., the allowable values of coupling weights are limited. Third, since any 
hardware platform has limited capacity, large problems must be decomposed into smaller subproblems, and the 
decomposition strategy impacts solution quality.

To move Ising computing closer to reality, it is essential to provide a complete solution from algorithms to 
hardware execution. This work addresses these issues for 3SAT, a classical NP-complete  problem10. The 3SAT 
problem was the “original” NP-complete  problem11, and reduces to any other NP-complete problem through a 
polynomial-time  transformation12. We examine multiple choices of QUBO formulation, decomposition, and 
mapping strategies, and report results on actual CMOS hardware: a 65nm Ising chip with A2A  connectivity5. 
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Depending on the formulation, the problem may require more or fewer spins, and more or fewer couplings; 
this systematic evaluation evaluates formulations to determine which delivers the best solution. Similarly, 
decomposition and mapping strategies can significantly impact solution  quality13. Greedy, random and clustering-
based decomposition algorithms are widely used in recent 3SAT or Ising  solvers14,15.

The contributions of this paper include: (1) hardware-specific evaluation of multiple mappings from 3SAT 
to Ising models, (2) rigorous methods for variable pruning through spin removal optimization, (3) scaling and 
local field oscillator optimizations specifically for 3SAT, (4) three novel decomposers to break large problems to 
subproblems that fit on the hardware, (5) hardware demonstration of 3SAT benchmark instances on a CMOS 
Ising chip.

Solving combinatorial problems on Ising machines
QUBO/Ising problems and the underlying graph
A QUBO problem in n variables is formulated as minimizing a Hamiltonian objective function:

where x = [x1, . . . , xn]
T ∈ {0, 1}n is a Boolean vector and Q ∈ R

n×n is a real matrix; here, Qii multiplies x2i = xi 
for xi ∈ {0, 1} . Using xi = (si + 1)/2 to transform each Boolean variable xi to a spin variable si ∈ {−1,+1} , the 
Hamiltonian for the isomorphic Ising formulation is

where s = [s1, · · · sn]
T ∈ {+1,−1}n , J ∈ R

n×n is a real matrix, and h = [h1, . . . , hn]
T ∈ R

n is a real vector, where 
hi = Qii/2+

∑n
j=1(Qij + Qji)/4 and Jij = Qij/4.

The graph representation of the Ising formulation associates each variable si with a vertex i with weight hi , 
with coupled vertices i and j connected by an undirected edge of weight (Jij + Jji).

A CMOS‑based Ising hardware accelerator
Figure 1 illustrates our hardware engine with an A2A  architecture5, comprising (N+1 ) horizontal oscillators and 
(N+1 ) vertical oscillators. Each horizontal oscillator is short-circuited with the corresponding vertical oscillator 
on the diagonal, as shown by the black dots, so that the horizontal and vertical oscillators form a single physical 
oscillator carrying the same phase information. The spin variable associated with an oscillator corresponds to 
its phase. The paired oscillators denoted as s LF are phase-locked and serve as the timing reference for the entire 
array, with spin value of sLF fixed at +1 ; for other spins in the array whereas the spin values of si are either +1 or 
−1 , depending on whether the phase is the same as/opposite to sLF.

Setting sLF = +1 as a fixed reference, the coupling term Ji,LFsisLF = Ji,LFsi . This becomes the local field term hi 
(= Ji,LF ) in the Ising Hamiltonian equation. In Fig. 1, the coupling circuits along the bottom and right edges of the 
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Figure 1.  (a) Chip layout; chip soldered on a carrier board with a Raspberry  Pi5. (b) All-to-all array of CMOS 
 ROs5.
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array, denoted as L, implement the hi weights. The intersection between spins si and sj , denoted as W, implement 
the coupling weights Jij between spins si and sj . The coupling circuits are implemented with transmission  gates5. 
The weight Jij can be implemented by programming two locations – row i, column j, and row j, column i – in the 
array and the weight is the sum of weights in these locations. Since each coupling site can implement a weight 
of up to ±7 , Jij ∈ {−14,+14}.

The phase sampling block in Fig. 1 samples each RO 8 times in each cycle of the RO to generate an 8-bit binary 
result that is read out to determine the phase of the RO by majority  voting5.

Degrees of freedom in A2A hardware mapping
To solve a COP in Ising form on the A2A hardware of Sect. “A CMOS-based Ising hardware accelerator”, the 
process of mapping the Ising matrix and local field to the hardware must work within the hardware limitations. 
Since the coupling values Jij must be integers in the range [−14,+14] , smaller coupling weights of the problem 
may have to be upscaled while larger weights must be downscaled to lie in [−14, 14] . This scaling step may result 
in non-integer values; these are rounded to an integer.

Conflicting considerations must be balanced during scaling: (1) The device accuracy is proportional to the 
coupling strength and therefore large scaling values are preferable. (2) If most of the weights are low in magnitude 
and only a few are high, the lower weights may be zeroed out during downscaling and integer rounding. To avoid 
this, some coupling weights may be scaled beyond the dynamic range and then clamped to the nearest extreme 
limit of the weight range. However, excessive scaling/clamping may alter the coupling matrix so greatly that its 
solution departs from that of the original problem.

A similar trade-off exists for the local field oscillators. The device allows an arbitrary number of spins to be 
configured as local field ROs (which implement hi ), while the remaining spins are configured to maintain pairwise 
coupling ( Jij values). Increasing the number of Local Field Ring Oscillators (LFROs) can increase the dynamic 
range of the h coefficients: for example, a single LFRO can allow a coupling weight in the range [−14,+14] ; if 
we perform spin merging, where two LFROs are used (and coupled tightly) to represent a single spin, a weight 
range of [−56, 56] is allowable. If the effective dynamic range of the hi s is larger than that of the Jij s, using more 
LFROs can allow higher coupling ranges with less truncation, improving accuracy; however, fewer spin variables 
will be available for problem mapping.

We illustrate spin merging in Fig. 25 where a 10-spin hardware example is configured to a 10-spin default 
mode, a 5-spin 4 × resolution mode, and a 6-spin asymmetric resolution mode, respectively. The graph (upper 
row) and the corresponding hardware mapping (lower row) are shown for each configuration. In the latter, the 
black weight cells connect the vertical and horizontal oscillators, and the coupling cells are color-coded according 
to coupling strength. When two spins are merged (middle figure), coupling sites (each with weights up to ±7 ) 
lie on two 2× 2 off-diagonal arrays. This allows coupling of [−28, 28] at each site and Jij ∈ [−56,+56] . Thus, 
weight resolution can be traded off with the number of available spins.

Formulating 3SAT for an Ising solver
The Boolean satisfiability problem seeks to find an assignment of input variables for which a Boolean func-
tion evaluates to logic 1. A 3SAT instance in Conjuctive Normal Form (CNF) is a conjunction of clauses, 
i.e., f (x1, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ Cm , where X = {x1, . . . , xn} is a set of n Boolean variables. Each clause 
Ci = l1 ∨ l2 ∨ l3 is a disjunction of at most three literals l1, l2, l3 ⊂ X ∪ ¬X . A SAT formula f is satisfiable if 
there exists a set of Boolean assignments from {0, 1} on each variable in X that can be substituted such that 
f (x1, . . . , xn) = 1 ; any combination of such variables, if it exists, is called a satisfying assignment.

Max-3SAT is a variant of the 3SAT problem that maximizes the number of satisfied clauses. If Max-3SAT 
satisfies all N clauses, then the corresponding 3SAT problem is  satisfiable16. The Max-3SAT problem can be 
formulated in QUBO/Ising Hamiltonians using multiple formulations, described next in QUBO form; the spin 

Figure 2.  Illustrating spin-merging in the all-to-all  array5.
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formulation can be found as shown in Sect. “QUBO/Ising problems and the underlying graph”. The superscript 
against the name of each formulation provides the number of spins in the formulation as a function of n and m.

The MIS3m formulation
The maximal independent set (MIS)  formulation17 establishes a graph by assigning a vertex (i.e., a QUBO vari-
able) for each literal. For each clause, the three literals (vertices) are connected to each other, forming a “triangle” 
of edges. The literals of different clauses interact via conflict edges that connect any pair of vertices corresponding 
to literals xi and xi . For a problem with m clauses, this formulation requires 3m variables.

This formulation can be translated into QUBO  form18 using up to 3m QUBO variables, one for each vertex in 
the graph. Given an instance C1 ∧ C2 ∧ · · · ∧ Cm = (l1 ∨ l2 ∨ l3) ∧ (l4 ∨ l5 ∨ l6) ∧ · · · ∧ (l3m−2 ∨ l3m−1 ∨ l3m) , 
the QUBO Hamiltonian is:

By construction, the literals, li , have a many-to-one mapping to the original Boolean variables. If the literal values 
provide conflicting assignments to the Boolean variables, a majority vote is used to assign the value.

An ILPn+2m formulation
We propose a new integer linear program (ILP) formulation representing the ith clause by the Boolean inequality:

If the literal lj corresponds to variable xj in true form, then lj = xj ; if negated, lj = 1− xj . The Max-3SAT prob-
lem is solved by finding a feasible solution to the ILP under these inequality constraints. Using a slack variable 
s, each inequality constraint is transformed to an equality constraint l3i+1 + l3i+2 + l3i+3 − s − 1 = 0 , where 
s ∈ {0, 1, 2} , depending on whether one, two, or all three literals are 1. Encoding s = 2si,1 + si,0 , where si,1 and si,0 
are binary variables, the equality constraint now contains all binary variables. This corresponds to minimizing 
the Hamiltonian:

For example, clause (xa ∨ x′b ∨ xc) is encoded as xa + (1− xb)+ xc − 2s1 − s0 − 1 = 0 , and its contribution 
to the Hamiltonian is the square of the left hand side. An instance with n variables and m clauses has n+ 2m 
QUBO variables, including two ancillary slack variables for each of m clauses. Since typically, n < m , ILPn+2m 
has fewer Ising variables than MIS3m , but the range of weights is higher and the connectivity is denser. Unlike 
the MIS3m formulation, there is a 1–1 correspondence between the first n QUBO/Ising variables and the Boolean 
Max-3SAT variables, and no contradictions need to be resolved after solution.

The Chancellorn+m formulation
The Chancellor  formulation19 maps an n-variable m-clause instance using n+m QUBO/Ising variables, with a 
1–1 correspondence between the n SAT variables and the first n QUBO/Ising variables, and one ancillary variable 
for each of the m clauses. Denoting the SAT variables as x1, . . . , xn and the ancillary variables as xn+1, . . . , xn+m , 
the overall Hamiltonian is:

As in ILPn+2m , for a literal lj in true form, lj = xj ; else lj = 1− xj.

The Nüßlein2n+m formulation
The Nüßlein2n+m  formulation20 maximizes the number of satisfied clauses by making the Hamiltonian equal to 
the negative of the number of the satisfied clauses. For this purpose, a dual of each of the n original variables is 
designated to obtain the variable pairs xi , xi+1 that correspond to the ith 3SAT variable. These are one-hot-encoded 
to 10 if the 3SAT variable is true, and 01 if it is false. Additionally, one ancillary variable is designated for each 
of m clauses, leading to 2n+m variables. The corresponding QUBO Hamiltonian is:

where R(xi) is the number of clauses that contain xi , and R(xi , xj) is similarly defined as the number of clauses 
such that contain both xi and xj . This Hamiltonian aims to make the energy contribution of each satisfied clause 
−1 (and each unsatisfied clause 0). The formulation rewards each variable if it satisfies a clause (first term), and 
the local field coefficient of the ancillary variable of each clause is assigned to 2 (second term). Assignments of 
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both a Boolean variable and its complement to 1 are penalized to ensure consistency (third term); the case where 
both are 0 effectively means that the variable is a don’t care.

The Nüßleinn+m formulation
Although Chancellorn+m requires fewer QUBO variables than MIS3m and Nüßlein2n+m , it uses relatively more 
coupling weights. The Nüßleinn+m  formulation20 has a lower number of nonzero couplings between QUBO/Ising 
variables. Nüßleinn+m uses four different clause literal negation  patterns20 for Max-3SAT, where each pattern 
corresponds to the number of negated literals in the clauses. The formulation then consists of constructing (or 
updating) the Hamiltonian, clause by clause. Each pattern ensures that post(pre)-update Hamiltonian H+(H∗ ) 
satisfies H+ = H∗ if the immediate clause is satisfied, and H+ = H∗ + 1 otherwise. Based on this rule and the 
negation pattern of each clause, the Hamiltonian is updated iteratively for each clause.

In summary, these formulations each possess distinct features, such as the number of spins in Hamiltonian, 
the density of nonzero coupling, and the range of coupling values. We will compare these on benchmark testcases 
in Sect. “Experimental setup and metrics”.

Implementation workflows
Overview of our hybrid solver approach
Any hardware solver has a limited number of spins, and large problems must be decomposed into smaller 
subproblems that can fit on the hardware, and solved iteratively until the ground state is found. The  qbsolv15 
engine performs a similar decomposition, purely in software, optimizing a large QUBO problem by solving a 
series of sub-QUBO problems using local Tabu search. Figure 3 shows two workflows for 3SAT solution and 
evaluation: a hybrid hardware-based flow and a purely software-based flow. The software flow is based on qbsolv, 
but augmented with new methods that we propose for problem decomposition.

The software workflow emulates the A2A hardware results, but is free of the nonidealities and noise in the 
hardware, and thus represents the best achievable results for the hardware-based flow. We use it to evaluate the 
effectiveness of various Ising formulations and decomposer schemes, and prune the list of candidates imple-
mented on the Ising hardware. This pruning is useful due to the limitations of the prototype Ising chip, which 
focuses on optimizing the A2A engine, but currently has slow input/output (I/O); this I/O bottleneck can be 
easily resolved using standard techniques in future versions of the chip.

In the figure, the blue boxes are performed on a classical computer and are common to both workflows. We 
first transform the 3SAT problem into a global Hamiltonian (Ising) formulation (Sect. “QUBO/Ising problems 
and the underlying graph”). The size of the Hamiltonian depends on the 3SAT problem and the specific formu-
lation used to map 3SAT to QUBO (Sect. “Formulating 3SAT for an Ising solver”). To map the Hamiltonian to 
hardware, we use a decomposer (Sect. “Decomposers”) to generate an Ising sub-Hamiltonian that can fit the 
dimensions of the RO array: on our A2A hardware, this allows at most 49 spins, including the reference.

For the hardware workflow (yellow boxes in Fig. 3), this sub-Hamiltonian is preprocessed (Sect. “Preprocess-
ing for RO array”), and the Ising weights are programmed on to the chip. The spin states on the chip are sampled 
to determine the phase for each RO using majority voting. The software workflow (green boxes in Fig. 3) uses 
Tabu  search21 to solve the same sub-Hamiltonian.

For both hardware-based and software-based evaluation, the decomposer sequentially sends each sub-Ham-
iltonian for processing. This terminates when all clauses are satisfied, i.e., “all-SAT” is achieved, or if a predefined 
iteration limit is reached.

Decomposers
We study five decomposers: the last three are developed by us.

Energy impact decomposer. This decomposer, the qbsolv default, arranges spins in ascending order based 
on their flip energy (i.e., the energy difference when spin si is flipped to −si ), and greedily selects spins with the 
highest flip energy to construct the sub-Hamiltonian. Such a greedy algorithm is liable to be trapped in a local 
minimum.

Random decomposer. This decomposer randomly selects spins from the global Hamiltonian to form the 
sub-Hamiltonian. The randomness in the selection process helps the algorithm escape from local minima.

Pseudorandom decomposer. Our heuristic scheme continually reshuffles and shifts the variable order, 
selecting the first S variables at each iteration for the sub-Hamiltonian solver, where S represents the number 
of spins supported by the hardware. The pseudorandom decomposer ensures diversity among the generated 
sub-Hamiltonians.
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Ising

solution
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Figure 3.  Workflow of our Hybrid SAT solver.
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BFS decomposer. This scheme creates a cluster around a randomly-selected source vertex in the Ising graph. 
A breadth-first search (BFS) in the graph starts from the source, adding neighbors in randomized order until 
the capacity is reached.

SAT decomposer. This clustering-based decomposer randomly selects one clause at each step and adds all 
spins related to the selected clause and its involved variables to the sub-Hamiltonian.

Preprocessing for RO array
For the hardware workflow, each decomposed sub-Hamiltonian is adapted to satisfy the restrictions imposed 
by the Ising chip: 

1. Sub-Hamiltonian coupling weights must be restricted to integers in the interval [−14,+14].
2. Coupling values should be as large as possible: empirically, device accuracy improves with coupling strength.

We translate the sub-Hamiltonian from the decomposer to a hardware-compatible coupling matrix, using the 
following methods:

Mapping: Increasing the number of LFROs and using spin merging for the local field increases the dynamic 
range of the h coefficients (Sect. “Degrees of freedom in A2A hardware mapping”). In Sect. “Experimental setup 
and metrics”, we sweep the number of LFROs to choose an optimal number of LFROs to be merged.

Removing spin variables from the sub-Hamiltonian: A large local field on a spin variable can force the 
variable to a fixed value. The contribution of a spin si on the Ising Hamiltonian is H(si) = hisi +

∑n
j=1,j �=i Jijsisj , 

and the flip energy is

The last inequality comes from the relation, 
∑n

j=1,j �=i Jijsj ≥ −
∑n

j=1,j �=i |Jij| . For hi > 0 , if hi >
∑n

j=1,j �=i |Jij| , 
then Hflip(si) > 0 regardless of the choice of the other spins. Thus, H(si = +1) > H(si = −1) , i.e., a minimum 
Hamiltonian will force si = −1.

Similarly, using the upper bound 
∑n

j=1,j �=i |Jij| on the second term in (8), Hflip(si) ≤ 2(hi +
∑n

j=1,j �=i |Jij|) < 0 . 
Therefore, if hi < −

∑n
j=1,j �=i |Jij| < 0, minimizing the Hamiltonian forces si = +1.

Together, these cases show that if hiis very negative [very positive], si = +1 [ si = −1]at the minimum, 
and the corresponding spin variable can be removed from the Hamiltonian. Since the weights in the hardware 
are limited to [−14,+14] , this serendipitously allows us to remove large/small weights, at no loss of accuracy.

In practice, we use the criterion |hi| > N ×maxj |Jij| , for a tuned value of N, and find it to be effective in 
identifying spins that could be removed, empirically without loss of optimality. In Fig. 4, the coupling between 
spin 2 and reference spin (Ref) h2 = 20 is much larger than maxj J2j = 2 . Therefore, spin 2 is removed from the 
Hamiltonian. All couplings, J2j , are transferred into couplings with the reference spin (hj ), and spin 2 is set to +1.

Scaling: Since large coupling values are preferable for device accuracy, and minimizing F(s) in (2) is identi-
cal to minimizing kF(s) for any scalar k, we can scale the hi and Jij values up as long as the maximum value lies 
in the range [−14,+14].

Truncation: Scaled coupling values beyond ±14 are truncated by clamping them to +14 or −14.
In summary, insights from our experiments on hardware implementation include: (1) Scaling up weights for 

sub-Hamiltonians with small coupling values improves performance. (2) The number of LFROs and the scaling 
factor should be considered together to find an optimal combination. (3) For Ising problems with more spins and 
similar coupling values, more LFROs may improve the performance after decomposition. (4) Excessive scaling, 
and too many LFROs, lead to a decrease in overall performance. In Sect. “Experimental setup and metrics”, we 
experimentally obtain a methodology for the mapping algorithm.

Experimental setup and metrics
We present three experiments in this section: (1) the software workflow, focusing on Hamiltonian formulations 
and choices for the decomposer; (2) a hardware sub-Hamiltonian workflow test, focusing on preprocessing; 
(3) using the optimal configuration from the first two experiments to solve 3SAT benchmarks using our com-
plete workflow.
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Figure 4.  An example where spin 2 can be removed (set to the reference spin).
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We use 10 benchmarks from the SATLIB uf20-91  suite22. All benchmarks are satisfiable and each includes 20 
variables/91 clauses. The clauses-to-variables ratio, m/n = 4.55 represents problems that lie close to the phase 
transition region23 where the hardest SAT problems lie. We use the following metrics:

Iterations: Each iteration of our workflow generates a decomposed sub-Hamiltonian, sent to the Ising solver 
in an inner loop. The 3SAT problem is solved over multiple sub-Hamiltonian solutions.

Repeats: The 3SAT/Hamiltonian solution is repeated many times in the outer loop of our workflow, thus 
reducing the impact of the random initial states or noise effects.

All-SAT ratio: This quality metric is the number of repeats that find an all-SAT solution, divided by the total 
number of repeats.

Energy ratio: This is the ratio of the sub-Hamiltonian energy of the current solution and the ground state 
(from the software workflow), and indicates the accuracy of the sub-Hamiltonian solution.

In Fig. 5, we explore the multiple Ising formulations of the 3SAT problem, and multiple decomposition 
strategies using the software workflow. We show the average All-SAT ratio out of 100 repeats for the first 10 
instances in the uf20-91 benchmarks at the end of 50, 100, and 500 iterations, as denoted with darker-to-lighter 
tones from bottom to top in each bar. On average, the best performance comes from the Chancellorn+m formulation 
and the BFS decomposer.

For sub-Hamiltonian hardware mapping, we show the effects of scaling and mapping (i.e., number of LFROs) 
in Fig. 6. The Hamiltonian from the software (ideal) and hardware workflows, for each decomposed subproblem 
of the uf20-91/01 benchmark, are provided in Fig. 6(a) for a scaling factor of 2 (all couplings multiplied by 2) 
with 4 LFROs, and in Fig. 6(b)–(d) for scaling by 12, with 2, 4, and 10 LFROs, respectively; scaled values beyond 
±14 are clamped using truncation. Figure 6(a) shows a significant discrepancy between the ideal and hardware 
Hamiltonian energies, while in Fig. 6(c) with higher scaling and the same number of LFROs, the hardware follows 
the software much more closely due to the stronger coupling of spins, thus reinforcing the empirical observation 
that stronger coupling improves chip accuracy. At the higher scaling factor of 12, 2 LFROs in Fig. 6(b) provide 
better accuracy than the Scale 2 case. Moreover, 4 and 10 LFROs in Fig. 6(c) and (d), respectively, provide pro-
gressive improvements, as they provide a larger dynamic range for the h coefficients, requiring fewer truncations. 
Appropriate selection of scaling factors and the LFROs thus bring hardware solutions closer to the ideal ground state.

We examine the statistics of subproblem accuracy based on the energy ratio. In Fig. 6(e) and (f), we, respec-
tively, vary the scaling factor, fixing the number LFROs to 4; and vary the number of LFROs, fixing the scaling 
factor to 8. We show results on the uf20-91-01–uf20-91-10 SAT benchmarks for 50 iterations. Both scaling 
factor and LFRO optimizations affect the number of coupling weights that are truncated due to the insufficient 
dynamic range. A scaling factor of 2 provides the fewest truncated variables, but subproblem accuracy is low 
due to insufficient coupling strength. As the scaling factor increases, the subproblem accuracy improves despite 
more and more variables being truncated, showing the tradeoff between the dynamic range and the coupling 
strength. Thus, the energy landscape transformation due to insufficient dynamic range affects the subproblem solu-
tion accuracy in such a way that the number of truncated coefficients is correlated with the accuracy loss. Overall, 
a scaling factor of 8 alongside 4 LFROs provides the best subproblem accuracy (Energy ratio).

In general, identifying a universal hardware mapping algorithm proves challenging due to the preference for 
high coupling values and the intricate balance between dynamic range and coupling strength. Therefore, we limit 
the optimization of the mapping algorithm to selected 3SAT benchmarks and tune our hardware preprocessing 
accordingly. It’s important to note that the optimality of the preprocessing algorithm utilized here may not extend 
directly to other problems.

Based on Fig. 5, we select the two formulations with the best average performance (Chancellorn+m and 
Nüßleinn+m ), and the best decomposer (BFS) for our hardware solver. We use instances 01–05 of uf20-91, used 
previously, and an orthogonal set, instances 11–15 of uf20-91, which represent unseen data. Over 100 repeats for 
each benchmark, with a time-out at 500 iterations, we plot the average number of iterations to reach all-SAT in 
Fig. 7a, overall 10 instances. Chancellorn+m generally achieves all-SAT in fewer iterations than Nüßleinn+m , with 
a few exceptions, e.g., uf20-91/13. However, in one case (uf20-91/03), where the average number of iterations 
exceeds the time-out limit of 500, Nüßleinn+m is unable to achieve all-SAT. Figure 7b shows the evolution of the 
average number of iterations over 100 repeats for instances 11–15, settling to the steady-state value in Fig. 7a. 

Figure 5.  Evaluation of the five formulations (MIS, ILP, Chancellorn+m , Nüßleinn+m , Nüßlein2n+m ) 
and decomposers (energy impact, random, pseudorandom, BFS, SAT: the pseudorandom, BFS, and SAT 
decomposers are developed in this work).
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Specifically, over 100 repeats, the average number of iterations is 91.8 for the chip and 79 for the software Tabu 
search; the difference is due to the accuracy loss in going to the hardware.

Runtime analysis. A runtime analysis of our Hybrid solver is illustrated in Table 1, assuming 100 samples 
on the Ising solver chip; the sample with the lowest Hamiltonian value is selected. As an academic demonstrator 
focuses on optimizing the A2A array, with a focus on optimizing the all-to-all array, the Ising chip has several 
limitations: 

(1) The existing low IO bandwidth can be improved (800Mbps can be achieved with 8-bit parallel IO at 
100Mbps each).

(2) Majority voting (Sect. “A CMOS-based Ising hardware accelerator”) can be performed on-chip, reducing 
output data by 8 × , from 8 bits/spin to 1 bit/spin.

(3) Decomposition can be performed on-chip where the indices are precomputed.

Figure 6.  Software and chip Hamiltonian energy for the uf20-91/01 instance (a) Energy for Scale 2 with 
4 LFROs, (b) Energy for Scale 12 with 2 LFROs, (c) Energy for Scale 12 with 2 LFROs, and (d) Energy for 
Scale 12 with 10 LFROs, (e) Energy ratio for scaling (the point (2,47.1) is listed but not shown in the plot: 
adding this point would make it harder to see the variation for higher values of Scaling factor), (f) Energy ratio 
for LFROs. In (e) and (f), the solid line is the mean of the Hamiltonian energy, and the shaded region marks one 
standard deviation from the mean, over all repeats.

(a) (b)

Figure 7.  Number of iterations to find All-SAT for hardware test on the Ising chip for (a) Average number 
of iterations for uf20-91/(01-05, 11-15) for Chancellorn+m and Nüßleinn+m . (b) Average number of iterations 
with repeats for uf20-91/(11–15) in the formulation of Chancellorn+m with solver chip and average number of 
iterations with Tabu search.
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(4) The Hamiltonian computation to check for convergence is currently performed off-chip, using the Ising 
energy computation function in the  dimod24 package on an Intel Xeon 4114 CPU. This computation can 
also easily be performed in hardware; in fact, the computation can be overlapped with the next Ising 
solution, and it incurs no additional latency.

All of these are relatively simple extensions, and the only reason that they are not on the chip already is it is an 
academic project, limited by the number of students who can work on tape-outs, and the hardware focus has 
been on enhancing the core A2A engine. To project the true power of this hardware computational model, we 
use the settling time of the current version of the Ising chip, and project the total runtime numbers under the 
assumption that the above four improvements are made. Under these assumptions, the overall runtime is 171.9µs  
per iteration, taking 100 samples in each iteration. Our runtime estimate does not include the decomposition 
runtime. Our random source-based BFS decomposer (Sect. “Decomposers”) has no dependency on previous 
iterations, and search indices can be precomputed. Moreover, the overhead of updating our 45 sub-Hamiltonian 
with 10% nonzero density in hardware implementation is projected to only take a few hundred cycles (see Sup-
plementary Materials), which is negligible.

Based on the iteration counts presented in Fig. 7, Table 2 shows the runtime and comparison among Tabu 
search, our chip-based solution, and  WalkSAT25, on a set of benchmarks. Compared to the software Tabu search 
based on D-Wave  Hybrid26, the speedup of our solver ranges from 185×–389× , with an average speedup of 250× . 
Given the power is 10 mW for our 10% density  problems5, the energy is improved by orders of magnitude. The 
runtimes of WalkSAT are better than those of our current solver, but since WalkSAT is run on a CPU, its power 
dissipation is considerably higher than the 10 mW power for our chip. As a result, the energy consumption of 
our chip-based solver is seen to be much less than WalkSAT.

Conclusion
This work solves 3SAT on a CMOS-based Ising chip, addressing degrees of freedom in problem formulation 
(the Chancellorn+m formulation performed best on average) and problem decomposition (BFS decomposition 
performed best on average), as well as hardware mapping strategies for the Ising problem that extract the best 
performance from the chip. To the best of our knowledge, this is the first comprehensive exploration of these 
issues, paving the way towards bringing Ising computation to the mainstream through algorithm mapping on 
a mass-manufacturable CMOS chip. After optimization of the chip, we project that our chip-based 3SAT solver 
can achieve 250× speedup than the Dwave-Hybrid26 software-based solver with the power of  10mW5. Our work 
is currently based on randomly-generated SATLIB benchmarks and it has been  observed27 that heuristic SAT 
solvers have better performance over industrial real-work benchmarks over randomly-generated benchmarks. 
We intend to investigate this issue in future work, and scaling up the solution to larger problems using multiple 
Ising solver cores.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Table 1.  Runtime analysis for our hardware solution.

Runtime per unit operation Multiplier for previous column Number of samples Runtime 

Input 1.25× 10
−3

µs/bit 9604 bits 1 12.0µs

RO relaxation (1/26MHz) s/cycle 40 cycles 100 153.8µs

Output 1.25× 10
−3

µs/bit 49 bits 100 6.1µs

Overall runtime 171.9µs

Table 2.  Runtime and energy consumption comparison between Tabu, WalkSAT, and the Ising chip.

Benchmark

Runtime (ms) Energy (mJ)

Tabu WalkSAT Chip Tabu WalkSAT Chip

uf20-91-11 4322 2.351 12.83 367,370 199.8 0.128

uf20-91-12 1596 2.337 6.30 135,660 198.6 0.063

uf20-91-13 5095 2.506 27.58 50,950 213.0 0.276

uf20-91-14 7148 2.470 28.07 433,075 210.0 0.281

uf20-91-15 1591 2.377 4.09 607,580 202.0 0.041
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