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Computation of molecular 
description of supramolecular 
Fuchsine model useful in medical 
data
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Supramolecular chemistry is a fascinating field that explores the interactions between molecules to 
create higher-order structures. In the case of the supramolecular chain of Fuchsine acid, which is a 
type of dye molecule, several chemical applications are possible. Fuchsine acid helps to make better 
medicine carriers that deliver drugs where they’re needed in the body, making treatments more 
effective and reducing side effects. It also helps create smart materials like sensors and self-fixing 
plastics, which are useful in electronics, keeping our environment clean, and making new materials. 
In sensing and detection, the supramolecular chain of Fuchsine acid utilizes as a sensor or detector 
for specific analyzes. In drug delivery, the supramolecular chains of Fuchsine acid incorporated into 
drug delivery systems. In recent years, a common method is linking a graph to a chemical structure 
and using topological descriptors to study it. This technique is becoming increasingly important over 
time. Topological descriptors gives very useful information while studying the topology of chemical 
graph. In this paper, we have computed the 3D structure of supramolecular graph of Fuchsine acid. We 
have computed an explicit expressions of ABC index, GA index, General Randić index, first and second 
Zagreb index, hyper Zagreb index, H-index and F-index of supramolecular structure of Fushine acid.
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A graph associated to structural formulas which include covalent bonded compounds or molecules, hence they 
are called molecular graphs. In the field of theoretical chemistry a large number of topological descriptors are 
used by pharmaceutical researchers. To study a chemical structure one can use graph theory, where atoms are 
considered as vertices of graph and molecular bond represents the edges. Topological descriptors are numbers 
linked to the structure, helping predict its properties like how it behaves chemically or physically. This numeric 
carry useful and important information about chemical structure and is usually called as topological index1. A 
topological index is a graph invariant under graph automorphism. Topological indices are numerical descriptors 
used to characterize the structure of graphs2. They play a crucial role in correlating the topology of molecular 
graphs with various physio-chemical properties such as boiling point, viscosity, and radius of gyrations3,4. Addi-
tionally, these indices are useful in predicting bioactivity of molecules5–7. They find applications in diverse fields 
such as drug design, environmental chemistry, and material science8–14.

A branch of chemistry named Supramolecular chemistry deals with chemical systems which are the composi-
tion of molecules. In supramolecular chemistry without outside guidance and providing the suitable environment 
new chemical systems can be constructed, this concept is called Molecular self-assembly. The molecules are 
directed to assemble through non-covalent interactions. Fuchsine C20H19N3HCl is a magenta dye. Fuchsine is 
used for dyeing clothes, staining bacteria, and sometimes as a disinfectant because of its important properties. 
In the study of biological tissues stains are used to increase contrast in sample, this technique is called stain-
ing. Dyes and stains are widely utilized in various applications, with one of the most common uses being in the 
microscopic study of biological tissues.
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In the medical fields of histopathology and cytopathology, dyes and stains play a crucial role in focusing at 
the microscopic level for disease detection and analysis of tissue samples. Biological tissues also can be defined 
by stains, for example it is used for emphasizing muscle fibers or connective tissue, also used to categorize differ-
ent blood cells. A staining method called Gram’s method, is used to sort bacterial species into two huge groups 
Gram-positive bacteria and Gram-negative bacteria. The Gram staining method often uses a dye called Fuchsine 
in microbiology. Fuchsine is a cog in the Schiff test, which is developed by Hugo Schiff and is an early organic 
chemistry named reaction. It is a comparatively common chemical test for finding of many organic aldehydes.

The graphs we take into consideration here are all connected, simple, and finite. The vertex set and edge set of 
the graph G are denoted by VG and EG respectively. If there is an edge connecting two vertices, they are considered 
to be adjacent. We use the notation xy ∈ EG if there is an edge between x and y. For a vertex x ∈ VG , we denote 
its degree by n(x) and is defined as the number of edges incident to that vertex. For basic definitions and related 
graph theory notions, we refer the readers to the book by15.

In the field of mathematical chemistry, graphs can be associated with various mathematical representations, 
including polynomials, numeric values, or matrices. These representations are often referred to as molecular 
descriptors, which play a crucial role in quantitative structure-property relationship (QSPR) and quantitative 
structure-activity relationship (QSAR) investigations. Notably, topological indices are essential examples of such 
molecular descriptors. Nowadays, there are various topological indices are used get important information about 
chemical structures and undirected networks. Topological descriptors can be classified into three main types: 
distance-based, degree-based, and counting-related. Among these, degree-based topological descriptors have 
received significant attention and find applications in QSPR analysis. The first degree-based topological index 
was introduced by Randić16 in 1975 with the name branching index. This index is defined as

Randić introduced an index suitable for quantifying the extent of branching in the carbon-atom skeleton of satu-
rated hydrocarbons. He observed a strong correlation between the Randić index and various physical/chemical 
properties of Alkanes, such as boiling points, enthalpies of formation, and surface areas. Later in 1988, Bollob’as 
and Erdős generalized this concept by replacing the factor −1

2
 in the Randić index formula with a real number � . 

The formula for general Randić index is given below:

For further details and important results about Randić index see17–19.
Estrada et al. introduced a specific index known as the Atom Bond Connectivity index of a graph G, denoted 

as ABC(G). This index is defined as follows3:

Estrada proved that ABC index show a good model for the stability of linear and branched alkanes3.
The Geometric Arithmetic index, denoted as GA, was introduced by Vukičević et al.20. For a given graph G, 

the Geometric Arithmetic index (GA) is formulated as follows:

In 1972 the first and second Zagreb indices were introduced21,22. These indices are denoted and defined as:

These topological indices were firstly applied to branching problem in early seventies23. Different researchers 
used these topolgical indices in their QSPR, QSAR studies1,24,25.

In 2013 Shirdel et al.26 prposed the hyper-Zagreb index as:

In 2012 the harmonic index was introduced by Zhong et al.4 as:
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Furtula and Gutman27 in 2015 introduced a new index named the forgotten index, denoted by F(G) and for-
mulated as:

In this work we consider the 3D structure of supramolecular Fuchsine C20H19N3HCl . We made the sheet of 
supra molecular Fushine by attaching its m× n units. We have computed an exact formulas for the Atom bond 
connectivity index , Geometric Arithmetic index , General Randić index and different variants of Zagreb indices 
of C20H19N3HCl sheet.

Main results
We use the notation F[m, n] to denote the supramolcular structure of Fushine sheet having m× n units of 
Fushine. The single unit of Fushine is depicted in Fig. 1. The supramolecular sheet of Fushine F[m, n] is obtained 
by making a chain of m units of Fushine by connecting the molecules of Fushine with blue color vertex shown 
in the figure, as common vertex, and then connecting a n chains of m units of Fushine chain with green vertices. 
The molecular structure of F[2, 2] is shown in Fig. 2. It is easy to observe that F[m, n] has 38mn+m+ n vertices 
and 42mn edges.

To compute the topological indices defined above, we need to find the partition of edges of F[m, n] based 
on the degree of end vertices. There are three types of edges of F[m, n]. The first edge partition has 24mn edges 
xy with n(x) = 3 and n(y) = 3 . The second edge partition has 14mn+ 2(m+ n) edges xy with n(x) = 3 and 
n(y) = 1 . The third edge partition contains n(2m− 2)+ 2m(n− 1) edges xy, where n(x) = 2 and n(y) = 3 . The 
Table 1 shows the edge partition of F[m, n] with m, n ≥ 1.

In the first theorem, we calculate the Atom Bond Connectivity index of F[m, n].

Theorem 2.1  Let m, n ≥ 1 , then the value of Atom Bond Connectivity index of F[m, n] is equal to

F(G) =
∑

xixj∈EG
(n(xi)

2 + n(xj)
2).

Figure 1.   2D structure of F[1, 1].

Figure 2.   2D structure of F[2, 2].
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Proof  By using the edge partition of F[m, n] based on the degree of end vertices of each edge given in Table 1, 
the Atom Bond Connectivity index can be computed as:

After some easy calculations, above expression get the following form:

	�  �

In the next theorem, we calculate the general Randić index ( R�(G) ) of supramolecular graph of Fuchsine 
F[m, n].

Theorem 2.2  The general Randić index of graph F[m, n] , with m, n ≥ 1 , is equal to

Proof  One can prove the above result by using edge partition given in Table 1 in the definition of General Randić 
index. When � = 1.

The subsequent form for � = −1 is,

For � = 1
2
 , the formula of Randić index takes the subsequent form.
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Table 1.   Edge partition of F[m, n] based on degrees of end vertices of each edge.

(n(x), n(y)) Frequency

(3, 3) 24mn

(3, 1) 14mn+ 2(m+ n)

(2, 3) n(2m− 2)+ 2m(n− 1)
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	�  �

Geometric arithmetic index GA of F[m, n] is calculated in the next theorem.

Theorem 2.3  Let m, n ≥ 1 , then the geometric arithmetic index of F[m, n] is equal to

Proof  Using the edge partition given in Table 1, the geometric arithmetic index is calculated as below:

	�  �

In the next theorem, we calculate the first and second Zagreb indices of F[m, n].

Theorem 2.4  The values of first and second Zagreb indices of F[m, n], with m, n ≥ 1 , are equal to

Proof  Using the values from Table 1, the value of first Zagreb index of F[m, n] can be computed as below:

The second Zagreb index is calculated below:

	�  �

Theorem 2.5  Let m, n ≥ 1 , then the hyper-Zagreb index of F[m, n] is equal to

Proof  Using Table 1 the hyper-Zagreb index of F[m, n] can be computed as below:

	�  �
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Theorem 2.6  Let m, n ≥ 1 , then the harmonic index of F[m, n] is equal to

Proof  Using Table 1, the harmonic index of F[m, n] can be computed as below:

	�  �

Theorem 2.7  Let m, n ≥ 1 , then the forgotten index of F[m, n] is equal to

Proof  Let F[m, n] be the given graph. Using Table 1 the forgotten index of F[m, n] can be computed as below:

	�  �

Discussion
The importance of topological descriptors is due to the fact that they are usefull in QSPR/QSAR studies. In this 
work, we have computed the values of different degree based topological descritpors of supramolecular structure 
of Fushine. The values of these topological descriptors for different values of m and n are depicted in Table 2. 
Observe that the value of each index increses with the increase in the value of m and n. The plot of these indices 
help us to compare these indices. The Randić index R−1

2
 has the maximum value among all these indices and the 

Randić index R−1 has the minimum value.

Conclusion
In this paper, we determined the topological indices of supramolecular graph of Fuchsine acid, that would be 
helpful in computational chemistry. We have computed ABC index, geometric arithmetic index, general Randić 
index, first and second Zagreb index, hyper zagreb index, harmonic index and forgotten index of supramolecule 
of fushine acid. The results of above mentioned indices are compared numerically as shown in Table 2, and 
graphically as shown in Fig. 3. Our computed results can be extend for the distance and resistance distance based 
topological indices of supramolecular structures.
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Table 2.   Comparison of the topological indices.

G M1(G) M2(G) HM(G) F(G) ABC(G) GA(G) R
−1(G) R1/2(G) R

−1/2(G) R1(G)

F[1, 1] 216 270 1152 612 25 40 7 103 19 270

F[2, 2] 874 1104 4680 2472 101 159 33 419 72 1104

F[3, 3] 1968 2502 10,584 5580 227 359 74 946 162 2502

F[4, 4] 3504 4464 18,864 9936 405 625 131 1713 286 4464

F[5, 5] 5480 6990 29,520 15,540 635 999 203 2637 446 6990

F[6, 6] 7896 10,080 42,552 22,392 915 1439 340 3800 642 10,080

F[7, 7] 10,752 13,734 57,960 30,492 1246 1901 397 5176 873 13,734

F[8, 8] 14,048 17,952 75,744 39,840 1629 2450 517 6764 1139 17,952

F[9, 9] 17,784 22,734 95,904 50,436 2065 3098 654 8564 1441 22,734

F[10, 10] 21,960 28,080 118,440 62,280 2547 4000 807 10,576 1779 28,080
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	16.	 Randić  , M. On characterization of molecular branching. J. Am. Chem. Soc.97(23), 6609–6615 (1975)
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