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Enhancing the trustworthiness 
of chaos and synchronization 
of chaotic satellite model: 
a practice of discrete 
fractional‑order approaches
Saima Rashid 1,2, Sher Zaman Hamidi 3*, Saima Akram 4,5, Moataz Alosaimi 6 & Yu‑Ming Chu 7

Accurate development of satellite maneuvers necessitates a broad orbital dynamical system and 
efficient nonlinear control techniques. For achieving the intended formation, a framework of a 
discrete fractional difference satellite model is constructed by the use of commensurate and non-
commensurate orders for the control and synchronization of fractional-order chaotic satellite 
system. The efficacy of the suggested framework is evaluated employing a numerical simulation of 
the concerning dynamic systems of motion while taking into account multiple considerations such 
as Lyapunov exponent research, phase images and bifurcation schematics. With the aid of discrete 
nabla operators, we monitor the qualitative behavioural patterns of satellite systems in order to 
provide justification for the structure’s chaos. We acquire the fixed points of the proposed trajectory. 
At each fixed point, we calculate the eigenvalue of the satellite system’s Jacobian matrix and check 
for zones of instability. The outcomes exhibit a wide range of multifaceted behaviours resulting from 
the interaction with various fractional-orders in the offered system. Additionally, the sample entropy 
evaluation is employed in the research to determine complexities and endorse the existence of chaos. 
To maintain stability and synchronize the system, nonlinear controllers are additionally provided. 
The study highlights the technique’s vulnerability to fractional-order factors, resulting in exclusive, 
changing trends and equilibrium frameworks. Because of its diverse and convoluted behaviour, the 
satellite chaotic model is an intriguing and crucial subject for research.

Keywords  Fractional calculus, Satellite model, Fractional difference equation, Chaotic attractors, 
Bifurcation, Sample entropy, Lyapunov exponent

Chaotic systems are extremely responsive to initial conditions (ICs). The phenomenon is frequently referred to 
as the butterfly influence1. Chaos synchronization has garnered a lot of consideration in scientific circles since 
Pecora and Carroll2 developed the notion of chaotic synchronization under various ICs. The concept behind 
synchronization is to take advantage of the data generated by the centralized system in order to regulate the slave 
mechanism and guarantee its results adhere to the production of the acquire mechanism asymptotically3,4. One 
of the most crucial uses of chaos is the synchronization of multiple chaotic dynamical structures. Over recent 
decades, chaotic synchronization has emerged as an intriguing topic within the arena of scientific discipline 
owing to its broad range of conceivable uses in5. For tackling the synchronization of alike or non-similar master-
slave chaotic structures, many techniques are being developed, including active supervision techniques, adaptable 
control approaches, fuzzy oversight procedures, back-stepping design techniques, impulsively regulation 
approaches, automatic control processes, parametric feedback controlling techniques and many more6,7.
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Whenever the settings are unidentified or change over time, adaptive synchronization is used to synchronize 
the same or nonidentical mechanisms. Wang et al.8 investigated responsive synchronization for a Chen chaotic 
structure via entirely unresolved factors. Lin et al.9 contemplated the dynamic, powerful observer-based 
synchronization of unilaterally complemented chaotic networks with an unidentified transmit time delay. Fan 
et al.10 presented synchronization of a family of chaotic systems based on adaptive control design of input-to-state 
stability. Chen et al.11 expounded the hidden extreme multi-stability and synchronicity of memristor-coupled 
non-autonomous memristive Fitzhugh-Nagumo models.

With the advancement in space technology, the necessity of understanding satellite dynamics is of key 
importance for the improvement of satellite systems5,6. This system provides multiple positive effects over an 
individual rocket task, involving the capacity to boost and/or facilitate outreach by means of deeper starting point 
assessments, a high rate of failure tolerance, real-time reconfigurability, adaptability to extremely fluctuating 
requirements and lesser lifetime expenses12. Nevertheless, from spacecraft formation setup to transformation, 
interaction and pattern generation, the entire process presents enormous obstacles13. A single satellite is 
sometimes insufficient to accomplish certain missions of space observations and earth observations. These 
tasks can be accomplished using satellites synchronization. Replacing a single satellite with a number of smaller 
satellites in clusters helps to reduce the launching cost as well as reduces the risk of failure of a difficult and 
complex mission. Therefore, reduction in the launching cost and reduction in the risk of the entire mission 
failure are the other benefits of satellites synchronization14–16. Adaptive synchronization of a chaotic satellite 
attitude in the presence of external disturbances and uncertainties is difficult. Disturbances and uncertainties 
of the satellite attitude system are represented using auxiliary torques. The external disturbances are sunlight 
pressure torques, gravity gradient torques, aerodynamics moment, etc., whereas internal disturbances are model 
uncertainties and parametric uncertainties17. To address these issues, novel techniques for accomplishing satellite 
creation constellations while minimizing location maintenance necessities are being requested. The manoeuvring 
of satellites in their navigation is critical to security forces, courteousness and research endeavours. Satellite 
framework synchronization is an active academic field18,19. Several methods and procedures were implemented 
to synchronize and regulate nonlinear phenomena (satellite attitude), specifically responsive oversight, proactive 
surveillance and control using sliding mode20,21. The adaptable synchronization of satellite behaviour and 
momentum-based systems are complicated topics. The satellite behaviour framework includes unpredictability 
and disruptions (both exterior and interior). It’s a redundant torque structure. The disruptions in the outermost 
layer may encompass streamlined experiences, ultraviolet ray-compelled tensions, gravitation gradient forces, and 
electromagnetic instances, whereas internal fluctuations can embrace parameter unpredictability22–24. Satellite 
mechanism synchronization is currently employed in contemporary space-purpose theories featuring multiple 
satellites constellations with details. This is addressed by the synchronization regulation system, which regulates 
the variation in oversights within satellite constellations. The objective is to determine the advanced version of 
adaptive synchronization that motivates satellite constellations asynchronously regarding identical briefings25,26.

In the last century, discrete fractional (DF) calculus has grown up as an appealing study field that has sparked 
the fascination of researchers from multiple fields27–31. Their uses range from biological science to environmental 
science to practical scientific fields, providing useful understanding of contemporary issues29,32–35. In contrast to 
classical non-fractional networks, fractional platforms have proven their capacity to specify multifaceted chaotic 
events with more precision36,37. It highlights their distinctive features, such as persistent memory, transparency 
and adaptability. There is currently an increase in the number of articles presented on this fascinating subject38–40. 
Numerous researchers have proposed innovative formulations of discrete-time fractional calculus that have 
stability properties and multiple empirical results41,42. In particular, Wu and Baleanu43 offered groundbreaking 
research that explored the chaotic properties of fractional chaos illustrations employing the Caputo-type operator. 
As a consequence, this research has opened pathways for the formation of additional commensurate-order 
(CO) and incommensurate-order (ICO) chaotic diagrams43–45. Also, it investigates multiple influence methods 
and synchronization schemes constructed to synchronize the connections of various fractional discrete chaotic 
environments46,47. These research investigations revealed that the mechanism’s behaviour is greatly reliant on 
the fractional-order picked out, highlighting its dynamic and convoluted form, making it an exciting area for 
research in the discipline of fractional approaches48,49. Coccolo and Sanjuán50 contemplated the nonlinear delayed 
forcing drives a non-delayed duffing oscillator. Coccolo et al.51 presented the fractional damping effects on the 
transient dynamics of the duffing oscillator.

In fact, most former satellite model studies have concentrated on classical calculus. Unfortunately, the 
scientific investigation of DF-satellite models is still insufficient, with little research devoted to investigating their 
behaviour and attributes. Tsui and Jones52 explored the control of higher-dimensional chaos in satellite attitude 
control problem. Kuang et al.53 expounded the chaotic attitude motion of satellites under small perturbation 
torques. Furthermore, Kuang et al.54 contemplated the chaotic dynamics of an asymmetrical gyrostat. Kong 
et al.55 described the control of chaotic attitude motion of a perturbed spacecraft, while the researchers of56 
investigated controlling and synchronization of a fractional-order chaotic satellite model. The research 
emphasizes the framework’s challenging and diverse behaviour, emphasizing the importance of fractional aspects 
in the sophistication and adaptability of satellite models. A great deal of the prior study concentrated mainly 
on CO theories in continuous-time fractional-order models. Yet it seems that there is a substantial dearth of 
research regarding the influence of the ICO scenario on the fluidity of these models. Indeed, ICO is a subset of a 
fractional-order structure defined by revealing the order for which the formula differs. As a result, the simulation’s 
liberty strengthens. This points to an unresolved issue in the discipline of discrete models, especially within the 
setting of incommensurate fractional systems. Recognizing the functioning and features of incommensurate 
fractional satellites may provide significant discoveries and prospective uses in a wide range of fields, including 
neural structures, technology, artificial intelligence, viscosity, control research, cognitive behaviour and numerous 
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others57–59. As a result, additional inquiry and exploration on this subject are required to identify the distinctive 
features and conceivable advantages of incommensurate fractional satellite models.

Motivated by the prior argumentation, the goal of this article is to investigate and evaluate the dynamic 
practices of the DF-satellite system, which includes both CO and ICO fractional exponents. By means of an 
amalgamation of quantitative and qualitative inspections, we execute an extensive review of the key features 
of this DF-satellite model. We investigate the chaotic behaviour of satellite constellations using multiple tech-
niques, including dissipativity, fixed points, bifurcation illustrations, Poincáare maps and Lyapunov factors. 
The suggested system’s dissipative nature (strange attractor) is defended. We acquire the proposed model’s fixed 
points and at every fixed point, we notice that a single of the eigenvalues of the satellite system’s Jacobian matrix 
is non-negative, confirming the zone of instability. Using the oversight-control procedure, we determine the 
synchronization of two equivalent satellite constellations. These investigations provide fresh perspectives on the 
functioning of satellite networks. GPS systems, telecommunications, planet perception and climate prediction 
can all benefit from measurements. This shows the distinctiveness of our work.

The article is organized as follows: in “Configuration of the DF-satellite model” section, we outline the DF-
satellite system and provide key introductory notions concerning DF calculus. “Qualitative analysis of fractional 
satellite model” section presents a qualitative analysis of the system architecture, focusing on its facts, which is 
followed by an explanation of the configuration’s design specifications in the second section. “Nonlinear dynam-
ics of the DF-Satellite model” section explores a review of the exciting properties of the DF-satellite model, with 
emphasis on both CO and ICO cases. The system is dissipative, maximum Lyapunov exponent (ηmax) calculation, 
bifurcation plots and phase depictions aid in this inquiry. “Control of fractional-order satellite model” section 
entails applying the sample entropy evaluation (SpEn) to determine variability and verify the existence of chaotic 
patterns in the system. Furthermore, we suggested adaptable dynamic regulators for the put-forward DF-satellite 
model’s stability and synchronization. “Conclusion” section ends the work by indicating potential research goals.

Configuration of the DF‑satellite model
The satellite’s attitude dynamics are encoded in the inertial coordinate configuration60,61 as

where � denotes the aggregate amount of momentum performing on the the spacecraft. The flywheel’s rotational 
acceleration, gravitational acceleration and disruption torque are denoted by ℑχ1 , ℑχ2 and ℑχ3 , respectively. The 
entire momentum � defined as

where I  signifies the inertial matrix and ϑ is the rotational velocity.
The differentiation of the entire momentum � can be described as

The symbol × represents the vectors’ cross-product. By equating these formulas, we obtain

Selecting I = diag(Iu ,Iv ,Iw) such as

The satellite model5 is referred to as

where

Here, gu, gv and gw are internal disturbances torques, while zu, u2v and u3w constitute three influence torques. 
Consider that Iw < Iv < Iu. Taking Iu = 3, Iv = 2 and Iw = 1. ). These torques are chosen to be sufficiently 
large to induce chaotic motion and are comparable in magnitude with the available thruster torques. In52, the 
presented values of the “perturbing torques” are arbitrarily selected to make the model chaotic:

The formula for a three-dimensional in form chaotic satellite model is:

�̇ = ℑχ1 + ℑχ2 + ℑχ3 ,

� = Iϑ ,

�̇ = Iϑ̇ + ϑ × Iϑ .

Iϑ̇ + ϑ × Iϑ = ℑχ1 + ℑχ2 + ℑχ3 .

ℑχ1 =
(ℑχ1u
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)

.
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]
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where βu = Iv−Iw
Iu

, βv = Iw−Iu
Iv

 and βw = Iu−Iv
Iw

, then we have βu = 1/3, βv = −1 and βw = 1.
The satellite model in all three planes has been reformulated as:

where the values of χ1 = 0.4, χ2 = 0.175 and χ3 = 0.4. Such values were obtained for 50,000 data points on this 
Poincaré section whenever the motion intersected this hyperplane, as demonstrated in “Nonlinear dynamics 
of the DF-Satellite model” section. Therefore, this information was then applied to our dynamical modeling 
and data analysis for the control. Two alternative tactics for dynamic reconstruction of the model were tested: 
interspike interval simulation and the basic way of applying a specific network parameter to the Poincaré section 
to recreate the behaviors.

As shown in the formula (2.1), the discrete satellite model displays “memory influence” similar to fractional 
discrete mechanisms. This indicates that the classical model has the capability of expanding to fractional-order. 
As a result, using the Caputo formulation results in an innovative fractional discrete satellite model:

where σ ∈ Nd−δ+1 and δ ∈ (0, 1]. The Caputo difference formulation c�δ
σW of a mapping W(σ ) is described as:

Definition 2.1  (28) The δth fractional sum for a mapping W can be described as

where δ > 0 and Ŵ(.) denotes the Gamma function.

Definition 2.2  (62) For σ ∈ Nd+n−δ , δ /∈ N and n = ⌈δ⌉ + 1. Suppose there be a Caputo-like difference formula 
for a mapping W(σ ) can be described as:

where �nW(σ ) and (σ − 1− ℓ)(n−δ+1) represents the nth non-fractional difference formulation and the falling 
factorial mapping, respectively, presented as:

and

Remark 2.1  For n = 1 , we can described the Caputo-type formulation as:

Here, we are able to calculate the mathematical argument for the DF-satellite model (2.2) using the subse-
quent hypothesis:

Theorem 2.1  (43) The solution of the subsequent fractional difference framework:

is written as
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(2.1)
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where

In accordance with the aforesaid result, the numerical illustration of the DF-satellite system (2.2) is as listed 
below:

Figure 1 depicts the chaotic features for various compartments when fractional order is to be δ = 0.98.
Our aim is to boost the extent of the satellite model by implementing the discrete satellite model (2.2) into 

the system (2.1), resulting in the satellite model shown below.

Figure 2 indicates that the framework exhibits a chaotic pattern over an important spectrum of fractional 
factors, particularly throughout the range of δι ∈ (0, 1], ι = 1, 2, 3.

In the current research, we employ the Caputo difference formulation for constructing the fractional-order 
satellite map from the classical satellite model (2.1). The first-order difference of the satellite system is represented 
by the following procedure:

where �W(ζ ) = W(ζ + 1)−W(ζ ) indicated the classical difference formulation.
If we replace � in the preceding structure having the Caputo-type formula c�δ

d and ζ into ς = σ + δ − 1 , the 
resultant arrangement is a fractional-order difference model:

where σ ∈ Nd+1−δ , d is the starting point and δ ∈ (0, 1] indicates the fractional-order.

Qualitative analysis of fractional satellite model
This section investigates the requirements for dynamical evaluations of the DF-satellite model (2.14), including 
dissipatvity of the system, fixed points, inavriancy of the v-axis and maximum Lyapunov exponents ηmax.

Existence of dissipativeness
Here, the vector representation of (2.14) can be described as:

where X1(σ + 1− δ) = (u, v,w) and

where χ1 = 0.40, χ2 = 0.175, χ3 = 0.4. We examine a particular �(σ) ∈ R
3 domain containing a uniform 

boundary and �(σ) = �σ (�) , where �σ is the flow velocity of ϒ̃.
Assume that V(σ ) indicates the volume of �(σ).
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Making the use of Liouville’s theorem, we have

Thus, the divergence of the satellite model (2.1) is expressed as:

In view of (3.3) and (3.4), we attain the fractional difference equation as:

The solution of (3.5) can be described as:

Thus, the volumes of the beginning points decreased by exp in relation to time σ . V(σ )  → 0 when σ  → ∞, 
σ increases at a pace that is exponential. This system’s constraints are confined to the particular limit set that 
includes zero volume. The strange attractors influence the asynchronous action of a DF-satellite model (3.6). It 
denotes that the framework (2.14) exhibits chaotic pattern. This supports the existence of dissipative creation 
in DF-satellite systems (2.14).
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(3.5)c�δ
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(3.6)V(σ ) = exp(−0.625σ)V(0).
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Figure 1.   Phase portraits for 3D and 2D for DF-satellite model (2.11) with fractional-order δ = 0.98.
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Fixed points
In order to investigate the dynamics of (2.14), we initially obtain the fixed points. For this, first we described the 
following lemma, which is mainly due to Matignon63.

Lemma 3.1  (63) Assume that there is a fixed point X10 of the fractional-order-system and the eigenvalues of Jacobian 
matrix at the associated fixed points verifies the subsequent assumptions:

To identify the fixed points, address the subsequent expressions in (2.14) equating to zero as follows:

The expression has the fixed points:

Therefore, the Jacobian matrix of the system (2.14) is defined as

∣

∣ arg
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)∣
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)

.
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Ẽ0 = (0, 0, 0)T, Ẽ1 = (1.1910, 2.5766, 0.3785)T, Ẽ2 = (0.1582, − 1.3641, − 1.5086)T,

Ẽ3 = (−0.1582, − 1.3641, 1.5086)T, Ẽ4 = (−1.1910, 2.5766, − 0.3785)T.
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Figure 2.   Phase portraits for 3D and 2D for DF-satellite model (2.11) with fractional-order 
(δ1, δ2, δ3) = (1, 0.53, 0.45).
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The expression (3.8) at Ẽ0 = (0, 0, 0) can be described as

At Ẽ0 = (0, 0, 0), the eigenvalues γ01,02 = −0.40± 0.99ι and γ03 = 0.175, demonstrates that Ẽ0 is a saddle-focus 
fixed point. It signifies a unsatble region.

The expression (3.8) at Ẽ1 = (1.1910, 2.5766, 0.3785) can be described as

At  Ẽ1 = (1.1910, 2.5766, 0.3785),  t h e  e i g e nv a l u e s  γ11 = −0.7999, γ12 = 0.0875+ 1.2075ι  a n d 
γ13 = 0.0875− 1.2075ι, demonstrates that Ẽ1 is a saddle-focus fixed point. It signifies an unstable region.

The expression (3.8) at Ẽ2 = (0.1582, − 1.3641, − 1.5086) can be described as

At Ẽ2 = (0.1582, − 1.3641, − 1.5086), the eigenvalues γ21,22 = 0.0875± 0.8766ι and γ23 = −0.80, demonstrates 
that Ẽ1 is a saddle-focus fixed point. It signifies again an unstable region.

Analogously,  at  Ẽ3 = (−0.1582, − 1.3641, 1.5086), the eigenvalues  γ31,32 = 0.0875± 0.8766ι 
and γ33 = −0.80, and Ẽ4 = (−1.1910, 2.5766, − 0.3785), the  e igenva lues  γ41 = −0.7999 and 
γ42,43 = 0.0875± 1.2075ι demonstrate that Ẽ3 and Ẽ4 are saddle-focus fixed points. It identifies unstable region. 
It has been illustrated in Fig. 3.

The invariancy of v‑axis
Invariance is crucial for building robust models that can handle variations and uncertainties. By incorporating 
invariance properties into models or algorithms, we can ensure their performance remains consistent and reli-
able even under different conditions or inputs. This is particularly important in fields such as computer vision, 
where recognizing objects or patterns in images requires models to be invariant to changes in scale, rotation, 
or lighting conditions.

According to DF-satellite model (2.14), it is worth mentioning that when u(0) = w(0) = 0, then u and w stay 
zero ∀ σ . Therefore, v-axis signifies an orbit, which can be expressed as

yields

As a result, the v-axis is an integral component of the unsteady manifold at the starting point of fixed points.

Maximum Lyapunov exponents ( η
max

)
Employing the system parameters for χ1 = 0.4, χ2 = 0.175 and χ3 = 0.4 , the ηmax of DF-satellite model (2.14) 
at σ = 100 can be determined using MATLAB 2023 as: L1 = 0.13959, L2 = 0.00804 and L3 = −0.77267. When 
we calculate the ηmax for the DF-satellite system (2.14), we observe that one is non-negative, other is negative, 
and one is generally zero, indicating an essential prerequisite for system chaos. It proves that the satellite models 

(3.8)J (X1) =





−χ1 0.33w 0.33v + 1/
√
6

−w χ2 −u

v −
√
6 u −χ3



 .

(3.9)J
Ẽ0

=
( −0.4 0 0.4082

0 0.175 0
−2.45 0 −0.4

)

.

(3.10)J
Ẽ1

=
( −0.40 0.124 1.26
−0.379 0.175 −1.191
0.127 1.191 −0.40

)

.

(3.11)J
Ẽ2

=
( −0.40 −0.498 −0.042

1.509 0.175 −0.158
−3.814 0.158 −0.40

)

.

c�δ
σ v(σ + 1− δ) = χ2v(σ ),

v(σ ) = exp(χ2σ)v(0), for u = w = 0.

Figure 3.   Stabilized zone for fractional-order system.
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are chaotic. Figure 2 depicts it. Here, L1 = 0.13959 is the ηmax of satellite system (2.14). The total number of LEs 
is calculated as L1 + L2 + L3 = −0.604 < 0. Finally, satellite model (2.14) is dissipative.

Nonlinear dynamics of the DF‑Satellite model
In the following part, the focus is on the novel investigation of how the DF-Satellite model (2.14) behaves. The 
evaluation will include both CO and ICOs. We will use a variety of computational resources for displaying phase 
portraits, illustrating bifurcations and calculating the maximum Lyapunov exponent ηmax.

Commensurate DF‑Satellite model
In this section, we will elaborate on the various properties of the CO for the DF-satellite system (2.14). It is 
essential to comprehend that a CO fractional system consists of formulas with similar orders. To achieve this, we 
shall subsequently provide the numerical calculation, which originates from Theorem 2.1 and will be provided 
as follows:

Choosing u(0) = 2.5, v(0) = 1.5, w(0) = −1.5 and by varying χ1 from 0 to 1 with the step size �χ1 = 0.001 , 
we visualize three bifurcations of (4.1), which connect to the C-Os δ = 0.1, δ = 0.25, δ = 0.0.25 as illustrated 
in Fig. 4a–c. The parameter’s structures and the CO δ clearly influence the configurations of the CO DF-satellite 
model (4.1). In fact, as the CO δ and parameters of the system decline, the CO DF-satellite model (4.1) exhibits 
an increasingly large chaotic domain. As a result, increasingly complicated resonances develop, and the mecha-
nism’s behaviour grows more unpredictable. The interaction between DF order and framework variables has 
an enormous effect on dynamic behaviour, and such modifications may result in a broader spectrum of chaotic 
structure and convoluted pathways that comprise the DF-satellite model (4.1).

Presently, alongside δ as the significant parameter, the bifurcation illustration can be utilized to show 
the changes in the behaviours of the commensurate DF-satellite model (4.1) as the χ1 fluctuates from 0 to 
1 via an increment of 0.001. The bifurcation and the ηmax are depicted in Fig. 4d–f. We are able to observe 
that modifying the CO investigates an extensive variety of unpredictable features (chaotic and periodic) 
of the fractional model in relation to the CO δ . In particular, there are two types of domains in which the 
system is chaotic and domains in which the motion is oscillatory frequently. When δ ∈ (0.6, 0.35), recurring 
views alongside various period orbits show up accompanied by an insignificant chaotic movement in the 
time range (0.35, 0.75) (see Fig. 4g–i). We can see variations within chaotic and consistent pathways in the 
configurations of the CO DF-satellite when δ ∈ (0.35, 0.75). The ηmax varies within negative and non-negative 
readings throughout this interval, demonstrating adjustments within chaos and non-chaotic behaviours in the 
framework. The pathways of the CO DF-satellite model (4.1) indicate chaotic behaviour when the CO δ is between 
(0.35, 0.75). Nevertheless, as δ approaches (0.70, 0.99),  various periods show orbit revolution, demonstrating the 
framework’s equilibrium  (see Fig. 4i,j). Following that, for greater amounts of δ , Fig. 5a–c presents bifurcation 
gestures comeback, with an upsurge in the ηmax , demonstrating irregularities throughout the pathways of the 
CO DF-satellite model (4.1) for δ = 0.98 and 0.99,  respectively. The ηmax in Fig. 6a–c confirms the outlined 
behavioural characteristics, delivering supplementary proof for the framework’s multifaceted and intricate 
behaviour and affirming the system’s responsiveness to adjustments in the CO value δ = 0.98 and δ = 0.99, 
respectively. Moreover, considering the ηmax , it is possible to determine that in situations where the ηmax is 
negative, the corresponding DF-satellite model (4.1) displays periodic fluctuations. Whenever the order is non-
negative, the existence of chaotic fluctuations is deduced. Figure 6a–c depicts the isolated time progression of the 
configurations u, v and w in the proposed commensurate map to provide an extensive overview of these features 
for δ = 0.5, 0.75, 0.99, respectively. Figure 7a–i also shows phase representations for various quantities of the CO 
(δ = 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.85, 0.98, 1). The pathways noticed within the identified commensurate system 
transform into chaotic fluctuations and recurring behaviours as the CO δ fluctuates, as shown in the diagrams. 
The findings highlight the mechanism’s responsiveness to alterations in δ and indicate the extensive and intricate 
nature of the constantly changing features in the DF-satellite CO model (4.1).

Incommensurate DF‑Satellite model
The interactions of the ICO DF-satellite model are investigated in this part of the article. ICO requires employing 
distinctive fractional-orders to feed every formula in the structure. The ICO DF-satellite model is represented 
in the following manner:

In view of Theorem 2.1, we are able to convey a mathematical representation of the ICO DF-satellite model (4.2) 
in the following manner:

(4.1)































u(ℓ) = u(0)+
ℓ
�

κ=1

Ŵ(ℓ−κ−1+δ)
Ŵ(δ)Ŵ(ℓ−κ)

�

1
3v(κ)w(κ)− χ1u(κ)+ 1√

6
w(κ)

�

,

v(ℓ) = v(0)+
ℓ
�

κ=1

Ŵ(ℓ−κ−1+δ)
Ŵ(δ)Ŵ(ℓ−κ)

�

− u(κ)w(κ)+ χ2v(κ)
�

,

w(ℓ) = w(0)+
ℓ
�

κ=1

Ŵ(ℓ−κ−1+δ)
Ŵ(δ)Ŵ(ℓ−κ)

�

u(κ)v(κ)−
√
6u(κ)− χ3w(κ)

�

.

(4.2)







c∇δ1
σ u(σ ) = 1

3v(ξ)w(ξ)− χ1u(ξ)+ 1√
6
w(ξ),

c∇δ2
σ v(σ ) = −u(ξ)w(ξ)+ χ2v(ξ),

c∇δ3
σ w(σ ) = u(ξ)v(ξ)−

√
6u(ξ)− χ3w(ξ),
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u(ℓ) = u(0)+
ℓ
�

κ=1

Ŵ(ℓ−κ−1+δ1)
Ŵ(δ1)Ŵ(ℓ−κ)

�

1
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v(ℓ) = v(0)+
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Ŵ(ℓ−κ−1+δ2)
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�
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,

w(ℓ) = w(0)+
ℓ
�

κ=1

Ŵ(ℓ−κ−1+δ3)
Ŵ(δ3)Ŵ(ℓ−κ)

�

u(κ)v(κ)−
√
6u(κ)− χ3w(κ)

�

.

Figure 4.   Bifurcation and ηmax depictions for the CO DF-satellite model. (4.1) when χ1 ∈ (0, 1).
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Figure 5.   Bifurcation and ηmax depictions for the C-O DF-satellite model (4.1) when δ = 0.98 and δ = 0.99, 
respectively.
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Figure 6.   Time-dependent plots for CO DF-satellite model (4.1) for δ = 0.5, 0.75 and δ = 0.95.
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We investigate the processes and distinctive features of this visualization for the purpose of comprehending 
their peculiar behaviour and investigating the consequences of using distinguished fractional-orders in the 
system’s dynamics equations. Figure 8a–c shows three bifurcation diagrams that show the behaviour of the ICO 
DF-satellite model (4.3) as the value of χ1 fluctuates between (0, 1]. The modelling exercises were performed 
with the system settings and the ICs 

(

u(0), v(0),w(0)
)

 set to (1.5, 0.5,−0.5). These schematics clearly show 
distinguished trends, pointing out that modifications in fractional-orders (δ1, δ2, δ3) have an enormous effect 
on the configurations of the ICO DF-satellite model (4.3). For example, whenever (δ1, δ2, δ3) = (1, 0.2, 0.2), the 
structure’s contends develop via repeated to chaotic, using recurring expanding bifurcation when χ1 improves. 
However, when (δ1, δ2, δ3) = (0.2, 0.6, 0.2) , an oscillatory trajectory is noticed, using pathways that stay reli-
able to earn minimal measurements of χ1 and transforming into chaos as δ1 gets closer to 1. In the scenario of 
(δ1, δ2, δ3) = (0.2, 0.2, 0.85), a chaotic region is visible all along the range, with the exception of a few confined 
areas where the framework demonstrates frequent fluctuations, particularly as δ1 decreases towards 0. Additional 
research was additionally performed in three particular situations to offer a more comprehensive example of 
the impacts of ICOs on the behaviour of the DF-satellite model (4.3). Such inquiries provide an improved com-
prehension of how fractional-orders affect the functioning of systems and emphasize the significance of taking 
ICOs into account when analyzing simulation behaviour.

Case I: Figure 9a–c show the change with respect to δ1 via 0 to 1 using an incremental dimension of 
�δ1 = 0.005 . The bifurcation and associated ηmax of the ICO DF-satellite model (4.3) for δ2 = δ3 = 0.2 and the 
system settings with the ICs 

(

u(0), v(0),w(0)
)

 set to (1.5, 0.5,−0.5) are shown in these illustrations. Figure 9b 
shows that the configuration of the ICO DF-satellite model (4.3) demonstrates chaotic behaviour for less extensive 
variations in δ1 , as indicated by non-negative ηmax . When δ1 falls within (0.6, 1), the ηmax shown in Fig. 9c swings 

Figure 7.   Phase depictions of (4.1) for various fractional-order δ (a) δ = 0.1 (b) δ = 0.3, (c) δ = 0.5, (d) 
δ = 0.6, (e) δ = 0.7, (f) δ = 0.8, (g) δ = 0.85, (h) δ = 0.98, (i) δ = 1.
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Figure 8.   Bifurcations illustration of (4.3) in view of the ICO values (a) (δ1, δ2, δ3) = (1, 0.2, 0.2), (b) 
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Figure 9.   Bifurcation and ηmax of (4.3) for various ICO.
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within non-negative and negative regions. Through the appearance of regular apertures, this result suggests the 
existence of chaotic behaviour. As the ICO δ1 expands, paths are transformed from chaotic to consistent move-
ment, which is characterized by orbits that revolve, in which the configurations of the ICO DF-satellite model 
(4.3) get steady.

Case II: The bifurcation illustration and its ηmax are displayed for studying the fluctuating behaviours of 
the ICO DF-satellite model (4.3) via δ2 becoming a configurable factor, as shown in Fig. 9d–f. The modelling 
steps are carried out by differing δ2 in the interval (0, 1) whereas maintaining the ICOs δ1 = δ3 = 0.2 , ICs 
(

u(0), v(0),w(0)
)

= (1.5, 0.5,−0.5) and system settings remains consistent. The illustration shows that while 
the order δ2 improves to higher figures, the patterns of motion get less unstable. As δ2 declines, chaotic practices 
that have elevated ηmax values show up in Fig. 9e,f, in addition to the emergence of relatively small regular zones 
via adverse ηmax parameters. Furthermore, as δ2 falls more thoroughly closer to zero, the ηmax values fall, after 
which they come to zero. This is consistent with the appearance of recurring pathways and the evolution of the 
incommensurate DF-satellite model (4.3) regarding chaos to stable decisions. The identified modifications in 
the ηmax and the accompanying shifting trends demonstrate the mechanism’s response to fractional-order δ2 
alternatives, pointing out the intricate nature and adaptability of the ICO DF-satellite model (4.3).

Case III: Figure 9g–i depicts the bifurcated diagram and the accompanying ηmax of the identified novel 
ICO DF-satellite model (4.3) using the parameter δ3 fluctuated between 0 and 1. We preserve the ICOs as 
δ1 = δ2 = 0.2 in the present calculation. Figure 9g shows that, in contrast to the earlier instances, the pathways 
of the incommensurate system reveal chaotic behaviour as the position of δ3 increases, which is illustrated by 
greater ηmax parameters. We also observe that as δ3 arrives at 1, the map indicates evolution stipulates and the 
paths deviate towards infinity, as shown in Fig. 9h. As an instance, if δ3 = 0.923 and following a certain quantity 
of repetitions, particularly χ3 , the pathways deviate towards infinity. As δ3 decreases, the ηmax decreases likewise 
(see Fig. 9i), ultimately achieving the lowest possible significance, resulting in less chaotic and, as a result, more 
predictable interactions of the model’s indicates. These findings highlight the incommensurate DF-satellite (4.3) 
responsiveness to fluctuations in order δ3 , which leads to an extensive spectrum of flexible actions involving 
chaotic and cyclical movements. This emphasizes the importance of ICOs in determining the behaviour of 
the framework. Furthermore, as can be seen in Fig. 10, the phase depictions of the configuration factors of the 
incommensurate DF-satellite model (4.3), promote the idea that ICOs more precisely symbolize the structure’s 
behavioural patterns. To sum up, the research highlights the complex and varied characteristics of the ICO 
DF-satellite model (4.3) and it also highlights the importance of fractional-order selection in modelling and 
characterizing its fluctuations.

The sample entropy evaluation (SpEn)
Without a prior understanding of the mechanism that generated the dataset, the aim of sample entropy (SpEn) 
and approximation entropy (ApEn) is to determine the unpredictability of a sequence of data. For the basic 
notions and details of the algorithms that have been a vast range of applications and employed in numerous 
research domains (see64).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

u

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v

(a) (δ1, δ2, δ3) = (0.3, 0.89, 0.7)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

u

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v

(b) (δ1, δ2, δ3) = (0.1, 0.7, 0.65)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

u

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v

(c) (δ1, δ2, δ3) = (0.5, 0.95, 0.91)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

u

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v

(d) (δ1, δ2, δ3) = (0.5, 0.6, 0.98)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

u

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v

(e) (δ1, δ2, δ3) = (0.65, 0.78, 0.99)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

u

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v

(f) (δ1, δ2, δ3) = (0.78, 0.89, 0.99)

Figure 10.   Phase illustrations of (4.3) for various ICO.
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In the present research, we are employing the SpEn technique to determine the intricate nature of the com-
mensurate and ICO DF-satellite models (2.14) and (4.2), respectively. In contrast to approximate entropy (ApEn), 
SpEn is capable of accurately measuring the unpredictability of data sets, irrespective of the integrating meas-
urements () or their resemblance factor (ξ) . As a result, SpEn provides an additional trustworthy and neutral 
quantifier than SpEn65. The SpEn information demonstrates the period of the series’ uncertainty threshold via 
greater amounts associated with greater variability66. The following method of SpEn is calculated:

We begin by defining ζ −  + 1 vectors in the following way:

∀ ι ∈ [1, ζ −  + 1], where W(ι) denotes the collection of discrete data points ϑ1(1),ϑ1(2), . . . ϑ1(n1). Further-
more, we define the subsequent formula as:

where K denotes a value of W(ι) with d1
(

W(ι),W(ℓ)
)

≤ ξ . At this point, we take  = 2 and ξ = 0.2std(W) , 
where std(W) is the data’s standard deviation. In conceptual terms, the SpEn can be determined as follows:

where ϒ (ξ) can be written as

Here, Fig. 11a–d depicts the SpEn outcomes for the commensurate and the ICO DF-satellite model (2.14) and 
(4.3) having ICs of 

(

u(0), v(0),w(0)
)

= (1.5, 0.5,−0.5). The    ted SpEn data represent the time evolution of the 
system complexity phases, with more significant values indicating greater intricacy. The outcomes show that each 
of the commensurate and incommensurate DF-satellite model (2.14) and (4.3), respectively, possesses greater 
intricacy, as evidenced by more substantial SpEn parameters. The findings presented are consistent with the ηmax 
examination, verifying the unpredictable character of the processes in the suggested non-integer mechanism. 
SpEn has several advantages over ApEn. In this case, it is less sensitive to the length of the time series and has 
better statistical properties. It provides a more stable measure of complexity, even with shorter data sequences. 
The additional variability and chaotic interactions of the suggested DF-satellite model reinforce the importance of 
fractional-orders in documenting their extensive interactions. Ultimately, we are able to determine that the SpEn 
assessment is a successful instrument for precisely determining the level of abstraction of the suggested model.

Control of fractional‑order satellite model
In this section, we will present the stabilization and synchronized state of the satellite model (2.2).

Stabilization of fractional‑order satellite model
A stabilization control system has been proposed in this research to stabilize the suggested DF-satellite chaotic 
model. The primary objectives of the stabilization approach are to create a powerful responsive device that 
inspires every instance of the representation asynchronously closer to zero.

To accomplish this, we will review the stability criteria for the fractional-order system.

Theorem 5.1  (67) Suppose that ϑ(ζ ) =
(

ϑ1(ζ ), . . . ,ϑn1(ζ )
)T and � ∈ Mn1(R). The linear fractional-order discrete 

system’s having zero steady state:

∀ ζ ∈ Nd−1+δ is asymptotically stable if:

where γι signified the eigenvalue.

Currently, we consider the regulated DF-satellite model which can be expressed as:

where ς = σ + δ − 1 and B = (B1,B2,B3)
T is the adaptive regulate system. The regulation principles introduced 

in the subsequent proof are geared at stabilizing the suggested innovative DF-satellite model.

(4.4)W(ι) =
[

ϑ1(ι), . . . ,ϑ1(ι+ n − 1)
]

,

(4.5)B

ι (ξ) =

K

ζ −  + 1
,

(4.6)SpEn = − log
ϒ+1(ζ )

ϒ (ζ )
,

(4.7)ϒ (ξ) =
1

ζ −  + 1

ζ−+1
∑

ι=1

logB
ι (ξ).

(5.1)c�δ
dϑ(ζ ) = �ϑ(ς),

(5.2)γι ∈
{

γ ∈ B : |γ | <
(

2 cos
|argγ | − π

2− δ

)δ

and |argγ | >
δπ

2

}

,

(5.3)







c�δ
du(σ ) =

1
3v(ς)w(ς)− χ1u(ς)+ 1√

6
w(ς)− u(ς)+ B1(ς),

c�δ
dv(σ ) = −u(ς)w(ς)+ χ2v(ς)− v(ς)+ B2(ς),

c�δ
dw(σ ) = u(ς)v(ς)−

√
6u(ς)− χ3w(ς)+ B3(ς),
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Theorem 5.2  If appropriate control principles are implemented as outlined below:

Subsequently, at its steady state, the fractional-order satellite model can be stabilized.

Proof  By replacing B1, B2 and B3 into (5.3) results in the linear structure shown below:

where W = (u, v,w)T and

Clearly, the eigenvalue of (5.5) valid for γ = 1 <

(

2 cos
|argγ |−π

2−δ

)δ

and |argγ | = π > δπ
2 ,  = 1, 2, 3. As a 

result, Theorem 5.1 shows that the regulated fractional-order-satellite model is asymptotically stable.�  �

(5.4)







B1(ς) = − 1
3v(ς)w(ς)+ χ1u(ς)− 1√

6
w(ς),

B1(ς) = u(ς)w(ς)− χ2v(ς),

B3(ς) = −u(ς)v(ς)+
√
6u(ς)+ χ3w(ς).

(5.5)c�δ
dW(ζ ) = �W(ς),

(5.6)� =
(−1 0 0

0 −1 0
0 0 0− 1

)
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Figure 11.   Plots on SpEn of (2.14) and (4.2) for various ICOs.
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Furthermore, the computational modelling has been conducted in order to verify Theorem 5.2’s conclusions. 
Figures 12 and 13 show the time evolution of the satellite-based regulated fractional model (5.3). This validation 
of the DF-satellite model is essential to ensuring its reliability and stability. This diagnostic test and residual 
analysis can help identify any remaining instability or model misspecification. This can involve revisiting the data 
preprocessing steps, reevaluating the model selection and order, or exploring alternative modeling techniques. 
Iterative refinement can help improve the stability and accuracy of the fractional difference satellite model. The 
illustration clearly shows how the framework asserts near zero asynchronously, affirming its effective stabilization 
findings.

Synchronization technique for fractional‑order satellite model
Nonlinear regulators for coordinating the fractional-order satellite model are described in the subsequent section. 
The synchronization procedure seeks to minimize the difference between the master and slave visualizations, 
which compels it to gravitate towards zero. The master system is the commensurate fractional-order satellite 
model, represented by (2.14), while the slave system is characterized in the following manner:

where U1, U2 and U3 indicate the synchronization regulators.
The fractional error scheme is described as:

(5.7)







c�δ
dun(σ ) =

1
3vn(ς)wn(ς)− dun(ς)+ 1√

6
wn(ς)− un(ς)+ U1(ς),

c�δ
dvn(σ ) = −un(ς)wn(ς)+ b1vn(ς)− vn(ς)+ U2(ς),

c�δ
dwn(σ ) = un(ς)wn(ς)−

√
6un(ς)− c1wn(ς)+ U3(ς),
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Figure 12.   Attractors of the controlled (5.3) for δ = 0.5 and 0.97 with ICs 
(

u(0), v(0),w(0)
)

= (1.5, 0.5,−0.5).
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Figure 13.   Chaotic attractor states of the controlled (5.3) having δ = 0.5 and δ = 0.97 with ICs 
(

u(0), v(0),w(0)
)

= (1.5, 0.5,−0.5).
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The suggested regulation govern that creates this synchronization system is described in the following theorem.

Theorem 5.3  Under the supposition of (5.7) and (5.8):

where δ2 ∈ (−1, 2δ − 1) and δ3 ∈ (0, 2δ). Then, the master satellite model (2.14) and slave satellite model (5.7) are 
synchronized.

Proof  Plugging the regulate principle (5.11) in the fractional error system (5.8), we find:

where

Since γ1 = −(1+ χ1), γ2 = −(1+ δ2) and γ3 = −δ3 are the eigenvalues of (5.11). Thus, γι, ι = 1, 2, 3 comply 
with the stability the requirement mentioned in Theorem 5.1 for δ2 ∈ (−1, 2δ − 1) and δ3 ∈ (0, 2δ), illustrating 
that the zero outcome of the fractional error model (5.7) is asymptotically stable, resulting in the synchronization 
of the master satellite model (2.14) and the slave satellite model (5.6). 	� �

Mathematical computations using MATLAB are used to verify the truthfulness of this outcome. The parameters 
used are χ1 = 0.4, χ2 = 0.175,χ3 = 0.4 and the initial settings are (ǫ1(0), ǫ2(0), ǫ3(0)) = (1.0, 1.0,−1.0). 
Figure 14a–c depicts the time formation of the fractional error model’s contends (5.7). The graph unambiguously 
shows that erroneous values are often zero, affirming the efficacy of the previously addressed synchronization 
technique.

Conclusion
This paper proposes a novel approach based on the commensurate and incommensurate fractional-orders DF-
satellite and investigates its behavior for synchronizing chaotic attitude. The map’s assessment revealed a variety 
of unpredictable features, pointing out its dynamic diversity. The distinguished behaviours of the identified 
DF-satellite model have been studied for both COs and ICOs using various approaches to inspection including 
Lyapunov exponent computations, bifurcations and phase pictures. Furthermore, the system’s challenges have 
been determined employing the SpEn technique. The results highlight the significant impact of the network 

(5.8)























































c�δ
dǫ1(σ ) =

�

1
3vn(ς)wn(ς)− dun(ς)+ 1√

6
wn(ς)+ U1(ς)

�

−
�

1
3v(ς)w(ς)− du(ς)+ 1√

6
w(ς)

�

− ǫ1(ς),

c�δ
dǫ2(σ ) =

�

− un(ς)wn(ς)+ b1vn(ς)+ U2(ς)

�

−
�

− u(ς)w(ς)+ b1v(ς)
�

− ǫ2(ς),

c�δ
dǫ3(σ ) =

�

un(ς)wn(ς)−
√
6un(ς)− c1wn(ς)+ U3(ς)

�

−
�

u(ς)w(ς)−
√
6u(ς)− c1w(ς)

�

− ǫ3(ς),

(5.9)







U1(ς) = − 1
3

�

vn(ς)wn(ς)− v(ς)w(ς)
�

+ d
�

un(ς)− u(ς)
�

− 1√
6

�

wn(ς)− w(ς)
�

,

U2(ς) =
�

un(ς)wn(ς)− u(ς)w(ς)
�

− b1
�

vn(ς)− v(ς)
�

− δ2ǫ2(ς),

U3(ς) = −
�

un(ς)wn(ς)− u(ς)w(ς)
�

+
√
6
�

un(ς)− u(ς)
�

+ c1
�

wn(ς)− w(ς)
�

− δ3ǫ3(ς),

(5.10)c�δ
d

(

ǫ1(σ ), ǫ2(σ ), ǫ3(σ )
)T = �×

(

ǫ1(σ ), ǫ2(σ ), ǫ3(σ )
)T

,

(5.11)� =
(−(1+ χ1) 0 0

0 −(1+ δ2) 0
0 0 −δ3

)
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Figure 14.   Error dynamics of (2.14) having (ǫ1, ǫ2, ǫ3) = (1.0, 1.0,−1.0).
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setting and fractional exponents on the configurations of the DF-satellite model. The numerical representations 
of such variables are crucial for influencing the structure and functioning of the framework, and fluctuations 
in their significance result in various paths as well as effects in the system’s state domain. Finally, the article 
suggests efficient oversight rules for ensuring the reliability and synchronization of the implemented system by 
manipulating its status to asynchronously tend to zero. The numerical analyses performed provide an extensive 
overview of the mechanism’s interactions and illustrate its fascinating and distinct behaviours, which have been 
crucial in investigating the consequences of fractional satellite models.

Simulation results confirm the robustness of the control methodology in chaos synchronization in the exist-
ence of different disrupting forces. Besides, internal disturbances (model uncertainties and parametric uncer-
tainties) will be conducted in addition to external disturbances in the future work.

In upcoming studies, we will build the control mechanism for applying the discrete fractional form of Pyragas’ 
approach to the satellite system, utilizing a single delayed feedback variable. The benefit of Pyragas’ approach 
is that it requires no previous computations and has negligible real-time processing complexity. It is interesting 
to note that the angular velocity ϑ , only the system state data employed in the control calculation-is all that is 
known. These studies indicate Pyragas’s discrete fractional calculus method will be the most remarkable research 
in control theory.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on 
reasonable request.
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