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MRI radiomics in head and neck 
cancer from reproducibility 
to combined approaches
Anna Corti 1*, Stefano Cavalieri 2,3, Giuseppina Calareso 4, Davide Mattavelli 5, 
Marco Ravanelli 6, Tito Poli 7, Lisa Licitra 2,3, Valentina D. A. Corino 1,8 & Luca Mainardi 1

The clinical applicability of radiomics in oncology depends on its transferability to real-world 
settings. However, the absence of standardized radiomics pipelines combined with methodological 
variability and insufficient reporting may hamper the reproducibility of radiomic analyses, impeding 
its translation to clinics. This study aimed to identify and replicate published, reproducible radiomic 
signatures based on magnetic resonance imaging (MRI), for prognosis of overall survival in head and 
neck squamous cell carcinoma (HNSCC) patients. Seven signatures were identified and reproduced on 
58 HNSCC patients from the DB2Decide Project. The analysis focused on: assessing the signatures’ 
reproducibility and replicating them by addressing the insufficient reporting; evaluating their 
relationship and performances; and proposing a cluster-based approach to combine radiomic 
signatures, enhancing the prognostic performance. The analysis revealed key insights: (1) despite 
the signatures were based on different features, high correlations among signatures and features 
suggested consistency in the description of lesion properties; (2) although the uncertainties in 
reproducing the signatures, they exhibited a moderate prognostic capability on an external dataset; 
(3) clustering approaches improved prognostic performance compared to individual signatures. Thus, 
transparent methodology not only facilitates replication on external datasets but also advances the 
field, refining prognostic models for potential personalized medicine applications.

Keywords Magnetic resonance imaging, Head and neck squamous cell carcinoma, Radiomic features, 
Prognostic models, Overall survival, Cluster analysis

Head and neck squamous cell carcinoma (HNSCC) represents the seventh most common and the sixth most 
deadly tumor worldwide, accounting for over 800,000 new annual cases and more than 350,000 annual  deaths1. 
HNSCC comprises a group of highly heterogeneous malignancies, arising from the mucosa of oral cavity, pharynx 
and  larynx2. Nowadays, the tumor-node-metastasis (TNM) staging system is the main factor guiding risk assess-
ment, treatment choice and prognosis, and it is based on the clinical, radiological and pathological  assessment3,4. 
However, the low stratification performance of staging-based system, combined with the high heterogeneity of 
HNSCC and the emergence of personalized medicine, fostered the development of additional biomarkers to 
improve patient stratification and consequently identify tailored treatment decisions.

Radiomics refers to the quantitative extraction of high-throughput features from medical images combined 
with their mining and analysis through machine learning algorithms. Radiomic features provide information 
about the primary tumor and/or lymph nodes morphological and textural heterogeneity characteristics, offering 
a potential source of pre-operative, non-invasive and comprehensive image-based diagnostic and prognostic 
 biomarkers5. The number of radiomic studies in the oncological field has dramatically increased in the last dec-
ade, from around 30 studies indexed in PubMed in 2015, to nearly 2000 in the year 2022 alone.
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To date, the application of radiomics to HNSCC patients is gaining increasing interest, encompassing, among 
others, tumor characterization, diagnostic differentiation, molecular markers prediction, recurrence, treatment 
response and survival prognostication, as extensively reviewed  elsewhere6–9. However, the generalizability and 
reproducibility of radiomic studies remains an open issue, impairing the clinical translation of  radiomics10. 
Indeed, different sources of variabilities arise from the image acquisition scanners and parameters, to the pre-
processing processes, the manual/semi-automatic segmentation, up to features extraction. Moreover, the lack of 
a common consensus in the radiomics methodology, combined with shortcomings in transparently reporting the 
study design and the methodological details make the reproduction of published findings and the implementa-
tion of the published prognostic model on external datasets challenging.

So far, various initiatives have been undertaken to promote the development and establishment of stand-
ardized and widely applicable radiomics  methodologies10,11. These efforts include aspects regarding features 
standardization, as that provided by the “Image Biomarker Standardization Initiative”12, guidelines for reporting 
prognostic models, as demonstrated by TRIPOD (transparent reporting of a multivariable prediction model 
for individual prognosis or diagnosis)13, data sharing, as exemplified by “The Cancer Imaging Archive” (TCIA) 
 platform14 and the development of the Radiomics Quality Score (RQS) to assess the quality of radiomic  studies15. 
Despite the progresses made in this direction, the adherence of the studies to the aforementioned criteria remains 
low, as demonstrated by a recent work in which 77 radiomic studies in oncological field were evaluated accord-
ing to the RQS and TRIPOD criteria and reported a mean RQS of 9.40 (out of the ideal score of 36) and a mean 
adherence rate for TRIPOD of 57.8%16. Reproducibility of radiomic analyses still remains an ongoing concern, 
hampering its effective translation in the clinical practice.

In this context, the aims of the present study were to (1) assess 7 published, reproducible prognostic radi-
omic signatures for the prognosis of overall survival in HNSCC patients, (2) evaluate their relationship and 
performances on an external dataset and (3) propose combined radiomic approaches to assess additive value 
of integrating single radiomic signatures. A common external dataset of HNSCC patients collected during the 
BD2Decide  project17 and presenting with pre-treatment magnetic resonance imaging (MRI) images, was con-
sidered, thus restricting the applicability of the analysis to MRI-based radiomic studies.

Materials and methods
Figure 1 outlines the workflow of the study, with details provided in subsequent sections. In summary, a litera-
ture review was conducted to identify reproducible MRI-radiomic prognostic signatures for overall survival in 
HNSCC. The methodologies reported in the literature were then applied to compute these signatures on the data-
set under consideration. After image segmentation, specific image pre-processing techniques were employed to 
extract the relevant features for each signature, which were subsequently normalized. Following the computation 
of the radiomic signatures, analyses were performed to explore the relationships among the signatures and their 
constituent features, evaluate the prognostic performance of the signatures, and develop a combined approach 
to investigate whether integrating radiomic signatures or features could enhance performance.

Radiomic signatures survey
A literature survey was performed to retrieve reproducible MRI-radiomic prognostic signatures for overall 
survival in HNSCC patients and compute the radiomic scores on our HNSCC dataset. To be strictly reproduc-
ible on an external dataset, a published radiomic signature must be provided with the following details: (1) the 
image pre-processing methods, (2) the list of the constitutive features, (3) the corresponding coefficients, (4) the 
operations performed on the features (e.g., details on the standardization process), and (5) the threshold adopted 
for the signature dichotomization, to evaluate the low/high risk stratification performance of the signature. 

Figure 1.  Workflow of the study.
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Public database such as “Pubmed” (www. ncbi. nlm. nih. gov/ pubmed) was considered, by imposing a selection 
using keywords as “Head and neck”, “radiomics”, “MRI” and “survival”. Search was extended from 2015 to today. 
Twenty-one papers were found and carefully analyzed to identify which of the above mentioned details were 
reported. As minimum requirement, publications should have included the list of features and the corresponding 
coefficients of the radiomic signature.

Analyzed dataset
In the present study, a subset of HNSCC patients of the BD2Decide project (NCT02832102) presenting with 
pre-contrast T1-weighted (T1w) and T2-weighted (T2w) and post-contrast T1w (T1wCont) MR image sequence 
(acquired with 1.5 T scanner and with a 3 mm slice thickness) was  considered17. To avoid overlap with the train-
ing dataset of previously developed  signatures18,19, only prospective patients were included, leading to a subset 
of n = 58 patients. Table 1 summarizes the baseline clinical information of the selected patients included in the 
study. Patient data were collected from three participating centers: 33 patients from the Azienda Ospedaliero 
Universitaria di Parma (Italy), 21 patients from the Spedali Civili di Brescia (Italy) and 4 patients from the Istituto 
Nazionale dei Tumori (Italy).

Image data acquisition and segmentation
T1w, T2w and T1wCont MRI were acquired using scanners with a field strength of 1.5 T and a turbo spin-echo 
pulse sequence. The contouring of the gross tumor volume was performed at the clinical centers using a semi-
automatic segmentation software based on coupled shape  modeling20. The region of interest (ROI), corresponding 
to the primary tumor, was segmented manually slice by slice by HNSCC expert radiologists (one for each center). 
T2w sequence was considered as reference to segment the ROI, and the other sequences (T1w an T1wCont) were 
used to check and correct the segmentations.

Image pre-processing and features extraction
MRI images were pre-processed considering the methods declared in the original radiomic studies, which 
included some or all of the following steps: (1) denoising, through a 3D Gaussian filter with a 3 × 3 × 3 voxel kernel 
and σ = 0.5; (2) intensity non-uniformities correction, through the N4ITK  algorithm21; (3) intensity standardiza-
tion, using Z-score; (4) voxel size resampling to a specific isotropic resolution, through B-spline  interpolation22, 
and (5) fixed-bin histogram discretization, with a specific number of bins. In case the image pre-processing 
methods were not mentioned, the default settings of Pyradiomics 2.2.0 software (open-source, available at https:// 
github. com/ Radio mics/ pyrad iomics and run on Python, used to extract the radiomic features) were considered, 
namely a fixed-bin histogram discretization, with 25 bins.

Radiomic features were extracted from the original image and transformed images, including the Laplacian 
of Gaussian (σ = 0.5, 1.0, 1.5, 2.0 and 5.0 mm) the wavelet, the square, the square root and the logarithm  filters23. 

Table 1.  Clinical data of the patients used for the study.

Patient characteristics Dataset N = 58

Date of diagnosis 2014–2017

Median follow-up 28.45 months
(IQR 24.41—36.25)

Primary tumor subsite

 Oral cavity 49 (84%)

 Oropharynx 4 (7%)

 Larynx 4 (7%)

 Hypopharynx 1 (2%)

Gender

 M 37 (64%)

 F 21 (36%)

Median age 62 years
(IQR 51–73.5)

cTNM 8th edition

 III 12 (21%)

 IVa/b 46 (79%)

Smoking status

 Current/Former 27 (47%)

 Never 14 (24%)

 Unknown 17 (29%)

Survival status

 Alive 46 (79%)

 Deceased 12 (21%)

http://www.ncbi.nlm.nih.gov/pubmed
https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
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For each original and transformed image, features belonging to first order statistics, shape and size (only for 
original images), grey level co-occurrence matrix, grey level size zone matrix, neighboring gray tone difference 
matrix and grey level dependence matrix were extracted, for a total of n = 5064 features. Pyradiomics 2.2.0 soft-
ware was used to extract the  features24. If specified, features were normalized according to the reported methods. 
In case the details on the methods adopted to normalize the features were lacking, the following criteria were 
applied: (1) if the information was missing, the original features were considered, (2) if features normalization 
was mentioned, but without providing additional details, Z-score normalization was applied on our features.

Radiomic signature computation, analysis, testing and combination
The identified radiomic prognostic signatures were computed for each patient of the dataset as the linear com-
bination of the features and the corresponding regression coefficients. In case the threshold for the signature 
dichotomization was not provided, the median value of the radiomic signature on the present data was used 
to evaluate the low/high risk stratification performance of the signature. The relationship among the radiomic 
signatures was assessed by evaluating their correlation as well as the correlation among their features. The Spear-
man’s correlation coefficient was computed between: (1) each pair of signatures, and (2) each pair of constituent 
features. Moreover, a clustering analysis (through hierarchical clustering) was performed to identify clusters of 
highly correlated (both positively and negatively) features. Subsequently, the resulting correlation patterns and 
relationship among the clusters of features were evaluated by analyzing the types and meaning of the features 
composing each cluster.

The performance of the radiomic signatures was evaluated through the Kaplan–Meier  curves25 for high- and 
low-risk groups with the associated p-value of the log-rank  test26, Harrel’s concordance index (C-index) between 
the signature and the overall  survival27, and the hazard ratio (HR).

To assess whether the combination of the signatures or their constitutive features could provide additive 
prognostic information compared to the single radiomic models, a cluster-based approach was considered. 
In particular, we tested the hypothesis that clusters of patients, grouped according to either the radiomic fea-
tures (composing the signatures) or the signatures, presented significantly different overall survival. K-medoids 
 clustering28 was adopted to generate feature-based and signature-based clusters of patients. The capability of 
the two clusters to stratify low- and high-risk patients was assessed by evaluating the Kaplan–Meier curves and 
the associated log-rank test p-value. Finally, the performance of the cluster-based approaches was compared 
with the single radiomic models: if a better stratification performance was found, this would demonstrate (1) a 
strong relationship among the developed radiomic signatures, in turn confirming their validity, (2) the potential 
of combining signatures in enhancing the predictive power of radiomic models and (3) the importance of good 
reproducibility of radiomic studies to contribute to advancements in the field.

Ethics approval and consent to participate
The protocols were approved by the Ethical Committees of the participating centers and data acquisition followed 
the General Data Protection Regulation of the EU. Consent was obtained from all participants and/or their legal 
guardians. All methods were carried out in accordance with relevant guidelines and regulations and the study 
has been performed in accordance with the Declaration of Helsinki.

Results
Radiomic signatures
From the literature survey, 7 reproducible MRI-based radiomic signatures for HNSCC patients were 
 identified18,19,29–33 as those which satisfy the minimum requirements for reproducibility. They are reported in 
Table 2, along with their constitutive features in Table 3. Five monomodal signatures were reported, with three 
of them based on features extracted from the T1wCont sequence (R1, R2 and R4) and the remaining ones from 
the T2w sequence (R5 and R7). R3 and R6 are multimodal radiomic signatures, with R3 based on T1w, T1wCont 
and T2w sequences and R6 on T1w and T2w sequences. Overall, 34 prognostic features (21 from T1wCont, 12 

Table 2.  Reported methodologies on the radiomic signature pipeline. (i) denoising, through a 3D Gaussian 
filter with a 3 × 3x3 voxel kernel and σ = 0.5; (ii) intensity non-uniformities correction, through the N4ITK 
algorithm; (iii) intensity standardization, using Z-score; (iv) voxel size resampling to a specific isotropic 
resolution, through B-spline interpolation, and (v) fixed-bin histogram discretization, with a specific number 
of bins. µ: media value for Z-score standardization σ: standard deviation for Z-score standardization. 
Unspecified standardization: the method for feature standardization is not known. NA: not available.

Sig. Ref. Image pre-processing Features Feature normalization Signature threshold

R1 Bos  202129 (iii); (iv); (v) 10 (T1wCont) Z-score (no details) NA

R2 Chen  202230 NA 6 (T1wCont) NA NA

R3 Alfieri  202231 (i); (ii); (iii); (iv); (v) 3 (T1w, T1wCont, T2w) Z-score (µ and σ provided) NA

R4 Siow  202232 (ii); (iii); (iv); (v) 4 (T1wCont) NA 0.5

R5 Mossinelli  202333 NA 2 (T2w) Unspecified standardization NA

R6 Bologna  202319 (i); (ii); (iii); (iv); (v) 4 (T1w, T2w) Z-score (µ and σ provided) NA

R7 Corti  202318 (iii); (iv); (v) 5 (T2w) Z-score (µ and σ provided) 0.082
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from T2w and 1 from T1w) were identified, with one feature (T2w_waveletLLL_firstorder_Range) selected in both 
R6 and R7. Specifically, (1) among the 21 T1wCont features, 13 were extracted from the wavelet transformation 
(textural features), 5 from the Laplacian of Gaussian transformation (3 first order and 2 textural features) and 3 
from the original image (2 shape and 1 textural features); (2) among the 12 T2w features, 9 were extracted from 
the wavelet transformation (3 first order and 6 textural features), one from the Laplacian of Gaussian transfor-
mation (first order feature) and 2 from the original image (shape feature) and (3) the T1w feature was extracted 
from the original image (textural feature).

To reproduce R1, following the image pre-processing steps reported in the study, the features were normal-
ized with Z-score standardization and the signature was dichotomized considering the median value. R2 was 
computed by applying the default Pyradiomics image pre-processing and by considering the original (not-
normalized) features. Moreover, the median value of the signature was used as threshold for dichotomization. 
As regards R3, all the methods for image pre-processing and features normalization were reported in the study, 
and the signature was dichotomized based on the median value. R4 was reproduced by considering the reported 
pre-processing steps and the original features, with the declared dichotomization threshold. To reproduce R5, the 
default Pyradiomics image pre-processing steps were applied, features were normalized with Z-score standardiza-
tion and the median value of the signature was considered for dichotomization. As regards R6, all the methods for 
image pre-processing and features normalization were reported in the study, and the signature was dichotomized 
based on the median value. Finally, R7 was computed by following the methods detailed in the study.

Table 3.  Radiomic signatures with corresponding features.

Signature Features

R1

R1-1 T1wCont_waveletHLL_gldm_SmallDependenceEmphasis

R1-2 T1wCont_waveletLLH_ngtdm_Busyness

R1-3 T1wCont_waveletLLL_ngtdm_Busyness

R1-4 T1wCont_waveletHHH_glszm_ZoneVariance

R1-5 T1wCont_logsigma20mm3D_glcm_DifferenceVariance

R1-6 T1wCont_waveletHHH_glszm_LargeAreaHighGrayLevelEmphasis

R1-7 T1wCont_waveletHHH_ngtdm_Strength

R1-8 T1wCont_waveletLHH_ngtdm_Complexity

R1-9 T1wCont_waveletLHH_glcm_Correlation

R1-10 T1wCont_logsigma20mm3D_glcm_InverseVariance

R2

R2-1 T1wCont_original_shape_Maximum3DDiameter

R2-2 T1wCont_original_shape_Compactness1

R2-3 T1wCont_original_glrlm_RunLengthNonUniformityNormalized

R2-4 T1wCont_waveletHLL_glrlm_LongRunEmphasis

R2-5 T1wCont_waveletLHL_glcm_JointEntropy

R2-6 T1wCont_waveletHLH_glrlm_ShortRunHighGrayLevelEmphasis

R3

R3-1 T1w_original_glszm_SizeZoneNonUniformity

R3-2 T1wCont_waveletLLL_ngtdm_Complexity

R3-3 T2w_waveletHLL_gldm_DependenceVariance

R4

R4-1 T1wCont_logsigma15mm3D_firstorder_90Percentile

R4-2 T1wCont_logsigma10mm3D_firstorder_Energy

R4-3 T1wCont_logsigma10mm3D_firstorder_TotalEnergy

R4-4 T1wCont_waveletLHL_glszm_SizeZoneNonUniformity

R5
R5-1 T2w_original_shape_Maximum2DDiameterRow

R5-2 T2w_logsigma50mm3D_firstorder_Maximum

R6

R6-1 T1w_waveletLHL_firstorder_90Percentile

R6-2 T2w_original_shape_VoxelVolume

R6-3 T2w_waveletHHL_glrlm_GrayLevelNonUniformityNormalized

R6-4 T2w_waveletLLL_firstorder_InterquartileRange

R6-5 T2w_waveletLLL_firstorder_Range

R7

R7-1 T2w_waveletLLL_glrlm_LongRunEmphasis

R7-2 T2w_waveletLLL_glrlm_RunVariance

R7-3 T2w_waveletLLL_glrlm_RunPercentage

R7-4 T2w_waveletLLL_firstorder_Range

R7-5 T2w_waveletLLL_glrlm_ShortRunEmphasis



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9451  | https://doi.org/10.1038/s41598-024-60009-6

www.nature.com/scientificreports/

Radiomic signature relationship
The radiomic signatures exhibit strong correlations (with the exception of R7) among each other, as illustrated 
in Fig. 2. In particular, R1 demonstrates a negative correlation with all the other signatures (with Spearman’s ρ = 
− 0.72 between R1 and R3 and ρ = − 0.74 between R1 and R6), with the remaining signatures being positively 
correlated with each other (with high Spearman’s ρ of 0.77 between R3 and R5, of 0.86 between R3 and R6, of 0.75 
between R4 and R5, of 0.77 between R4 and R6 and of 0.90 between R5 and R6). To further explore the interplay 
among the signatures, a clustering analysis on their constituent features was conducted. Figure 3 illustrates a 
hierarchical clustering based on Spearman’s correlation coefficient, calculated between each pair of radiomic 
features, aiming to uncover the relationships among the 35 features comprising the 7 radiomic signatures. This 
analysis unveiled three distinct clusters of features, two of them exhibiting specific correlation patterns. Notably, 
the first and third clusters (depicted by purple and grey trees on the left-axis of Fig. 3, respectively) showed a high 
inverse correlation: they comprise features that are highly positively correlated within their respective clusters 
but inversely correlated with features from the other cluster. In the first cluster, 11 out of 18 features, and in 
the third cluster, 10 out of 11 features are textural and pertain to aspects such as the heterogeneity of grey level 
zones, busyness, complexity of the images, and the distribution of grey level runs within the ROI. As expected, 
strong positive correlations are evident among features within the first cluster. Examples include R2-4 with R7-1 
measuring the distribution of long run lengths (glrlm LongRunEmphasis), or R1-3 with R1-2, characterizing the 
change from a pixel to its neighbor (ngtdm Busyness), and R3-1 with R4-4, both describing the variability of 
size zone volumes in the ROI (glszm SizeZoneNonUniformity). Similar findings apply to the third cluster, such 
as the relationship between R7-3 and R7-5, both linked to the presence of short runs (glrlm RunPercentage and 
ShortRunEmphasis) and R3-2 and R1-8 (ngtdm Complexity), characterizing the primitive components in the 
image. Furthermore, there is a strong negative correlation between the first and the third clusters, as evidenced by 
the relationship between R1-3/R1-2 (cluster 1, ngtdm Busyness) and R1-7 (cluster 3, ngtdm Strength). The former 
are associated with a rapid change of intensity between pixels and neighbors, while the latter is linked to a slow 
change. Similarly, R7-1/R2-4 (cluster 1, glrlm LongRunEmphasis) and R7-3/R7-5 (cluster 3, glrlm RunPercentage 
and ShortRunEmphasis) exhibit negative correlations, with the former associated with longer run lengths, and 
the latter with shorter run lengths. As for the second cluster (blue), it mainly comprises first-order features (4 
out of 6 features), displaying predominantly positive correlations with the first cluster, and negative correlations 
with the third cluster. Notably, high positive and negative correlations are evident not only among features from 
different signatures but also within the same signature. For example, R1 is composed by 4 features belonging to 
the first cluster and 5 features belonging to the third cluster, resulting in high absolute correlations. Similarly, 
R7 presents 3 features from the first cluster, and 2 from the third cluster. These findings align with the fact that 
the feature selection processes used for developing both R1 and R7 did not consider a criterion based on cor-
relations. This challenges the common belief that effective prognostic signatures should avoid the inclusion of 
correlated features.

Figure 2.  Correlation analysis on the radiomic signatures. Paired scatter plots between radiomic signatures 
and correlation matrix heatmap of Spearman’s correlation coefficients, computed between each pair of radiomic 
signature.
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Radiomic signature testing
Figure 4 shows the Kaplan-Maier curves for the high- and low-risk groups according to the stratification obtained 
by radiomic signatures, with Table 4 detailing the corresponding C-index, HR and log-rank p-value. With the 
exception of R4, all the signatures presented C-index > 0.6, with R2, R3, R5, R6 and R7 HR > 2. However, only 
R7 significantly stratified low–high risk patients, providing the best performance, with median C-index 0.74, 
HR 4.24 and log-rank p = 0.04. Despite the different performances, the signatures present similar Kaplan-Maier 
curves, particularly R2, R3, R5 and R6. Moreover, it is important to highlight that R5 and R7 were specifically 
tailored for patients with oral cavity squamous cell carcinoma, which represented the most prevalent tumor 
location in the dataset under consideration. Additionally, R3 and R6 were developed for patients with HNSCC, 
with a substantial proportion being oral cavity patients. In contrast, R1 was designed specifically for oropharyn-
geal cancer, while R2 and R4 were focused on hypopharyngeal cancer, which constituted only 7% and 2% of 

Figure 3.  Correlation and clustering analysis on the radiomic features. Correlation-driven clustering and 
dendrogram of the 35 radiomic features. The radiomic features are labelled as the corresponding signature as 
reported in Table 3. Moreover, features are colored according to the radiomic signatures: R1 grey, R2 light blue, 
R3 orange, R4 pink, R5 yellow, R6 green and R7 violet. Spearman’s correlation coefficient was computed between 
each pair of radiomic feature.
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Figure 4.  Kaplan–Meier curves of the low-risk (in yellow) and high-risk (in blue) patient groups according to 
the stratification obtained by the reproduced radiomic signatures (R1 to R7) on the dataset of n = 58 patients. 
Shadows represent the 95% confidence interval. The p-value of the log-rank test is also provided.
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the dataset, respectively. Finally, as shown in the supplementary material, R2 and R5 demonstrated different 
performances when different image pre-processing methods were applied. In particular, R2 was associated with 
a C-index varying between 0.61 and 0.64 and an HR varying between 1.22 and 2.62, while R5 was associated 
with a C-index varying between 0.60 and 0.64 and HR varying between 2.46 and 3.36.

Radiomic signature combination
Figure 5 shows the feature-based (Fig. 5A) and the signature-based (Fig. 5B) patient clustering, generated through 
K-medoids algorithm. In particular, two clusters of patients (Cluster A in yellow, and Cluster B in blue) were 
identified based on the feature or signature values. In the feature-based case, Cluster A comprised 40 patients 
and Cluster B 18 patients, while in the signature-based case, Cluster A comprised 45 patients and Cluster B 13 
patients. In both cases, Cluster A and Cluster B exhibit significant differences in overall survival, effectively strati-
fying patients into low- and high-risk groups (Fig. 5). Moreover, both cluster-based stratifications outperformed 
the single radiomic signatures, with a HR of 4.51 [95% CI 1.28 15.91] and log-rank p = 0.04 for the feature-based 
case, and a HR of 7.58 [95% CI 1.79 32.15] and log-rank p = 0.02 for the signature-based case (Table 4).

Table 4.  Radiomic signatures prognostic performance. C-index, Harrel’s concordance index; HR, hazard ratio; 
NA, not available.

Signature C-index Log-rank HR Log-rank p

R1 0.63 [IQR 0.56 0.69] 1.41 [95% CI 0.45 4.44] 0.77

R2 0.63 [IQR 0.59 0.69] 2.62 [95% CI 0.81 8.53] 0.19

R3 0.61 [IQR 0.56 0.68] 2.43 [95% CI 0.75 7.81] 0.23

R4 0.59 [IQR 0.52 0.63] 1.84 [95% CI 0.59 5.71] 0.44

R5 0.61 [IQR 0.55 0.67] 2.46 [95% CI 0.76 7.95] 0.23

R6 0.62 [IQR 0.56 0.67] 3.27 [95% CI 1.02 10.45] 0.09

R7 0.74 [IQR 0.69 0.78] 4.24 [95% CI 1.28 13.99] 0.04

Feature-based cluster NA 4.51 [95% CI 1.28 15.91] 0.04

Signature-based cluster NA 7.58 [95% CI 1.79 32.15] 0.02

Figure 5.  (A) Left: patient clustering (Cluster A and Cluster B) based on the 35 radiomic features. Right: 
Kaplan–Meier curves for the feature-based radiomic clusters. (B) Left: patient clustering (Cluster A and Cluster 
B) based on the radiomic signatures (R1–R7). Right: Kaplan–Meier curves for the signature-based radiomic 
clusters.
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Discussion
The increasing number of radiomic studies and their applications in oncological field promise a potential role 
in the emerging personalized medicine. However, the absence of a standardized radiomics pipeline combined 
with the significant variability associated with the methodology (e.g., image acquisition, pre-processing, seg-
mentation, software for features extraction) and the lack of transparency in reporting methodological details and 
study design, hamper the reproducibility of the analysis and the replication of its results. This in turn impedes 
the potential translation of radiomics to clinics.

Herein, a literature of survey was performed in order to identify reproducible MRI-based radiomic signa-
tures for prognosis of overall survival in HNSCC patients, according to five criteria, namely (1) details on image 
pre-processing, (2) list of features, (3) list of coefficients, (4) details on feature normalization and (5) value for 
signature dichotomization. Among the 21 MRI-based prognostic signatures identified for overall survival in 
HNSCC, only one satisfied all the specified criteria, highlighting the current challenge. Consequently, the analysis 
was extended to the 7 studies reporting, at minimum, the list of features and coefficients (criteria (2) and (3)), 
being essential for replicating the signature. Among the 7 studies, 5 reported details on image pre-processing 
steps, 3 on feature normalization and only 2 on the threshold for signature dichotomization. Consequently, with 
the exception of R7, the faithful reproduction of the signatures was not possible. This sheds light on the need for 
defining a common consensus about the transparency of the delivered information, which is required to cor-
rectly replicate the radiomic analyses and subsequently to lay the foundations for a potential clinical translation. 
However, assumptions were introduced to address the lack of details regarding image pre-processing, feature 
normalization and dichotomization and replicate the radiomic score on our dataset.

By reproducing the signatures on a common external dataset and by examining the correlations among 
them and their constituent features, the following key finding emerged. High absolute correlations were found 
among the signatures, and the correlation-based clustering on the inherent features revealed clusters containing 
features characterizing similar aspects of the ROI. This suggested that, despite the utilization of different features 
selection methods, the identified features, although different, describe similar aspects of the lesion. Indeed, most 
of the features were textural, demonstrating that tumor heterogeneity, which is a remarkable characteristic of 
HNSCC, potentially contains prognostic information. Moreover, certain signatures, notably R1 and R7, are built 
upon correlated features, indicating that avoiding a correlation-based feature selection approach may also be a 
reasonable strategy for developing prognostic signatures.

The prognostic efficacy of the radiomic signatures was also assessed. Notably, despite the uncertainties related 
to the assumptions introduced to reproduce the signatures, potentially affecting the observed outputs, the signa-
tures demonstrated a moderate prognostic power even on an external dataset, exhibiting similar Kaplan–Meier 
curves, C-index and HR ranges. This indicates that, despite the varied methodologies employed in the 7 selected 
studies, they all resulted in the generation of similar signatures with comparable prognostic performances.

R7 emerged as the most performing signature, with statistically significant stratification performance. Except 
for R4, the other signatures demonstrated similar prognostic performances (C-index > 0.6) though without 
statistical significance. It is crucial to note that R7 was the only fully-reproducible signature. Consequently, the 
assumptions made to reproduce the other signatures likely influenced their performance, as demonstrated by 
the analysis of R2 and R5 under different image preprocessing methods. In addition, the stratification of high- 
and low-risk patients is inherently tied to the chosen threshold, introducing uncertainty that impacts results in 
terms of HR and Kaplan–Meier curves. Furthermore, the diminished performance of R1, R2 and R4, may also 
arise from their specificity for oropharyngeal and hypopharyngeal cancer patients, who are underrepresented 
in the dataset under consideration (predominantly comprising oral cavity cases).

The combination of the radiomic models through feature- and signature-based clustering approaches resulted 
in enhanced prognostic performance compared to the radiomic signatures alone. Notably, the signature-based 
cluster approach exhibited the most effective performance in patient stratification. This superiority can be attrib-
uted to the fact that the signatures already inherently embody an optimal combination of their constituent fea-
tures. However, it is important to acknowledge that the signature-based cluster approach, reliant on signatures, 
necessitates the reporting of both features and coefficients. This approach is inherently more restrictive, in terms 
of reproducibility, compared to the feature-based cluster approach, which solely necessitates reporting constitu-
ent features. Consequently, the feature-based clustering approach holds the potential for broader applicability. 
Another advantage of the suggested cluster-based approach (either for the feature- or cluster-based case) is 
that it does not require a training-test procedure, thus being suitable for relatively small datasets. Overall, the 
improved performance achieved through the cluster-based approach underscores the importance of transpar-
ent and detailed reporting of the methodological steps. Such transparency not only facilitates the replication of 
signatures on external datasets, but also contributes to the continuous advancement of the field, paving the way 
for improved prognostic models with potential applications in the realm of personalized medicine. Towards this 
goal, in future studies, reproducible radiomic signatures or documented features could be integrated with gene 
expression signatures to enhance the prognosis of HNSCC. Notably, leveraging data from The Cancer Genome 
 Atlas34, there has been a substantial effort in developing gene expression signatures for various anatomical subsites 
of  HNSCC35. Subsequent research endeavors could concentrate on replicating both radiomic and gene expression 
signatures using an external dataset (provided that both image and microarray data are available), to evaluate the 
added value of incorporating image-based markers alongside biological markers. Moreover, other computational 
methods, such as graph convolutional  network36 or theoretical models based on ordinary differential equations 
can be adopted to explore the interrelationships of radiomic features and biological  markers6,37,38.

The present study is not exempt from limitations, which are mainly associated with the assumptions made 
for the computation of the radiomic signatures and the lack of homogeneity in the dataset across different tumor 
locations. In particular, as regards the assumptions introduced to address the insufficient details reporting, we 
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have demonstrated how the selected image pre-processing methods affect the signature performances. In future, 
it would be interesting to explore also how different approaches on features standardization may impact on the 
results. Moreover, while herein the median value was used to dichotomize the signature (when the effective 
threshold was not provided), in future, if larger datasets are available, a partition of the data can be performed 
to optimize the signature threshold on the training set and use it to stratify the test set. In relation to our dataset, 
the absence of uniformity among tumor locations, particularly the imbalance towards the oral cavity location, 
may have influenced the observed results. Indeed, a dataset with more consistent tumor locations would have 
ensured a more uniform representation of R1, R2, and R4 signatures, which are specific to oropharyngeal and 
hypopharyngeal cancer patients, being the minority categories. To this aim, future analyses should either consider 
more heterogeneous datasets or focus only on signatures that were developed for the specific tumor locations of 
the considered dataset. Further investigation in future research could also explore alternative combination meth-
odologies, such as fitting multivariate Cox proportional hazard regression models using the 7 radiomic signatures 
or their individual features as a basis. While the suggested cluster-based approach provides the advantage of not 
necessitating retraining, thus being suitable for relatively small datasets, this alternative method would require 
a training-test procedure, thus necessitating larger datasets.

Overall, although the literature includes several meta-analysis studies on  radiomics39–41, to the best of the 
authors’ knowledge, the present study represents the initial endeavor to (1) replicate published radiomic sig-
natures on an external dataset, offering a potential method to address the insufficient reporting, (2) provide 
a detailed characterization of the reproduced radiomic signatures, and (3) propose combined approaches to 
enhance the prognostic performance. The proposed study yielded to key findings. First, despite different meth-
odologies were adopted in the radiomic signatures design, the 7 signatures and their features were highly cor-
related suggesting consistency in the identified features, being associated with similar lesion properties (mainly 
textural). Second, the signatures exhibited a moderate prognostic performance on an external dataset, despite 
the uncertainties related to their reproduction. Third, combining radiomic signatures through clustering 
approaches improved the prognostic performance compared to using individual radiomic signatures. Conse-
quently, detailed methodological transparency not only aids replication on external datasets but also propels 
the field forward, enhancing prognostic models for potential applications in personalized medicine. Thus, the 
proposed approach has the potential to demonstrate the practical applicability of radiomic studies and facilitate 
their clinical translation.

Conclusion
This study demonstrated the feasibility of replicating, testing and comparing published radiomic signatures on 
an external dataset, provided that sufficient methodological details are described. Moreover, a novel cluster-
based approach was proposed to combine radiomic signatures and features, resulting in increased prognostic 
performance compared to the individual radiomic signatures. This not only underscores the advantages of 
transparently reporting details to advance radiomics for patient stratification but also provides a feasible and 
replicable approach which that can be utilized in forthcoming investigations to predict outcomes for new patients. 
Specifically, the feature-based clustering approach, which solely depends on feature values, is less reliant on the 
rigorous reproducibility of radiomic signatures, thus offering wider applicability.

Overall, future efforts should be put in reporting radiomic analyses in order to enable their full reproduction 
in view of their potential translation in clinics.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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