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Raman hyperspectroscopy of saliva 
and machine learning for Sjögren’s 
disease diagnostics
Bhavik Vyas 1, Ana Khatiashvili 2, Lisa Galati 2, Khoa Ngo 2, Neil Gildener‑Leapman 2, 
Melinda Larsen 3 & Igor K. Lednev 1,3*

Sjögren’s disease is an autoimmune disorder affecting exocrine glands, causing dry eyes and mouth 
and other morbidities. Polypharmacy or a history of radiation to the head and neck can also lead 
to dry mouth. Sjogren’s disease is often underdiagnosed due to its non‑specific symptoms, limited 
awareness among healthcare professionals, and the complexity of diagnostic criteria, limiting 
the ability to provide therapy early. Current diagnostic methods suffer from limitations including 
the variation in individuals, the absence of a single diagnostic marker, and the low sensitivity and 
specificity, high cost, complexity, and invasiveness of current procedures. Here we utilized Raman 
hyperspectroscopy combined with machine learning to develop a novel screening test for Sjögren’s 
disease. The method effectively distinguished Sjögren’s disease patients from healthy controls and 
radiation patients. This technique shows potential for development of a single non‑invasive, efficient, 
rapid, and inexpensive medical screening test for Sjögren’s disease using a Raman hyper‑spectral 
signature.

Sjögren’s syndrome disease (SjD) is a chronic autoimmune disorder characterized by salivary and lacrimal gland 
damage, mediated by the immune system, leading to eye and mouth dryness stemming from salivary gland and 
lacrimal gland hypofunction, respectively. SjD is a systemic disease that primarily affects the exocrine organs, can 
have pleomorphic clinical presentations, and as such, have a significant impact on a patient’s quality of life. SjD 
can exist in a “primary” form if it is not associated with other diseases or “secondary” if it occurs concurrently 
with another autoimmune disorder such as Rheumatoid  Arthritis1.

SjD affects middle-aged women significantly more than men, with the average female-to-male ratio being 
9:1, irrespective of race and geographic  location2. Although the diagnosis is often made later in life, with a mean 
age of 52–62  years3, the first symptoms may arise much earlier.

Like most autoimmune diseases, the exact etiology of SjD is unclear. Currently, the most widely accepted 
theory centers around exposure to environmental factors, especially viruses such as the Epstein–Barr  virus4, 
which can cause dysregulation of the immune system.

The most common symptoms in SjD patients are ocular and mouth  dryness2. Decreased saliva production 
often presents as dysphagia and dysgeusia, with difficulty swallowing dry foods and speaking for a prolonged 
period. Physical examination of patients with SjD typically demonstrates dry erythematous oral mucosa, often 
with dental caries or periodontal  disease5. Chronic enlargement of a major salivary gland is also  frequent6. 
In addition, low production of tears can lead to chronic ocular surface inflammation with signs such as 
photosensitivity, itching, and  erythema7. Symptoms related to other gland dysfunctions, such as respiratory 
tract and skin dryness, can also occur in some  patients8. These symptoms lead to a significant decline in quality 
of life for SjD patients.

Classification of SjD is complex and controversial. Although the American College of Rheumatology 
(ACR) and the European League Against Rheumatism (EULAR) have agreed on a set of criteria that were 
revised most recently in  20169. The criteria are complex and require a score of 4 from 5 tests. Some of the 
diagnostic tools currently employed include the presence of antinuclear antibodies, including Ro/SSA and La/
SSB  antibodies1, but the presence of antibodies alone is insufficient to diagnose SjD, and not all patients have both 
antibodies. Other tests include an invasive salivary gland biopsy to identify focal lymphocytic sialadenitis and 
the presence of germinal  centers10 and a measurement of salivary flow rate. In addition, patients are referred to 
an ophthalmologist to assess their lacrimal production via Schirmer’s test and check the integrity of the epithelial 
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layers of the cornea and conjunctiva via ocular  staining11. No single evidence-based standardized screening test 
can diagnose patients who complain of dry mucous membranes. Because of the complexity of diagnosis and 
differing symptoms of patients, there is continued underdiagnosis of the  disease12, limiting the ability to provide 
therapy early in the disease or even appropriately recruit patients to clinical trials.

Raman Spectroscopy (RS) of saliva has shown promising results in diagnosing various cancers, viral infections 
as well as autoimmune diseases like Alzheimer’s  disease13–18. Raman spectroscopy (RS) is a technique based on 
inelastic light  scattering19, which probes the total (bio)chemical composition of the  sample20. Recent scientific 
literature has demonstrated the potential of integrating Raman spectroscopy with machine learning techniques 
to distinguish individuals with Sjögren’s disease from healthy individuals, utilizing human blood  samples21,22. 
Saliva is an “ultra-filtrate” of blood and can reflect many pathological  states23. Saliva collection is painless, non-
invasive, and can be accomplished by the patient without a doctor’s visit. The ease of collecting saliva makes it 
possible to continue monitoring patients over time. Raman spectroscopy probes the total biochemical composi-
tion of a saliva sample.

However, the biochemical changes reflected as special variations on the Raman spectrum are often subtle 
and can be masked by instrumental drift and fluorescence background. The chemometrics techniques are being 
widely used to enhance the sensitivity of Raman spectroscopy for biological investigations, including data pro-
cessing, data learning, and data interpretation. Machine learning techniques can achieve many chemometrics 
tasks, including classification and regression  models24. Machine learning utilizes a complex Raman hyperspec-
tral dataset to generate a spectral "fingerprint" of the disease, potentially including contributions from several 
 biomarkers25,26.

In this proof-of-concept study, we demonstrated the potential of Raman hyperspectroscopy of saliva and 
machine learning for differentiating SjD patients from healthy control (HC) individuals and individuals treated 
with radiation therapy for head and neck cancers (RD), as these patients also suffer from salivary hypofunction 
and xerostomia. We demonstrate the effectiveness of using Raman hyperspectroscopy to differentiate between 
SjD, HC, and RD patients using a rapid, non-invasive saliva test.

Results
Saliva samples (one sample per donor) were collected from 72 individuals representing HC, SjD, and RD at 
Albany Medical Center (AMC, Albany, NY) in accordance with the approved protocol of the AMC institutional 
review board (IRB). Nine randomly selected samples were set aside for external validation. The 63 remaining 
samples were used as a training dataset for a classification model. Thirty-six spectra were collected from each 
saliva sample using an automatic mapping technique.

Raman hyperspectroscopy takes advantage of a microheterogeneity of dry saliva to acquire information 
about various biochemical components, including those with a relatively low concentration, such as disease 
 biomarkers26. Machine learning analysis of the Raman hyperspectral datacube (two spatial coordinates and a 
Raman spectrum) allows for developing a spectral signature of the disease, potentially including contributions 
from multiple biomarkers that can be used for disease  diagnostics26.

Mean preprocessed Raman spectra calculated for each class of donors, including HC, RD, and SjD, are 
shown in Fig. 1A. The spectra depict the biochemical composition of saliva with characteristic peaks and peak 
assignments based on literature, which is listed in Table 1. There are noticeable variations between the mean 
spectra in Fig. 1A. Yet, the difference spectrum between the SjD and HC mean spectra is within one standard 
spectral deviation of the SjD and HC classes (Fig. 1B). Similarly, the difference spectrum between RD and HC 
spectra remains within one standard deviation (Fig. 1C). The latter means that the variations between the mean 
spectra are statistically insignificant because the mean difference spectrum is well within the in-class standard 
spectral deviation of the groups intended. Given that the standard deviation exceeds the observed differences, it 
becomes evident that relying solely on one or two Raman bands’ intensity values is insufficient for determining 
the healthy or diseased state. Instead, statistical analysis based on their entire spectra or significant parts is 
 required26,27. This is not a surprising result as the biochemical composition of saliva might vary significantly 
because of environment, diet, and medical conditions, making spectral changes specific to the disease subtle. 
Supervised multivariate analysis, including machine learning algorithms, can identify these multiple small but 
specific differences between spectral signatures and build diagnostic classification models based on them.

A type of supervised multivariate analysis, the Partial least squares-discriminant analysis (PLS_DA) model, 
was built to determine the number of latent variables and data distribution. Selecting an optimal number of 
latent variables improves the model’s interpretability and reduces the risk of  overfitting28. The PLS toolbox offers 
an outliers removal technique for the PLS_DA model called  T2  Hotelling29. We used hotelling  T2 scores with a 
conservative statistical threshold determined by PLS_DA to eliminate four outliers’ samples, including 2-HC 
and 2-RD (Fig. S1, supplementary information). The final calibration dataset consisted of 59 donors with 1878 
spectra and was introduced to GA (Genetic algorithm) for feature selection.

The Raman spectral dataset with many spectra per class is a high-dimensional dataset with various  features30. 
Feature selection techniques like GA can reduce dimensionality by selecting only spectral components that show 
significant variations between classes of the  dataset31. The operation of GA mimics Darwin’s rule of natural 
 selection32. The objective is to pinpoint variables in the dataset that minimize the prediction error (Root Mean 
Square Error of cross-validation-RMSECV) for classification problems for the machine learning model through 
simulated natural selection, genetic mutations, and chromosome  recombination33. In biological terms, natural 
selection embodies the notion of "survival of the fittest," wherein adaptation or evolution occurs via the elimi-
nation of weaker elements while optimal and sub-optimal elements are retained. Similarly, in GA, a problem 
solution is represented as a point in a search space termed a “chromosome," each encoding a combination of 
meaningful  features34. Through exhaustive testing of potential solutions, GA generates populations of candidate 
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solutions, ranking them based on a fitness function. The algorithm then applies operators such as crossover, 
mutation, inversion, and recombination to selected portions of the most promising solutions. This iterative 
computational process mimics natural reproduction, allowing only the most fit populations to reproduce until 
satisfactory results are achieved. GA excels in handling large search spaces, making it particularly suitable for 
scenarios involving spectral data with hundreds or thousands of variables.

Further, we employed the advanced machine learning classification technique Support vector machine-dis-
criminant analysis (SVM_DA) to analyze collected spectral data for inter-class differences. With the help of GA, 
SVM_DA selects the area (data points) of the spectra specific to each class and generates a hyperplane (separat-
ing line) between classes for classification. Tentative assignments of important Raman bands selected by GA are 
available in Table 1 (highlighted in bold). The GA has selected bands assigned to Proline (426  cm−1, 1275  cm−1), 
phenylalanine (1000  cm−1), tryptophan (1048  cm−1, 1373  cm−1), and 1154  cm−1, 1336  cm−1, 1408  cm−1,1667  cm−1 
that can be assigned to carotenoids, proteins and lipid. The average spectrum suggests that these bands are lower 
in intensity for SjD than those in HC and RD. This suggests a potential metabolic shift in SjD patients, leading 
to reduced levels of proline, carotenoids, and tryptophan compared to healthy individuals. Notably, previous 
studies of blood have demonstrated significant alterations in proline and tryptophan metabolic levels associated 
with the effects of  SjD35, further supporting the importance of these findings in our study.

Figure 1.  (A) Pre-processed mean Raman spectra of saliva acquired from Healthy controls (HC-green), 
Radiation therapy patients (RD-blue) and Sjögren’s disease patients (SjD-red). Areas selected by Genetic 
Algorithm are highlighted (transparent grey). (B) A difference spectrum between SjD and HC mean spectra 
(black), and one standard spectral deviation of SjD (red) and HC (green) spectra. (C) A difference spectrum 
between mean spectra of RD and HC (black), and standard spectral deviation of RD (blue) and HC (green).
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We imported the calibration spectral dataset created by GA into the SVM_DA model for training consisting 
of 1878 total spectra labeled with their respective classes. We used 11 LVs selected using PLS_DA to train an 
SVM_DA classification model. Next, we applied the custom cross-validation with 50 splits and approximately 20 
spectra in each division. The latter means that the data was divided into 50 subsets of 20 spectra each for cross-
validation. One subset at a time was left as a test for the model built based on the rest of the spectra. As a result, 
multiple SVM_DA models were trained based on different subsets of the data to evaluate the model’s robustness 
and generalizability. The cross-validation method applied here was analogous to k-fold cross-validation and, as 
such, indicated that the built SVM_DA model is not  overfitted36. The confusion matrix for the built SVM_DA 
model’s cross-validation prediction at the spectral level can be found in Table 2. The SVM-DA model offered 
cross-validation sensitivity (true positive rate) of 86% for SjD (Table 3) at a spectral level. We collected 36 
spectra per sample to represent sample heterogeneity. A 97% accuracy at the sample level (2 samples from 63 
were misclassified) was achieved by SVM_DA using a 50% threshold since the majority of spectra were correctly 
assigned to their actual class.

The ultimate test for the validity of a classification model is its external validation based on samples not 
included in the training dataset. We performed the external validation of the SVM_DA model using nine 
samples not used to create the model. In order to divide the dataset for calibration and external validation 

Table 1.  Tentative assignments of the main Raman bands of saliva based on literature  data13,43–46. Raman 
bands selected by Genetic Algorithm are highlighted with bold.

Raman band  (cm−1) Tentative assignment

426 Proline (pyrrolidine ring deformation)*

528 S–S disulphide stretching band (collagen)

590 Glycerol, Cholesterol

622 Proteins (Phe), Lysozyme

640 Proteins (Tyr), Lysozyme

750 Proteins (Trp) Ring breathing mode

873 Proteins (Trp and Pro), Phosphatidylcholine

926 Proteins (Pro), glucose, Lactic acid

1000 Phe (Phenylalanine)*

1048 CO3
–2, Phospholipids*

1122 Proteins (Trp), Lactic acid

1154 Phosphate present in DNA and RNA*

1275 C–C stretching mode of Proline(Pro)*

1336 symmetric deformation vibration of the CH3 group present in proteins, lipids, and other biomolecules*

1373 CH-deformation vibration of protein and lipids*

1408 Symmetric bending vibration of CH2 group of lipids*

1446 Deformation vibration of methyl group in lipids (–CH3)

1550 Proteins (Trp), Lysozyme

1602 Proteins (Phe and Tyr)

1667 Proteins (Amide I)*

Table 2.  Cross-validation predictions for individual spectra collected for samples in the calibration dataset.

Predicted class

Actual class

HC RD SjD

HC 494 25 69

RD 23 440 36

SjD 76 57 658

Table 3.  The performance matrix of SVM_DA cross validation at spectral level.

Cross validation HC RD SjD

Sensitivity (true positive rate) 0.83 0.84 0.86

Specificity (true negative rate) 0.93 0.96 0.88

Class. Error (miss classification) 0.12 0.10 0.13
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purposes, we opted for a random selection method without any criteria. The random selection ensures an 
unbiased distribution of samples and does not limit any sample to be in the external validation dataset. Further, 
the model’s performance was evaluated primarily based on cross-validation techniques. This deliberate choice 
aimed to maintain the external validation dataset’s anonymity to the model, ensuring an unbiased assessment of 
its true potential and mitigating any inherent biases. The efficacy demonstrated through this rigorous evaluation 
process underscores the model’s reliability and generalizability. The confusion matrix revealed that an SVM_DA 
model showed 79% accuracy at the spectral level, with some spectra assigned to incorrect classes (Table S1A, 
supplementary information SI). The prediction of nine external validation samples is summarized in Fig. 2 and 
Table S1B (SI). The histogram shows that all nine samples were assigned to their actual class by the SVM_DA 
model at the 50% threshold. Moreover, the model can not only successfully differentiate between Sjögren disease 
patient saliva and healthy saliva but also distinguish between radiation therapy patient saliva and Sjögren disease 
patient saliva.

Discussion
This proof-of-concept study demonstrated that Raman hyperspectroscopy combined with machine learning 
can successfully differentiate patients with Sjögren’s disease from head and neck cancer radiation patients and 
healthy individuals on the basis of a non-invasive saliva test. While the investigation was carried out utilizing a 
constrained sample size of 72 patients, it is noteworthy that accurate predictions were achieved across all nine 
external validation samples. The P value (p > 0.05, Table 4) indicates that gender cannot be a significant factor 
for the classification as the number of male and female samples is sufficient to support the null hypothesis. This 
outcome underscores the robustness of the developed model, indicating its impartiality towards gender and its 
reliance on spectroscopic markers indicative of healthy or disease states.

This proof-of-concept study was based on a limited age range of 62 ± 10 years, aligning with the higher 
prevalence of the disease among middle-aged women. The P-value supports that gender cannot be a significant 
factor for the classification. Moving forward, our research endeavors will focus on expanding our cohort’s size 
and diversity. Broadening the donor’s population will allow to capture a more comprehensive representation of 
the demographic variability associated with the disease.

Raman spectra were collected from multiple spots on heterogeneous dry saliva samples to increase the 
probability of detecting specific disease biomarkers, which are typically present at a low concentration. A single 
reading from the sample is insufficient, and multiple readings and full spectral-level predictions are required 
to make the final classification at the donor level. In our earlier study, the development of Alzheimer’s disease 

Figure 2.  External validation of the SVM_DA model. The percent spectra assigned to HC (green), RD (blue), 
and SjD (red) classes are reported for individual samples.

Table 4.  Information about the donors’ age and sex for Healthy control (HC), Radiation (RD), and Sjögren’s 
disease patients (SjD).

HC (n = 22) RD (n = 22) SjD (n = 26) Significant p value

Age 60 (± 10) 66 (± 9) 60 (± 10) > 0.05

Sex > 0.05

 Male 14 18 4

 Female 8 4 22
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from the mild to moderate stage increased the number of specific disease biomarkers in blood and, as a result, 
significantly increased the portion of individual Raman spectra in the hyperspectral datacube, which was 
characteristic of the  disease26.

Raman hyperspectroscopy is ideal for disease diagnostic tests due to its non-invasive nature, rapid analysis, 
and high sensitivity in detecting molecular changes associated with various diseases. The abundance of biomol-
ecules in saliva allows for the identification of potential disease biomarkers, while the cost-effectiveness and 
portability of Raman spectroscopy make it feasible for point-of-care applications and resource-limited settings, 
enabling early disease detection and  monitoring37.

Raman hyperspectroscopy of saliva holds great promise for the development of a non-invasive, efficient, rapid, 
and inexpensive diagnostic test for SjD. Due to the non-invasive nature of the test, it could be used to screen 
patients for participation in clinical trials and follow disease progression or response to treatment. It might also 
be useful to identify early stages of disease development; however, further work will be required to determine at 
what stage the disease can be detected with Raman hyperspectroscopy. Although we demonstrated the ability 
to distinguish between SjD and radiation-induced xerostomia, testing more samples is required to validate the 
developed model’s sensitivity and selectivity further relative to other diseases.

This method could have broader applicability for those patients with radiation to the head and neck. For 
these patients, spectral analysis should be correlated with specific radiation doses and used to track saliva qual-
ity over time. Another important research direction is to examine the potential effect of medication regimens 
on the Raman signature and to characterize patients with xerostomia secondary to polypharmacy, which could 
also have clinical utility for patient monitoring.

Material and methods
Saliva samples
Saliva samples were collected from 72 donors (one sample per donor, 24-HC, 26-SjD, 22-RD) at Albany College 
of Medicine under the approval of the Institutional Review Board (IRB) and stored at -20C. The Age informa-
tion about the donors can be found in Table 4. Participants were refrained from food, beverages, chewed gum, 
or smoked 30 min before sample collection. The oral radiation population consisted of individuals who had 
completed previous oral radiation therapy, were currently in remission from cancer, and were experiencing xeros-
tomia as a resultant condition. Patients diagnosed with Sjögren’s disease were characterized by rheumatologists, 
presently undergoing treatment, reporting xerostomia, displaying multiorgan involvement, and testing positive 
for Anti-SSA/Anti-SSB or at least one of the Early Sjögren’s disease Antibodies. The control group comprised 
individuals without oral dryness symptoms, no identifiable oral health concerns, and no history of oral cancer. 
Samples were thawed and centrifuged for 5 min at 20,000 rpm. The supernatant was collected and used for the 
Raman spectral analysis. About 10 μL of saliva supernatant was deposited on an aluminum foil-covered glass 
slide and dried overnight. Drying saliva samples allows for leveraging its heterogeneous nature, enabling the 
extraction of information regarding its individual components and their alterations associated with the  disease38. 
The aluminum foil minimizes substrate  interference39.

Ethics approval and accordance
This study was approved by the Institutional Review Board (IRB) at Albany College of Medicine. Informed 
consent was obtained from all participants and/or their legal guardians before participating in the study. All 
methods were carried out in accordance with relevant guidelines and regulations provided by the IRB (e.g., The 
Belmont Report).

Raman hyperspectroscopy
All Raman spectra were collected using a Horiba Xplora-Plus Raman microscope (HORIBA Scientific). The 
PRIOR automatic mapping stage was used to collect Raman spectra from multiple locations on dry saliva samples 
using a 50X objective to probe the sample heterogeneity and generate the hyperspectral  datacube40,41. Spectra 
were recorded in the range of 400–1800  cm-1 using a 785-nm laser source with 100% power (110mW). A total 
of 36 spectra per sample were collected with a 30-s acquisition time at each location and three accumulations 
at each location using LabSpec6 software (Version 6.1, software available at https:// www. horiba. com/ usa/ scien 
tific/ produ cts/ detail/ action/ show/ Produ ct/ labsp ec-6- spect rosco py- suite- softw are- 1843/). The PRIOR automatic 
stage moves the sample stage to each designated point according to a predefined grid and autofocuses for spectral 
acquisition. The movement is precise and automated, eliminating the need for manual intervention to collect 
multiple spectra in a grid-like fashion.

Data analysis
A total of 2264 spectra from 72 saliva samples were imported into MATLAB (R2019b) programming software 
(MathWorks, Inc) equipped with PLS-Toolbox 9.0 (2021) (Eigenvector Research, Inc., Manson, WA USA 98831; 
software available at http:// www. eigen vector. com). Raman spectra with extensive cosmic rays or low signal-to-
noise ratio were removed from the dataset. Further, the automatic preprocessing was applied to all spectra in 
the training dataset using the PLS Toolbox, including first baseline correction (weighted least square, order 6), 
then normalization by 1667-cm−1 band, and at last smoothing (Sav Gol filter width 31, order 5)42. This band 
(1667-cm−1), tentatively assigned to protein Amid I vibrational mode, showed the least variations among strong 
Raman bands in saliva spectra. Nine samples (3-HC,3-SjD,3-RD) were randomly selected and set aside for 
external validation. We assigned classes to each spectrum in the training dataset. Next, we applied feature selec-
tion techniques, such as the GA, to select spectral components from the training dataset. The parameters of GA 
are given as follows: the population size was set to 62, the mutation rate to 0.005, and the maximum number of 

https://www.horiba.com/usa/scientific/products/detail/action/show/Product/labspec-6-spectroscopy-suite-software-1843/
https://www.horiba.com/usa/scientific/products/detail/action/show/Product/labspec-6-spectroscopy-suite-software-1843/
http://www.eigenvector.com
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generations for every run was set to 100. We used double cross-over breeding with a window width of 30%. We 
ran GA 100 times independently to select diagnostic feature information from the measured Raman spectra of 
the calibration dataset. Furthermore, standard hyperparameters offered by the PLS_Toolbox were utilized to 
construct the SVM_DA model, incorporating GA-selected variables from the training dataset. The model was 
configured with the RBF kernel function and PLS compression with a compression component of 11 (compress-
ncomp 11). These default parameters are optimized for general use across various datasets, balancing model 
complexity and performance. The software version used was PLS_Toolbox 9.0 from Eigenvector Research, Inc. 
(Manson, WA, USA, 98831). Once the model’s performance was optimized, an external validation dataset was 
introduced to the built SVM_DA model, following the same preprocessing steps as the training dataset. The 
cross-validation and external validation were performed to test the model’s performance.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on 
reasonable request.

Received: 19 January 2024; Accepted: 16 April 2024
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