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The dynamical perspective 
of soliton solutions, bifurcation, 
chaotic and sensitivity analysis 
to the (3+1)‑dimensional 
Boussinesq model
Muhammad Nadeem 1*, Asad Islam 2, Mehmet Şenol 3 & Yahya Alsayaad 4*

In this study, we examine multiple perspectives on soliton solutions to the (3+1)‑dimensional 
Boussinesq model by applying the unified Riccati equation expansion (UREE) approach. The 
Boussinesq model examines wave propagation in shallow water, which is derived from the fluid 
dynamics of a dynamical system. The UREE approach allows us to derive a range of distinct solutions, 
such as single, periodic, dark, and rational wave solutions. Furthermore, we present the bifurcation, 
chaotic, and sensitivity analysis of the proposed model. We use planar dynamical system theory 
to analyze the structure and characteristics of the system’s phase portraits. The current study 
depends on a dynamic structure that has novel and unexplored results for this model. In addition, 
we display the behaviors of associated physical models in 3‑dimensional, density, and 2‑dimensional 
graphical structures. Our findings demonstrate that the UREE technique is a valuable mathematical 
tool in engineering and applied mathematics for studying wave propagation in nonlinear evolution 
equations.

Keywords (3+1)-dimensional Boussinesq model, Unified Riccati equation expansion method, Exact soliton 
solutions, Bifurcation analysis, Chaotic structures, Sensitivity analysis, Quasi-periodic structures

In recent decades, the study of nonlinear evolution equations (NLEEs) have achieved great significance in 
various phenomena of science and engineering problems. The development of solutions to these NLEEs have 
emerged within the realm of nonlinear science, such as chemical physics, optical fiber, solid-state physics, and 
 geochemistry1–3. Several studies have been reported on the solution of NLEEs in a technical and scientific 
domains. Numerous areas of mathematics and engineering are included; such as magnetism, hydrodynamics, 
thermal capacity, quantum dynamics, seismic waves, and the propagation of  oceans4–7. Therefore, it is imperative 
to acquire analytical strategies for these NLEEs and show an extensive understanding of the qualitative features 
of such instances. Finding the analytical solution to these NLEEs have received a great attraction by various 
researchers.

Using symbolic tools, several suitable and efficient techniques for finding the appropriate solutions to various 
NLEEs have been demonstrated. There are several effective techniques, such as the Hirota bilinear technique 
(HBT)8,9, the modified Sardar sub-equation  technique10,11, the hyperbolic-function  technique12, the amended 
sinh-Gordon expansion  technique13,14, the Jacobi’s elliptic expansion  technique15,16, the modified Fan-sub expan-
sions  technique17,18, the modified Kudryashov  technique19, the Khater  method20, the modified simple equation 
 technique21, the unified Riccati equation expansion  technique22 and so  on23,24. The authors  in25 studied the 
dynamical structure of soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2+ 1)-dimen-
sional Konopelchenko-Dubrovsky (KD) model. Kumar and  Mann26 discussed the Schrödinger Boussinesq model 
to derive soliton solutions. Some potential scholars have recently solved several well-known NLEEs to find 
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solutions using the HBT. For instance, the (3+1)-dimensional YTSF  system27, the (3+1)-dimensional BKP-Bouss-
inesq  model28, the (2+1)-dimensional Burgers  model29, the (3+1)-dimensional gKPB  model30 and many  more31,32.

In nonlinear sciences, the research of acoustic waves in shallow water is a widespread  topic33. This type of 
acoustic wave is seen in streams, ocean coastlines, desert, and the water and can be explained by the Boussinesq 
 model34, which is detailed below:

where x, y, z and t are spatial and temporal terms, Q is the dependent variable of the governing model. The 
Boussinesq model was initially established by Joseph Boussinesq in 1872 to explain how long, small-amplitude 
waves flow at a constant pace in a water channel with a constant depth. Additionally; the Boussinesq model 
is extensively applied in marine and coastal  engineerings35. Because the Boussinesq model accurately models 
viscous flows involving various fluids with interfaces between them, the authors have considered it. Similar to 
viscous stresses, this model offers a fair distribution of turbulent stresses related to mean velocity gradients. It is 
also applied in road and geotechnical engineering for problems involving the distribution of vertical tension in 
soil medium. Because Boussinesq’s approximation ignores density fluctuations in inertial terms, it is frequently 
used in fluid dynamics with mild density gradients, which makes it appropriate for some applications.

The Boussinesq model is frequently used in coastal and ocean engineering to predict wave propagation in 
shallow coastlines and  seas36. Now comprehend the dynamics of wave propagations on the ocean surfaces, our 
goal is to construct the exact solutions to a novel integrable (3+1)-dimensional Boussinesq model by implement-
ing the unified Riccati equation expansion  technique37. We take into consideration the innovative (3+1)-dimen-
sional Boussinesq  model38 to accomplish these goals.

where α, β , γ and σ are constants and (x,  y,  z) and t shows the spatial and temporal parameters, respectively. 
By employing Hirota bilinear technique in 2019, Wazwaz and  Kaur39 created several solution to Eq. (2) and then 
used the exp(−�(ζ))-expansion technique to establish certain analytical solution. It is crucial to note that Eq. 
(2) can be transformed to the typical fourth-order Boussinesq model, which is provided by Eq. (1), if the value 
of σ = 0 in Eq. (2), then transforms into a new integrable (2+1)-dimensional Boussinesq model. Thus, if we take 
into account β = 1,α = 1, γ = 1 and σ = 1 , then Eq. (2), become

In this work, Eq. (3) can be transformed to (2+1)-dimensional Boussinesq model when z = x and z = y . The lump 
solution to various dimensionally reduced equations have previously been discovered by some  researchers40–42. 
In particular, Kaur and  Wazwaz28 explored the lump solution to the reduced equations of (3+1)-dimensional 
generalized Boussinesq model. Singh et al.41 found results for the novel (2+1)-dimensional Boussinesq model, 
including both brilliant and dark rogue waves. Huang et al.42 discovered the lump waveform and kink soliton 
solution for the generalized (3+1)-dimensional KP model. The physical phenomena can be enhanced by using 
the visual representation of the solutions to the Boussinesq model, which highlights the physical characteristics 
of the model. Understanding the solutions to real-world problems, such as ocean waves, aids us in accurately 
comprehending them. It is important to emphasize that all results show novel properties emerging in shallow 
water waves.

Our literature analysis indicates that the UREE technique has not been previously employed to investigate 
the transmission of optical solitons in optical fibers. In our analysis, we have also considered bifurcation analy-
sis, physical features, and the application of findings to better understand the dynamic processes of the model. 
Through the extension of the Riccati equation, a methodical technique is employed in the process. An approxi-
mate version of the solutions known as the general ansatz is used that subsequently entered into the formula. The 
differential equation is converted into a nonlinear algebraic equation using algebraic operations. After that, new 
soliton solutions can be obtained by solving these nonlinear algebraic equations. Our objective for this study is 
to evaluate the soliton solutions of the (3+1)-dimensional Boussinesq model using a novel technique. These are 
the primary sections of this research. The unified Riccati equation expansion (UREE) method is described in 
Section “Description of the UREE technique”. The derivation of the soliton solutions has been stated in Section 
“Implementation”. In Section “Bifurcation analysis”, the phase portraits of bifurcations are utilized to illustrate 
the qualitative behavior of the analyzed model. In Section “Results and discussions”, we present some discussions 
on the obtained results. Finally, Section “Conclusion” covers the conclusion part of this study.

Description of the UREE technique
The generic form of NLEEs is

Step-i: Utilize the transformations of wave, such that

be used in Eq. (4), then we can obtain the nonlinear ordinary differential equation (NLODE) as,

(1)Qtt − Qxx − α(Q2)xx − βQxxxx = 0.

(2)Qtt − Qxx − α(Q2)xx − βQxxxx +
γ 2

4
Qyy + γQyt + σQxz = 0,

(3)Qtt − Qxx − (Q2)xx − Qxxxx +
1

4
Qyy + Qyt + Qxz = 0,

(4)R(f , fx , fy , fxx , . . .) = 0.

(5)Q = q(ξ), and ξ = x + y + nz −mt,
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Step-ii: According to Eq. (6), the general solution is

as s0, sd are necessary to compute and sM  = 0 and φ(ξ) satisfy the ODE as below

Step-iii: We acquired a positive number M, by applying the balancing principle as in Eq. (7).
Step-iv: By resolving Eqs. (7) and (8) into Eq. (6), we acquire a system of equations and gather all the terms 

that equal zero and have the same power of (φ(ξ)d) . s0, s1, f0, f1 and n are the values that are obtained for carry-
ing out a symbolic solution of the provided model. Below are the solutions to Eq. (8).

Cluster-(a): If L > 0

Cluster-(b): If L < 0

Cluster-(c): If L = 0

Step-v: The parametric values and the solution of Eq. (8) reinserted into Eq. (7) allow us to find the precise 
solutions to Eq. (4).

Implementation
The main focus of this part is the application of our suggested technique to verify its performance, efficacy, 
and dependability. It will offer us a selection of solutions for the Boussinesq model, which is integrable in the 
(3+1)-dimensional space. The following transformation is provided in Eq. (5). Next, the transformation provided 
in Eq. (5) is applied to transform Eq. (3) into NLODE. Thus

Integrating twice Eq. (14), to get the required second-order ordinary differential equation

By using the balancing principle from Eq. (15), we can get M = 2 . Let M = 2 , the general solution of Eq. (7) 
becomes

Now, equating the coefficients of same power of (φ(ξ))d , where d = 0, 1, 2, 3, . . . . The Eq. (16) is incorporated 
into Eq. (15) with Eq. (8) and thus we can obtain a system of algebraic equations such as

(6)U(f , f ′, f ′′, . . .) = 0.

(7)q(ξ) = s0 +
M
∑

d=1

sd(φ(ξ)
d),

(8)φ′(ξ) = f0 + f1φ(ξ)+ f2φ(ξ)
2.

(9)φ1(ξ) =−
f1

2f2
−

√
L tanh

(

ξ
√
L

2

)

2f2
,

(10)φ2(ξ) =−
f1

2f2
−

√
L coth

(

ξ
√
L

2

)

2f2
.

(11)φ3(ξ) =−
f1

2f2
−

√
−L tan

(

ξ
√
−L

2

)

2f2
,

(12)φ4(ξ) =−
f1

2f2
−

√
−L cot

(

ξ
√
−L

2

)

2f2
.

(13)φ5(ξ) = −
1

e1 + f2ξ
−

f1

2f2
.

(14)m2q′′(ξ)− q(4)(ξ)−mq′′(ξ)−
3

4
q′′(ξ)+ nq′′(ξ)− 2q(ξ)q′′(ξ)− 2q′(ξ)2 = 0.

(15)
1

4

(

4m2 − 4m+ 4n− 3
)

q(ξ)− q′′(ξ)− q(ξ)2 = 0.

(16)q(ξ) = s0 + s1φ(ξ)+ s2φ(ξ)
2.
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Using symbolic computing, we solve the above system of equations and hence we can obtain a set of solutions 
as follows

Family-1:

According to the results, Family-1 is satisfied by the following solutions.

• When L > 0 , we get 

• When L < 0 , we get 

• When L = 0 , we get 

Family-2:

According to the results, Family-2 is satisfied by the following solutions.

• When L > 0 , we get 

• When L < 0 , we get 

(17)

−f0f1s1 − 2f 20 s2 +m2s0 −ms0 + ns0 − s20 −
3s0

4
= 0,

+
(

−f 21 s1 − 2f0f2s1 − 6f0f1s2 +m2s1 −ms1 + ns1 − 2s0s1 −
3s1

4

)

= 0,

+
(

−3f1f2s1 − 4f 21 s2 − 8f0f2s2 +m2s2 −ms2 + ns2 − s21 − 2s0s2 −
3s2

4

)

= 0

+
(

−2f 22 s1 − 10f1f2s2 − 2s1s2
)

= 0,

+
(

−6f 22 s2 − s22
)

= 0.

(18)
{

s0 → −i

√

2

3
f0
√
s2, s1 → 0, f1 → 0, f2 →

i
√
s2√
6
, n → 2i

√

2

3
f0
√
s2 −m2 +m+

3

4

}

.

(19)
Q1,1(x, t) =

i
√

3
2

√
L tanh

(

1
2

√
L

(

z

(

2i
√

2
3
f0
√
s2 −m2 +m+ 3

4

)

−mt + x + y

))

√
s2

,

(20)
Q1,2(x, t) =

i
√

3
2

√
L coth

(

1
2

√
L

(

z

(

2i
√

2
3
f0
√
s2 −m2 +m+ 3

4

)

−mt + x + y

))

√
s2

.

(21)
Q1,3(x, t) =

i
√

3
2

√
−L tan

(

1
2

√
−L

(

z

(

2i
√

2
3
f0
√
s2 −m2 +m+ 3

4

)

−mt + x + y

))

√
s2

,

(22)
Q1,4(x, t) =

i
√

3
2

√
−L cot

(

1
2

√
−L

(

z

(

2i
√

2
3
f0
√
s2 −m2 +m+ 3

4

)

−mt + x + y

))

√
s2

.

(23)
Q1,5(x, t) = −

1

e1 +
i
√
s2

(

z

(

2i
√

2
3
f0
√
s2−m2+m+ 3

4

)

−mt+x+y

)

√
6

.

(24)

{

s0 →
s21 + 2i

√
6f0s

3/2
2

6s2
, f1 → −

is1√
6
√
s2
, f2 → −

i
√
s2√
6
, n →

s21 − 4i
√
6f0s

3/2
2

6s2
−m2 +m+

3

4

}

.

(25)
Q2,1(x, t) = −

s1

2s2
−

i
√

3
2

√
L tanh

(

1
2

√
L

(

z

(

s21−4i
√
6f0s

3/2
2

6s2
−m2 +m+ 3

4

)

−mt + x + y

))

√
s2

,

(26)
Q2,2(x, t) = −

s1

2s2
−

i
√

3
2

√
L coth

(

1
2

√
L

(

z

(

s21−4i
√
6f0s

3/2
2

6s2
−m2 +m+ 3

4

)

−mt + x + y

))

√
s2

.
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• When L = 0 , we get 

Family-3:

According to the results, Family-3 is satisfied by the following solutions.

• When L > 0 , we get 

• When L < 0 , we get 

• When L = 0 , we get 

Bifurcation analysis
In this section, we investigate Eq. (3) using bifurcation theory and phase portrait  analysis35. The system described 
by Eq. (3) has its own dynamic influence, allowing us to see how changes in parameters affect the quality of the 
system. A framework for examining the bifurcations that occur within a family of systems is provided by bifurca-
tion theory, which enables us to pinpoint the typical bifurcation patterns. By using the Galilean transformation, 
we may express the planar dynamical system for Eq. (15) as follows,

When applying the aforementioned transformation to Eq. (15), we obtain

(27)
Q2,3(x, t) = −

s1

2s2
−

i
√

3
2

√
−L tan

(

1
2

√
−L

(

z

(

s21−4i
√
6f0s

3/2
2

6s2
−m2 +m+ 3

4

)

−mt + x + y

))

√
s2

,

(28)
Q2,4(x, t) = −

s1

2s2
−

i
√

3
2

√
−L cot

(

1
2

√
−L

(

z

(

s21−4i
√
6f0s

3/2
2

6s2
−m2 +m+ 3

4

)

−mt + x + y

))

√
s2

.

(29)
Q2,5(x, t) = −

s1

2s2
−

1

e1 −
i
√
s2

(

z

(

s2
1
−4i

√
6f0s

3/2
2

6s2
−m2+m+ 3

4

)

−mt+x+y

)

√
6

.

(30)
{

s0 → −i
√
6f0

√
s2, f1 →

is1√
6
√
s2
, f2 →

i
√
s2√
6
, n → −

s21 + 4i
√
6f0s

3/2
2

6s2
−m2 +m+

3

4

}

.

(31)
Q3,1(x, t) = −

s1

2s2
+

i
√

3
2

√
L tanh

(

1
2

√
L

(

z

(

− s21+4i
√
6f0s

3/2
2

6s2
−m2 +m+ 3

4

)

−mt + x + y

))

√
s2

,

(32)
Q3,2(x, t) = −

s1

2s2
+

i
√

3
2

√
L coth

(

1
2

√
L

(

z

(

− s21+4i
√
6f0s

3/2
2

6s2
−m2 +m+ 3

4

)

−mt + x + y

))

√
s2

.

(33)
Q3,3(x, t) = −

s1

2s2
+

i
√

3
2

√
−L tan

(

1
2

√
−L

(

z

(

− s21+4i
√
6f0s

3/2
2

6s2
−m2 +m+ 3

4

)

−mt + x + y

))

√
s2

,

(34)
Q3,4(x, t) = −

s1

2s2
+

i
√

3
2

√
−L cot

(

1
2

√
−L

(

z

(

− s21+4i
√
6f0s

3/2
2

6s2
−m2 +m+ 3

4

)

−mt + x + y

))

√
s2

.

(35)
Q3,5(x, t) = −

s1

2s2
−

1

e1 +
i
√
s2

(

z

(

− s2
1
+4i

√
6f0s

3/2
2

6s2
−m2+m+ 3

4

)

−mt+x+y

)

√
6

.

(36)

dq

dξ
= p,

d2q

dξ2
= p′.
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Assuming that q and p are the functions:

As p′ = Cq− Dq2 , where C = 1
4
(−3− 4m+ 4m2 + 4n) and D = 1. So that q′ = p and q′′ = Cq− Dq2. That is

There are two equilibrium points for the equation p′ = Cq− Dq2 : J1(Q, P) = (0, 0) and J2(Q, P) = (Q, 0) . 
Therefore, (Q, 0) can be classified as a saddle point when J (Q, P) < 0 , a center when J (Q, P) > 0 and a cuspidal 
point when J (Q, P) = 0 . Similar to this, if J (Q, P) < 0 , J (Q, P) > 0 and J (Q, P) = 0 , then (0, p) is a saddle 
point, a center and a cuspidal point respectively. It is significant to remember that Q and P can take real values 
depending on the specific choices made for the parameters. We experience many circumstances for various 
parameter choices, each of which will be discussed in detail.

Case-1: For first equilibrium point J1(0, 0).  If C > 0 and D > 0 , then J1(Q, P) get center point when 
A = J (Q, P) > 0 , J1(Q, P) get saddle point when A = J (Q, P) < 0 and J1(Q, P) get cuspidal point when 
A = J (Q, P) = 0. Similarly, for second equilibrium point J2(

C
D , 0) , J2(Q, P) get center point when J (Q, P) > 0 , 

J2(Q, P) get saddle point when J (Q, P) < 0 and J3(Q, P) get cuspidal point when J (Q, P) = 0 as depict in Fig. 6.
Case-2: If C = 0 and D < 0 , then only one equilibrium point exists that is J1(0, 0). A = J1(Q, P) get cuspidal 

point when J (Q, P) = 0 as depict in Fig. 7.
Case-3: If C < 0 , D < 0 , for first equilibrium point J1(Q, P) , then J1(Q, P) get center point when 

A = J (Q, P) > 0 , J1(Q, P) get saddle point when A = J (Q, P) < 0 and J3(Q, P) get cuspidal point when 
A = J (Q, P) = 0. Similarly, for second equilibrium point J2(

C
D , 0) , that is J2(Q, P) get center point when 

A = J (Q, P) > 0 , J2(Q, P) get saddle point when A = J (Q, P) < 0 and J3(Q, P) get cuspidal point when 
A = J (Q, P) = 0 as depict in Fig. 8.

Case-4: For C > 0 and D < 0 , If C > 0 and D < 0 , then for only one equilibrium point exist that is J1(0, 0)

. A = J1(Q, P) is a center point if A = J (Q, P) > 0 as shown in Fig. 9.
Now add the perturbation term in Eq. (37), to discuss the chaotic, quasi-periodic and sensitivity analysis 

structures by using different values of frequency with initial conditions. Now, the chaotic equation below

where � is frequency, Ŵ is amplitude and ξ is independent variable. The illustration of quasi-periodic, chaotic 
and sensitivity analysis as shown in Fig. 10 under suitable parametric values.

Results and discussions
This section discuss on recent findings in conjunction with a comparison of previous  study38 where the authors 
investigated the integrable (3+1)-dimensional Boussinesq model to obtain lump solutions. In our work, we 
proposed the unified Riccati equation expansion method for (3+1)-dimensional Boussinesq model and mini-
mized their dimensional models in shallow water waves to find dark, unique, periodic, and rational solutions. In 
nonlinear optics, the study of interaction between strong light beams and nonlinear materials is relevant to dark, 
bright solitons. They are pertinent to phenomena like pulse compression and the creation of supercontinuous. 
To solve distinct nonlinear partial differential equations that arise in mathematical physics, soliton solutions 
including dark and brilliant solitons are employed. These solutions shed light on the behaviour of complicated 
systems. Furthermore, bifurcation analysis exposes every possible nonlinear dynamic system phase portrait. 
Exact soliton solution structures are shown in Figs. 1, 2, 3, 4 and 5, and phase pictures from bifurcation analysis 
are displayed in Figs. 6, 7, 8 and 9. Figure 10 represents the chaotic structure with quasi-periodic and sensitivity 
analysis. The dark soliton solutions are quieter solitary waves than the background whereas the singular soliton 

1

4
(−3− 4m+ 4m2 + 4n)q− q2 − p′ = 0,

p′ =
1

4
(−3− 4m+ 4m2 + 4n)q− q2.

(37)

dq

dξ
= p,

d2q

dξ2
=

1

4
(−3− 4m+ 4m2 + 4n)q− q2.

(38)
q′ = H(q, p),

p′ = G(q, p).

(39)J (Q, P) =

∣

∣

∣

∣

∣

∂H
∂q

∂H
∂p

∂G
∂q

∂G
∂p

∣

∣

∣

∣

∣

,

(40)J (Q, P) =
∣

∣

∣

∣

0 1

C − 2Dq 0

∣

∣

∣

∣

= −C + 2Dq.

(41)

dq

dξ
= p,

d2q

dξ2
=

1

4
(−3− 4m+ 4m2 + 4n)q− q2 +� sin(Ŵξ),
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solutions are discontinuous derivatives such as peakons and compactions. Periodic solutions repeat throughout 
time and help with pattern recognition and understanding equation structure. Figures 6, 7, 8 and 10 phase pic-
tures are created by choosing appropriate values from Eq. (37). Solutions formed from equilibrium points and 
parameter values are shown by variable A, where A > 0 shows the center point, A < 0 is the saddle point, and 
A = 0 is the cuspidal point.

Graphical description
In this description, we presents the graphical structures in 2-dimensional, 3-dimensional, and density plots.

Figure 1 displays the dark soliton solution for Q1,1(x, t) , Q2,1(x, t) , and Q3,1(x, t) , as described by the their 
corresponding Eqs. (19), (25), and (31). Figure 2 displays the singular soliton solution for Q1,2(x, t) , Q2,2(x, t) , 
and Q3,2(x, t) , as described by the their corresponding Eqs. (20), (26), and (32). Figure 3 displays the periodic 
solution for Q1,3(x, t) , Q2,3(x, t) , and Q3,3(x, t) , as described by the their corresponding Eqs. (21), (27), and (33). 
Figure 4 displays the periodic solitary wave solution for Q1,4(x, t) , Q2,4(x, t) , and Q3,4(x, t) , as described by the 
their corresponding Eqs. (22), (28), and (34). Figure 5 displays the rational solution for Q1,5(x, t) , Q2,5(x, t) , and 
Q3,5(x, t) , as described by the their corresponding Eqs. (23), (29), and (35).

Figure 1.  The parametric values L = 1.25, f0 = 3.2, m = 1.23, y = 1.2, z = 1.43 and s2 = 1.21 depict the 
physical structure of dark solution of the Q1,1(x, t) in Eq. (19).
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Figure 6 shows the phase portrait for the case-(1) by taking C > 0 and D > 0 . Figure 7 shows the phase 
portrait for the case-(2) by taking C = 0 and D < 0 . Figure 8 shows the phase portrait for the case-(3) by taking 
C < 0 and D < 0 . Figure 9 shows the phase portrait for the case-(4) by taking C > 0 and D = 0.

Conclusion
In the present work, we examined the soliton solutions of shallow water waves in a (3+1)-dimensional Boussinesq 
model. We conducted a qualitative study of the proposed model and derived accurate solutions using the UREE 
method. We successfully derived dark, solitary, periodic, and rational solutions. We study these solutions with 
phase depictions to attain a better understanding of the theory of motivation. We utilize bifurcation and chaos 
theories to comprehend the planar dynamical system and showcase its dependence on physical parameters like 
quasi-periodic and sensitivity analysis. These innovative results encourage new understandings of wave motion 
dynamics in mathematical simulations. Using symbolic computing, we solve nonlinear wave problems in multiple 
fields, such as mathematical physics and engineering. These findings could contribute to understanding how 
waves propagate in shallow water in oceanography. Future studies on the particular (3+1)-dimensional Boussin-
esq model may focus on breather wave solutions, hybrid formulations, rogue waves, and multi-lump waveforms.

Figure 2.  The parametric values L = 1.5, f0 = 3.2, m = 2.03, y = 1.32, z = 1.23 and s2 = 1.23 depict the 
physical structure of singular solution of the Q1,2(x, t) in Eq. (20).
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Figure 3.  The parametric values L = −0.35, f0 = 3.2, m = 1.03, y = 1.2, z = 1.34 and s2 = 1.31 depict the 
physical structure of periodic solution of the Q1,3(x, t) in Eq. (21).
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Figure 4.  The parametric values L = −0.25, f0 = 2.2, m = 1.3, y = 1.21, z = 1.3 and s2 = 0.34 depict the 
physical structure of periodic solution of the Q1,4(x, t) in Eq. (22).
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Figure 5.  The parametric values L = 0, f0 = 0.32, m = 1.3, y = 0.3, z = 1.3 and s2 = 1.1 depict the physical 
structure of rational solution of the Q1,5(x, t) in Eq. (23).

Figure 6.  Case-1: Analysis of the phase depiction for C > 0 & D > 0.
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Figure 7.  Case-2: Analysis of the phase depiction for C = 0 & D < 0.

Figure 8.  Case-3: Analysis of the phase depiction for C < 0 & D < 0.

Figure 9.  Case-4: Analysis of the phase depiction for C > 0 & D = 0.
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