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Co‑ordinate‑based positional 
embedding that captures 
resolution to enhance 
transformer’s performance 
in medical image analysis
Badhan Kumar Das 1,2*, Gengyan Zhao 3, Saahil Islam 1,2, Thomas J. Re 3, Dorin Comaniciu 3, 
Eli Gibson 3 & Andreas Maier 2

Vision transformers (ViTs) have revolutionized computer vision by employing self-attention instead 
of convolutional neural networks and demonstrated success due to their ability to capture global 
dependencies and remove spatial biases of locality. In medical imaging, where input data may differ 
in size and resolution, existing architectures require resampling or resizing during pre-processing, 
leading to potential spatial resolution loss and information degradation. This study proposes a 
co-ordinate-based embedding that encodes the geometry of medical images, capturing physical 
co-ordinate and resolution information without the need for resampling or resizing. The effectiveness 
of the proposed embedding is demonstrated through experiments with UNETR and SwinUNETR 
models for infarct segmentation on MRI dataset with AxTrace and AxADC contrasts. The dataset 
consists of 1142 training, 133 validation and 143 test subjects. Both models with the addition of 
co-ordinate based positional embedding achieved substantial improvements in mean Dice score by 
6.5% and 7.6%. The proposed embedding showcased a statistically significant advantage p-value< 
0.0001 over alternative approaches. In conclusion, the proposed co-ordinate-based pixel-wise 
positional embedding method offers a promising solution for Transformer-based models in medical 
image analysis. It effectively leverages physical co-ordinate information to enhance performance 
without compromising spatial resolution and provides a foundation for future advancements in 
positional embedding techniques for medical applications.

Vision transformers1 have emerged as a breakthrough in computer vision by introducing a paradigm shift from 
the convolutional neural networks to self-attention for image recognition tasks. Recent advancements in ViTs 
have yielded remarkable results and demonstrated their potential in various computer vision applications. The 
advantages of Vision Transformers lie in their ability to capture global dependencies in images by reducing the 
spatial inductive biases of locality.

Application of ViTs has expanded to medical imaging for tasks such as classification, segmentation, and 
detection2–7. Existing architectures require heavily constrained input characteristics such as a fixed input data 
size. However, medical imaging includes heterogeneous acquisition protocols, differing in size and resolution. 
Currently resampling or resizing methods are typically used for medical images in the pre-processing step to 
mitigate size differences. However, resampling involves changing the pixel dimension which can result in a loss of 
spatial resolution. This is particularly important in clinical applications where small or thin structures are critical. 
Resampling also involves interpolation which can cause information loss. For these reasons, Transformer models’ 
performance may be compromised when applied to medical images with heterogeneous acquisition protocols.

ViT-based architectures have been widely used in various medical imaging tasks such as detection of breast 
cancer in mammography images2, detection of lung nodule in computed tomography (CT) scans3 and achieved 
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competitive performance compared to traditional convolutional neural network (CNN) architectures. For 
3D medical image segmentation, UNETR8 was proposed which used a pure Transformer to learn sequence 
representations and performed very well on BTCV and MSD dataset9. Recently, another Transformer variant, 
Swin Transformer10 was introduced which is computationally very efficient due to the concept window-based-
attention. SwinUNETR11, a combination of Swin Transformer encoder and UNET decoder was proposed for 
medical image segmentation, demonstrated remarkable performances in CT and MRI scans.

Positional embeddings play a crucial role in both Vision and Swin Transformers by providing position 
information of every patch, since self-attention itself is permutation-equivariant. There are several positional 
embedding techniques. The absolute positional encoding12 is the most frequently used in which fixed absolute 
values (represented by sine and cosine functions with varying frequency) are used as embeddings. In learnable 
positional embeddings1, embeddings are treated as model parameters and updated during the training process. 
All these positional embeddings methods are designed for natural images which usually don’t have physical 
co-ordinate information and these embeddings only incorporate patch-position information. For medical images, 
physical co-ordinates and pixel spacing are important for perfect alignment of multiple images.

Tomographic medical imaging devices, such as MRI and CT, have fixed physical co-ordinate systems linked 
to the physical structure of the device, storing each pixel’s position during acquisition. Each pixel’s position in 
the physical co-ordinate can be recovered from the metadata of that medical image. In this study, we propose 
“Co-ordinate based positional embedding” to capture the physical co-ordinate and resolution information from 
the metadata. Typically, heterogenous datasets can have medical images with different fields of view, resolutions, 
and matrix sizes in real-world image co-ordinates. We hypothesized that the physical-co-ordinate information 
along with resolution difference for each data sample can improve the performance of the Transformer models as 
it will help the neural network to understand the field of view, resolution, and matrix size differences of different 
input images. It will also allow us to use Transformer based architectures without resampling/resizing the input 
image and avoid information loss during preprocessing.

Methods
This retrospective study was compliant with the health insurance portability and accountability act (HIPAA). The 
dataset was collected and anonymized from three different centers in USA and China; each hospital’s institutional 
review board approved this study for human research with waiver of informed consent. All methods were 
performed in accordance with the relevant guidelines and regulations.

We used a magnetic resonance imaging (MRI) dataset with 1142 training, 133 validation and 143 test subjects 
for acute/subacute brain infarct segmentation and for each subject two MRI contrasts were used: Axial apparent 
diffusion coefficient (AxADC) and Axial Trace (AxTrace). The images were acquired on scanners from Siemens 
Healthineers AG and, GE Medical Systems with echo times ranging from 66.0 ms to 131.8 ms, and repetition 
times ranging from 3200.0 ms to 17000 ms. Additionally, slice thickness varied for various patients’ acquisitions 
between 18 to 76 (details in supplementary materials). The dataset has a male to female patient ratio of 39:37 and 
includes scans from patients ranging in age from 18 years to over 80 years which makes it diverse.

The manual segmentation of acute and subacute infarct lesions was performed on AxTrace contrast image 
series by an expert radiologist (T.J.R.) from Siemens Healthineers. The radiologist used the medical image 
segmentation software ITK-SNAP version 3.8.0. The AxTrace image series and corresponding Apparent Diffusion 
Coefficient (ADC) image map were loaded into the software and reviewed by the radiologist. Areas, within the 
brain parenchyma, of hyperintensity in the TraceW image series with hypo or iso-intensity in the ADC map 
were considered positive for recent (acute to subacute) infarct by the radiologist and delineated as such in an 
image mask using the software tool. The radiologist identified at least one infarct lesion in each of the the data 
samples used in this study. Each subject may have different acquisition protocols, which may lead to different 
image resolution, origin, field of view and matrix size, but since for each subject both ADC and Trace are 
derived from the same diffusion weighted images, AxADC and AxTrace have the same sampling grid for each 
subject. As a part of pre-processing, we performed normalization and random cropping/resampling. For image 
normalization, we treated each channel individually. This involved computing the mean and standard deviation 
for each channel, followed by the subtraction of the mean from every pixel value, subsequently dividing by the 
computed standard deviation. Our random cropping involves extracting image regions with specific size regions 
of interest (ROIs). These regions can be cropped from random positions. We performed resampling to compare 
the performance with random cropping. Here both Trace and ADC images are resampled to a particular shape. 
We also performed data augmentation by random flipping the image in each direction with probability of 0.5.

From metadata information: origin and pixel spacing, we can derive the physical coordinate of the center of 
each voxel. Then, we generate a 3D radial sinusoidal structure in the device’s physical coordinate system centered 
at the device’s coordinate system origin, whose value at each location is a function of the location’s coordinates 
in the device’s physical coordinate system as shown in the formula below:

Here, PPE stands for proposed positional embedding where S, the scaling factor and ω , the angular frequency 
are the hyperparameters. We scaled the proposed embedding to ensure positional similarity does not dominate 
the semantic similarity. Additionally, the manipulation of angular frequency serves as a means to modulate the 
sinusoidal structure, enabling its contraction or expansion as needed. The sinusoidal structure is being generated 
based on the Euclidean distance from the origin. The detailed computation of the proposed positional embedding 
is presented in Algorithm 1. This embedding provides physical-co-ordinate information along with resolution 
difference for different input images to the Transformer and it works in addition to the regular positional 

(1)PPE(x,y,z) =
sin(ω
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embedding. The PPE is a dense metric guidance at the pixel level as we added this to every pixel. However, given 
the periodicity of the sinusoidal function and the possibility of repeated values, the regular positional embedding 
aids in mitigating ambiguities. The regular embedding serves at the macro scale, while the PPE serves at the micro 
scale and is encoded to the features latent space. Hence, our PPE can add more feature-level useful information 
to the attention mechanism, and serves as a complement to the patch-wise regular embeddings. In conjunction 
with regular positional embeddings, the incorporation of our physical embedding strategy can fully harness the 
capabilities of the Transformer architecture. The mechanism of calculating the proposed positional embedding 
for images with different resolution, matrix size and shifts is shown in Fig. 1.

Algorithm 1.   Computation of proposed positional embedding (PPE).
At first, we calculate the coordinate-based positional embedding for the input image. We then add this 

coordinate embedding information with the image Iwith_PPE = I + PPE(x, y, z) , here I ∈ R
(H×W×D×C) represents 

the input image. Subsequently, we divide the new image Iwith_PPE into non-overlapping patches denoted as 
Patches ∈ R

(N×(P3·C)) , where (P, P, P) signifies the resolution of each patch, and N =
(H×W×D)

(P3)
 represents the 

length of the sequence.Then we perform linear projection on flattened patches and add patch-wise positional 

Figure 1.   The mechanism of physical-coordinate-based positional embedding.
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embedding PEpatch-wise ∈ R
N×K  with them to create  input tokens of  the Transformer, 

Tokens = LinearProjection(Patches)+ PEpatch-wise ,  where Tokens ∈ R
(N×K) .  Here, K  represents the 

dimensionality of the token embeddings. This addition of patch-wise positional embedding with each token is 
similar to the original Vision Transformer1. Next, these tokens with both patch-wise and co-ordinate-based 
embedding are fed to the Transformer encoder. Detailed overview of the proposed embedding with Vision 
Transformer architecture is shown in Fig. 2.

We evaluated our co-ordinate-based positional embedding with two Commonly used baseline Transformer 
models: UNETR8 and SwinUNETR11 to demonstrate the effectiveness of this embedding on both Vision 
Transformer and Swin Transformer. While UNETR, based on ViT, performed exceptionally well in segmentation 
tasks with BTCV and MSD datasets, SwinUNETR, based on Swin Transformer, ranked among top performing 
approaches for the 2021 Brain Tumor Segmentation (BraTS) challenge. We compared the results of acute/
subacute infarct segmentation with and without the addition of the proposed embedding for both these models.

We trained both UNETR and SwinUNETR models on the NVIDIA Tesla V100 SXM2 cluster for 300 epochs 
and saved the best validation accuracy model for performance evaluation. A batch size of 1 was employed 
during training due to the limited GPU memory caused by the large size of the model. This limitation arises 
from the extensive memory requirements of the Transformer’s processing of 3D data. The learning rates were 
identical (0.0001) for all the experiments during training. We performed our experiments with two different 
angular frequency 0.1 and 1. Dice similarity coefficient and 95th-percentile Hausdorff Distance (HD95) were 
used for quantitative evaluations on validation and test sets. Two-sided pairwise Wilcoxon signed rank test13 
with Bonferroni correction was used to compare the Dice scores from different methods. The experiments were 
implemented using PyTorch(v1.12.1) and the Monai14(v1.1.0) framework.

In addition to the above infarct segmentation dataset, we also validated the performance of our proposed 
method using the BraTS 2021 dataset15 which includes 1000 training and 250 validation samples consisting of 
T1-weighted, T2-weighted, Flair, and T1-ce contrasts. The ground truth of the brain segmentation includes tumor 
core(TC), whole tumor(WT), and enhancing tumor(ET).

Results
With the proposed embedding both UNETR and SwinUNETR model outperformed the other methods as shown 
in Table 1. The UNETR model, when combined with the proposed embedding, achieved a Dice score of 0.560. 
This score represents a substantial enhancement of 12.1% over the resample/resize pre-processing method and 
an improvement of 6.5% over the random crop technique without the incorporation of the proposed embedding. 
Similarly, the SwinUNETR model attained the highest Dice score of 0.633 when the proposed embedding was 
utilized. This score surpassed the performance of the resample/resize method by 9.6% and outperformed the 
random crop approach without the proposed embedding by 7.6%.

Figure 2.   Vision transformer architecture with co-ordinate-based positional embedding. Proposed positional 
embedding is added to each modality separately followed by the creation of non-overlapping patches. Linear 
projection is used on the flattened patches and patch-wise positional embedding is added before sending these 
patches to the transformer encoder.
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In Table 2, we compare the performance of our proposed method against two popular CNN based model 
UNET16,17 and DynUNET18,19 for the task of infarct segmentation. The UNETR model with the proposed 
embedding outperformed the UNET model, although it fell short of matching the Dice score achieved by 
the DynUNET model by 1.0%. However, SwinUNETR model with proposed embedding exhibited superior 
performance, surpassing the DynUNET model by 6.3% and the UNET model by 11.2% in terms of Dice score.

Table 3 presents the results of the Wilcoxon signed-rank test comparing the p-values of our proposed 
embedding method against alternative approaches for both the UNETR and SwinUNETR architectures. Notably, 
the p-value was found to be <0.0001 for the proposed embedding compared to all other methods in both 
architectures, indicating a statistically significant improvement.

Qualitative comparisons of acute/subacute infarct segmentations of different methods are presented in 
Fig. 3. The segmentation from the model with resampling exhibits holes in the anterior part of the infarct. The 
segmentation from the model with random crop does not exhibit the holes but over-segments the infarct. The 
segmentation from the proposed model demonstrates superior performance in capturing the intricate details 
of the infarct region, highlighting its ability to accurately delineate the fine-grained features compared to the 
other models. In addition, the segmentation outputs of SwinUNETR for several cases in the test dataset are 
illustrated in Fig. 4.

In Table 4 we evaluated the effectiveness of the angular frequency of the sinusoidal structure. The performance 
difference was very minimal for two different angular frequencies. The Wilcoxon signed-rank test p-value of 
angular frequency 1 compared to angular frequency 0.1 was 0.5021. In Table 5 we evaluated the effectiveness of 
the scaling factor of the PPE on segmentation performance using the SwinUNETR model. Our analysis revealed 
that with a scaling factor of 100, the model attained its highest mean dice score of 0.633. However, a decrease in 
the scaling factor to 10 and 1 resulted in a noticeable decline in performance.

The BraTS 2021 validation dataset findings obtained with the UNETR and SwinUNETR models are displayed 
in Table 6. In this case, there was no significant improvement in performance with the proposed embedding.

Table 1.   Performance comparison of UNETR and SwinUNETR model with different pre-processing method 
with and without proposed positional embedding (PPE). The HD95 values are computed on true positive 
components as infarct segmentation has multiple region targets. With proposed embedding and random 
cropping, the performance improvement is significant. *Wilcoxon signed-rank test p-value of the best PPE 
method compared to without PPE methods after Bonferroni correction < 0.0001.

Model Pre-processing Method Embedding Mean Dice Score HD95 (mm)

UNETR

Resample Regular 0.439 6.53

Random crop Regular 0.495 4.74

Random crop Regular + PPE 0.560 3.35

SwinUNETR

Resample Regular 0.537 6.90

Random crop Regular 0.557 4.59

Random crop Regular + PPE 0.633* 3.04

Table 2.   Performance comparison of transformer based UNETR and SwinUNETR models with and without 
the proposed embedding with CNN architectures.

Model Mean dice score HD95

UNETR 0.495 4.74

SwinUNETR 0.557 4.59

UNET 0.521 6.07

DynUNET 0.570 5.52

UNETR + PPE 0.560 3.35

SwinUNETR + PPE 0.633 3.04

Table 3.   Wilcoxon signed-rank test p-value comparison of different methods after Bonferroni correction.

Model Hypothesis P-value

UNETR
Random Crop+PPE Vs Resample <0.0001

Random Crop+PPE Vs Random Crop <0.0001

SwinUNETR
Random Crop+PPE Vs Resample <0.0001

Random Crop+PPE Vs Random Crop <0.0001
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The effect of the proposed embedding with and without the regular positional embedding of the Transformer 
is presented in Table 7. We observed that to fully leverage the capabilities of the Transformer, it was essential 
to incorporate regular positional embedding alongside PPE. Without the regular positional embedding the 
performance of SwinUNETR model dropped by 2.2% and the mean dice score of infarct segmentation was 0.611 
compared to 0.633 with both regular and the proposed embedding.

Discussion
We proposed a co-ordinate-based pixel-wise positional embedding method for medical image data. This 
embedding provides physical co-ordinate and resolution information to the Transformer and works with existing 
Transformer pipelines. It can be simply added to the input images in Transformer-based architectures without 
any change in the models. Our embedding demonstrated significant enhancement of the performance of two 
commonly used Transformer based models - UNETR and SwinUNETR - for infarct segmentation.

In Transformer-based models, positional embedding typically embeds only the position of each patch relative 
to the source image, losing the relationship to physical co-ordinates. In medical imaging, spatial relationships 
are captured and inherently preserved across contrasts and across imaging sessions. Our proposed co-ordinate 
based positional embedding enables our model to use this information to improve its performance. We have 
achieved 6.5% and 7.6% performance improvement in UNETR and SwinUNETR model respectively by using 
both patch-wise and co-ordinate based positional embedding. By combining these two, we can provide both 
information of patches, which is essential for self-attention, as well as co-ordinate information of each subject, 
which can help model to understand field of view, resolution, and size difference of different inputs. While doing 
so, we can also eliminate resampling/resizing in our pre-processing steps.

We have achieved significant improvement in infarct segmentation. The accurate identification and 
localization of recent brain ischemic infarcts is a critical element in therapy decisions for patients with stroke 
symptoms and has an impact on outcomes20. By improving the accuracy of automated brain ischemic infarct 
segmentation, we hope to contribute to improving patient outcomes.

It is important to take into account a few limitations while interpreting our results. The annotations were 
done by one radiologist and may not reflect observer variability. Additionally, the data coming primarily from 
academic centers whose demographics may not be representative. Our experiments demonstrated improvements 
when image geometry varied between imaging studies but was the same between images within an imaging study. 
However, this methodology can also encode information from multiple images with different geometry within 

Figure 3.   Qualitative comparison of different methods with and without proposed positional embedding. An 
illustrative segmentation example of the predicted labels which demonstrate differences in methods. First row 
consists of single slice of AxTrace, AxADC and corresponding infarct ground truth. Second row consists of 
segmentation output of different methods.
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the same imaging study which is common in multiparametric medical images. In future, we want to use different 
size images for different contrasts for the same patient’s imaging study. Furthermore, This methodology exhibits 
suitability primarily for larger datasets, as the Transformer model necessitates a substantial volume of data to 
attain convergence. Also, another limitation is that we did not analyze different subgroups in this study. This is 
something important to consider for future research, but it is beyond the scope of this current work.

Figure 4.   A typical segmentation example of the predicted labels using proposed co-ordinate based embedding. 
The first row depicts around 75th percentile performance of two samples based on the Dice score. Second and 
third rows depict around 50 percentile and around 25 percentile performance respectively.

Table 4.   Effect of different angular frequency(ω ) on infarct segmentation performance using SwinUNETR.

Angular frequency Mean Dice Score

1 0.633

0.1 0.628

Table 5.   Effect of different scaling factor(S) on infarct segmentation performance using SwinUNETR.

Scaling factor Mean dice score

1 0.569

10 0.602

100 0.633

1000 0.629

10000 0.626
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We also observed, the addition of proposed embedding on BraTS 2021 dataset could not provide the 
additional boost to the performance. This may be because of every data sample of BraTS dataset has same origin, 
size and resolution and the embedding will be same for all the samples. Thus the proposed embedding is more 
useful if the dataset is heterogeneous.

Conclusion
In this paper, we introduced a unique co-ordinate-based pixel wise positional embedding for medical images 
which is created from physical co-ordinate and resolution information included in metadata. We validated the 
effectiveness of the proposed embedding with UNETR and SwinUNETR model and it enhanced the performance 
of these models significantly. In conclusion, the proposed embedding has shown potential to help Transformer 
understanding different field of view, resolution, and matrix size of medical images. This method could be the 
foundation for new positional embedding techniques for Transformer based models in medical image analysis.

Data availibility
The training, validation, and test datasets used for this study are protected patient information. Some data may 
be available for research purposes from the corresponding author upon reasonable request.

Code availability
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publicly release the code base. However, all experiments and implementation details are described in sufficient 
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