
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports

Optimizing support vector machine 
(SVM) by social spider optimization 
(SSO) for edge detection in colored 
images
Jianfei Wang 

Edge detection in images is a vital application of image processing in fields such as object detection 
and identification of lesion regions in medical images. This problem is more complex in the domain of 
color images due to the combination of color layer information and the need to achieve a unified edge 
boundary across these layers, which increases the complexity of the problem. In this paper, a simple 
and effective method for edge detection in color images is proposed using a combination of support 
vector machine (SVM) and the social spider optimization (SSO) algorithm. In the proposed method, 
the input color image is first converted to a grayscale image, and an initial estimation of the image 
edges is performed based on it. To this end, the proposed method utilizes an SVM with a Radial Basis 
Function (RBF) kernel, in which the model’s hyperparameters are tuned using the SSO algorithm. After 
the formation of initial image edges, the resulting edges are compared with pairwise combinations 
of color layers, and an attempt is made to improve the edge localization using the SSO algorithm. 
In this step, the optimization algorithm’s task is to refine the image edges in a way that maximizes 
the compatibility with pairwise combinations of color layers. This process leads to the formation of 
prominent image edges and reduces the adverse effects of noise on the final result. The performance 
of the proposed method in edge detection of various color images has been evaluated and compared 
with similar previous strategies. According to the obtained results, the proposed method can 
successfully identify image edges more accurately, as the edges identified by the proposed method 
have an average accuracy of 93.11% for the BSDS500 database, which is an increase of at least 0.74% 
compared to other methods.

Keywords  Edge detection, Support vector machine, Social spider optimization, Image processing

Edge detection in images is one of the fundamental and low-level topics in the field of image processing. The 
detected edges and boundaries of objects can be used for various applications such as object recognition1, 
image editing2, image segmentation3, and so on. Therefore, improving edge detection techniques can enhance 
a wide range of applications in the field of machine vision. The goal of edge detection methods is to distinguish 
prominent changes in pixel brightness that manifest as discontinuities in intensity, color, or texture4. Initial 
edge detection methods used information related to gradients or first and second-order derivatives to identify 
the boundaries of image edges5. Although these strategies were suitable for initial edge approximation and not 
highly accurate, they still enjoyed high popularity. With the development of machine learning techniques and 
subsequently deep learning techniques, newer strategies have been proposed for edge detection in images. These 
methods can identify edge boundaries in images based on previously observed patterns6.

Machine learning-based techniques generally exhibit higher accuracy compared to initial methods. For this 
reason, in recent years, we have witnessed numerous methods for edge detection in images using these tech-
niques. However, research in this field faces two challenges. Firstly, most of the proposed research focuses on 
edge detection in grayscale images, neglecting the color features of the image7. Secondly, the employed learning 
models in many of these studies cannot guarantee the highest achievable accuracy by the model. Based on these 
considerations, this research presents a color image edge detection model based on the combination of machine 
learning and optimization techniques. The proposed method in this paper is a two-stage edge detection strategy, 
where an optimized SVM model using the SSO algorithm is used for the initial approximation of image edges. 

OPEN

Suzhou Chien-Shiung Institute of Technology, Taicang 215411, China. email: 2031546@tongji.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-59811-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

Additionally, a color-based edge enhancement technique is employed in this method, which can improve the 
accuracy of edge detection in color images. The contributions of this paper are as follows:

•	 In this paper, an optimized machine learning model based on SVM with a RBF kernel is presented for edge 
detection in images. The SSO optimization algorithm is utilized to fine-tune the hyperparameters of SVM, 
leading to edge detection with lower error compared to conventional models.

•	 A two-stage model for edge detection in color images is proposed in this research. In the first stage, image 
edges are estimated based on the grayscale image, and then, in the second stage, edge improvement is per-
formed through matching the estimated edges with pairwise combinations of color image layers.

•	 The proposed model in this research is implemented using GPU array processing technology, and the effec-
tiveness of this process on enhancing the speed of image edge detection is evaluated.

The continued structure of the current article is as follows: "Literature review" includes a review of previous 
research. In "Proposed method", the details of the proposed two-stage strategy for edge detection in color images 
are presented. Then, in "Results and discussion", the evaluation and research results are discussed. "Conclusion" 
provides a summary of the findings and proposes suggestions for further research in this field.

Literature review
Edge detection is a fundamental step in image processing with applications in various domains, including satel-
lite image processing8, object detection9, asymmetric image processing10, and medical image analysis11. While a 
significant amount of research has focused on edge detection in grayscale images, color images present a more 
complex challenge due to the combined information from multiple color channels12. This section reviews recent 
advancements in edge detection for color images, categorizing them into different approaches and discussing 
their advantages and limitations.

Frequency‑domain methods
Some approaches utilize frequency-domain analysis for edge detection. Bhatti et al.8 propose a method for 
satellite image edge detection using Clifford algebra and Quaternion Fourier Transform (QFT). This method 
leverages frequency domain information from each color channel to identify edges. However, the computational 
complexity of QFT can be a limitation.

Gradient‑based methods
Traditional edge detection techniques often rely on gradients to identify image discontinuities. The Canny edge 
detector9 is a widely used example, employing a multi-stage approach to achieve good edge localization and noise 
suppression. However, the Canny operator requires careful parameter tuning for optimal performance, and its 
effectiveness can vary depending on the color space used12.

Fuzzy‑logic based methods
Fuzzy logic offers an alternative approach to edge detection. Orujov et al.11 present a fuzzy method for detecting 
artery edges in retinal images that solely utilizes information from the green channel. This method demonstrates 
promising results in specific applications but may not be suitable for general-purpose color image edge detection.

Deep learning techniques
Deep learning has emerged as a powerful tool for image processing tasks, including edge detection. Soria et al.13 
propose a deep convolutional neural network (CNN) architecture specifically designed for edge detection in 
color images. This approach achieves high accuracy but requires significant training data and computational 
resources. Another deep learning-based method by Wang et al.14 focuses on apple edge detection for monitor-
ing fruit growth. This method highlights the ability of deep learning to handle specific edge detection tasks in 
color images. However, deep learning models often require careful design and optimization to achieve optimal 
performance. In15, a deep learning model for edge detection in color images is presented, inspired by the com-
bination of the Holistically-Nested Edge Detection (HED) method and Xception networks. The proposed deep 
neural network model in this research is similar to the model presented in13. Similarly, this model also consists 
of 6 convolutional blocks, and the output of each block is enhanced by an upsampling block. In this research, 
a new database is also used for training the convolutional model in a similar manner. In general, deep learning 
techniques due to their high performance in image processing have been used in various applications such as 
image classification16, image reconstruction17 or synthesizing photo-realistic images18; and the application areas 
of these models are increasing19.

Other techniques
Several other techniques have been explored for edge detection. Versaci et al.20 propose a method based on fuzzy 
entropy and fuzzy divergence for capturing image edge information. Peng et al.21 present a solution for metro 
path detection that combines the Canny operator with Hough transform for edge and line detection. Liu et al.22 
utilize statistical features of edge ratios for edge detection, while research by Gandhi et al.10 explores different 
preprocessing strategies for improving edge detection results. This research presents a preprocessing strategy for 
asymmetric image processing, which can be effective in edge detection applications. Three preprocessing solu-
tions are investigated in this method. In the first approach, after converting the image to grayscale, image noise 
is reduced using a Gaussian filter, and then a threshold is applied to convert the image into a binary matrix and 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

approximate regions based on it. In the second approach, image noise is reduced using a Gaussian filter, and after 
converting the image to a grayscale matrix, a dual threshold is used to approximate regions in the image. In the 
third strategy, after converting the image to grayscale, a dual threshold is applied to approximate the edges, and 
finally, a Gaussian filter is used to remove noise. According to the results, the first and second approaches do not 
yield satisfactory results, while the third method can be suitable for approximating edges in images.

Computational efficiency considerations
As image processing tasks become increasingly complex, computational efficiency is a crucial factor. Horvath 
et al.23 demonstrate significant speed improvements in the Canny operator by utilizing CUDA for parallel pro-
cessing on GPUs. Similarly, Livingston et al.24 explore parallel processing techniques to enhance the speed of 
edge detection algorithms.

Edge detection in color images remains an active area of research. This review has presented various 
approaches, including traditional gradient-based methods, frequency-domain techniques, fuzzy logic-based 
approaches, deep learning models, and other techniques. Each approach offers advantages and limitations, and 
the most suitable method depends on the specific application and desired outcome. Future research directions 
may involve further exploration of deep learning architectures tailored for color image edge detection, as well 
as the development of more efficient and robust algorithms for real-time applications. Table 1, summarizes the 
literature review.

Proposed method
The proposed method for edge detection in color images is performed at two levels. At the first level, image 
edges are approximated through a SVM optimized by the SSO algorithm using the grayscale image. Then, at 
the second level, the SSO algorithm is used to improve the approximated edges based on the comparison with 
pairwise combinations of color layers in the original image. It should be noted that the proposed method assumes 
that the input image is presented in RGB color system. Based on this, the steps of the proposed method for edge 
detection in color images are as follows:

1.	 Edge approximation based on SVM and SSO.
2.	 Edge improvement based on SSO and the difference with color layer combinations.

The architecture of the proposed method is illustrated in Fig. 1 as a diagram. In this figure, the steps related 
to each phase of training (SVM model optimization) and testing (edge detection in new images) are separated 
from each other.

The proposed method begins with optimizing the SVM model based on the training samples of the database 
using the SSO algorithm. For this purpose, the RGB training images are first converted to the grayscale color 
system, and then these samples, along with their ground-truth edges, are used as the input training data for the 
SVM model. The proposed SVM model utilizes a RBF kernel function, and its parameters are optimized using 
the SSO algorithm. The goal of this process is to achieve an SVM model with the least error in approximating the 
edges of the grayscale image. The result of this process is an SVM model with the best discovered configuration 
by the SSO algorithm, which is used for the initial approximation of edges in test images. The approximated edges 

Table 1.   Summary of the literature review.

Reference Year Purpose Method Limitation

Bhatti et al.8 2021 Edge detection in satellite color images Clifford algebra and QFT Computationally expensive

Mittal et al.9 2019 Improve edge connectivity and thickness Multi-threshold Canny operator Requires careful parameter tuning

Gandhi et al.10 2020 Preprocessing for edge detection Gaussian filtering, thresholding Limited effectiveness for complex images

Orujov et al.11 2020 Detect artery edges in retinal images Fuzzy logic with green channel information Not suitable for general-purpose color image edge 
detection

Ismael et al.12 2020 Compare performance of Prewitt operator in differ-
ent color spaces Prewitt edge detection Performance varies depending on color space

Soria et al.13 2021 Dense extreme inception network for edge detec-
tion Deep CNN Requires significant training data and computa-

tional resources

Wang et al.14 2020 Deep learning for apple edge detection Deep CNN Requires careful design and optimization for 
specific tasks

Poma et al.15 2020 Dense extreme inception network for edge detec-
tion Deep CNN Similar limitations as13

Versaci et al.20 2021 Image edge detection based on fuzzy entropy and 
fuzzy divergence Fuzzy entropy and fuzzy divergence Limited research on general applicability

Peng et al.21 2023 Metro path detection Canny operator and Hough transform Not specifically designed for general-purpose color 
image edge detection

Liu et al.22 2020 Edge detection based on edge ratio statistics Statistical features of edge ratios May not be suitable for all types of edges

Horvath et al.23 2023 Improve speed of Canny operator CUDA for parallel processing on GPUs Limited to Canny operator

Livingston et al.24 2019 Enhance speed of edge detection algorithms Parallel processing techniques Limited details on specific improvements for color 
images



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

identified through this model are compared with pairwise combinations of color layers, and an effort is made to 
minimize the difference between the edge pixels and the identified boundaries in different layer combinations 
using the SSO algorithm. The outcome of this process is the detected edges in the image.

Edge approximation based on SVM and SSO
The proposed method starts with the initial approximation of image edges using the combination of SVM and 
SSO. For this purpose, a training set of RGB images is used, where for each RGB image, there is a binary matrix 
indicating the background edges of the image. This training set is used as the training samples for the SVM 
model. At the beginning of this stage, each RGB image is first converted to the grayscale color system. Then, 
the training records are formed based on the pixel values present in the grayscale image. To do so, the intensity 
information of the current pixel and the intensity of pixels within the neighboring radius R are extracted. By 
transforming these values into a vector form, a training record for the SVM model is constructed. Additionally, 
the corresponding value for each pixel in the ground-truth edge image is considered as the target label for that 
training sample. Figure 2 illustrates the process of forming a training record for a sample pixel. In this figure, the 
assumed pixel is represented as x. Assuming R = 1, the length of the feature vector will be 9, and if R = 2, then the 
features of each pixel will be described in a vector form with a length of 25. It should be noted that, considering 
the learning properties of the SVM model, the order of features does not affect the final result. Also, for pixels 
on the image boundary that fall outside the image extent, the values of their missing neighboring pixels are set 
to zero during training data generation.

After forming the training records based on the training RGB images and their ground-truth edges, the SVM 
model is trained and optimized. The proposed method utilizes an SVM model with a RBF kernel as an initial 
estimator for the image edges. SVM, a well-known binary classifier, has been widely used in various problem-
solving scenarios. This classifier attempts to create a boundary that separates the samples of the two target classes. 
By creating this boundary, the samples of each class will reside in a region known as the hyperplane. The margin, 
which represents the minimum distance between the samples and the boundary between the hyperplanes, is 
considered. The objective of the SVM training algorithm is to maximize the margin between the hyperplanes25.

Since the relationship between the input variables (pixel intensity and its neighbors) and the target classes 
(pixel membership in an edge) in the discussed problem is nonlinear, a non-linear kernel function called the 
RBF has been used to solve this problem with SVM. The radial basis function kernel is formulated as follows in 
the SVM model26:

(1)k
(

xi .xj
)

= exp(−γ
∣

∣

∣

∣xi − xj
∣

∣

∣

∣

2
)

Grayscale 

ima e

SVM (RBF)
Tune parameters 

 SSO

Optimized 

SVM (RBF)

Grayscale 

ima e

Approximate 

edges

Refine edges by 

SSO

R 
B

G
R

B
G

Training RGB 

Test RGB 

image

Detected edges

(Training) 
(Testing)

images g

g

by

Figure 1.   Stages of edge detection in color images in the proposed method.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

In the above relationship, xi .xj represents the dot product of the feature vectors for samples xi and xj . This 
is a common kernel trick used in SVMs with RBF kernels. Moreover, γ represents the coefficient of the kernel 
function. On the other hand, the number of samples belonging to the two classes, positive (edge members) and 
negative (background members), is unbalanced. This imbalance can lead to a decrease in training quality and 
an increase in errors. To address this issue in the SVM model, a correction parameter is adjusted separately for 
each class. In this case, the optimization problem of the SVM model can be described as follows26:

In the above relationship, w represents the normal vector of the hyperplane, and b determines the margin 
coefficient. Additionally, xi represents the i-th training sample, and di describes the corresponding label for that 
sample. Moreover, ξi represents the slack variable. For a sample i which has been correctly classified ξi = 0 and 
otherwise, ξi is the distance between i and its hyperplane. Finally, C+ and C− are the correction parameters for 
the positive and negative classes, respectively.

For problems with balanced number of samples in target classes, the correction parameters for the positive 
and negative classes can be considered the same. But, the edge detection task is a highly imbalanced problem that 
the number of samples of the positive category (edge pixels) is insignificant compared to the number of samples 
of the negative category (background pixels). For this reason, the correct performance of the SVM model depends 
on the precise setting of the correction parameters for the positive and negative classes. Accordingly, an SVM 
model can be optimized using the correction parameters C+ and C− , as well as the radial basis coefficient γ. This 
process can be formulated as an optimization problem that utilizes the SSO algorithm in the proposed method.

Next, the defined structure for each solution vector and the evaluation procedure for objective function will 
be presented. Then, the optimization steps of the SVM model based on the SSO will be described.

As mentioned, in the process of configuring the SVM model using SSO, the goal is to determine the optimal 
values for the parameters C+,C− , and γ. Each of these parameters is considered as an optimization variable that 
can take real values. Therefore, the length of each solution vector will be 3. The search bounds of each optimiza-
tion variable has been determined experimentally. In each solution vector, the search bounds for C+ and C− are 
set as 

[

10−2, 3.6× 104
]

 . This bound, covers all possible valid combinations of hyperparameters C+ and C− in edge 
detection problem. On the other hand, the search bounds for the γ parameter are set as 

[

10−10, 102
]

.
Defining the objective function can be considered as the key component in solving optimization problems. 

Because based on the objective function, the quality of a solution can be determined. In the proposed method, 
the objective function is defined based on a validation error criterion. Thus, to evaluate the objective value of 
each solution vector (the optimality of values specified for SVM hyperparameters), first, the considered values 
for hyperparameters C+,C− , and γ are extracted from the solution vector and these values are applied to the SVM 
model. This, will result in a configured SVM model based on the parameters specified in that solution vector. 
Then, the configured SVM model is trained on the training data. Finally, by applying the validation samples to 
the trained model, the training error is considered as the objective function.

In the above equation, E represents the number of misclassified records in the validation set. In other words, 
it signifies the number of validation samples for which the SVM model, configured with the parameters from a 

(2)minimizew,b
1
2
||w|| + C+

∑

di=1 ξi + C−

∑

di=−1 ξi
subject to Di(w.xi + b) ≥ ε − ξi , ξi ≥ 0

(3)Objective =
E

N

Figure 2.   The process of a training record formation for a sample pixel in the proposed method.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

specific solution vector, produced an output class different from the actual class label. Additionally, the parameter 
N represents the total number of records in the validation set.

Minimizing this objective function value is the goal of the SSO algorithm. A lower value indicates better 
performance of the SVM model on unseen data (validation set) and translates to a more accurate edge detec-
tion outcome. The basic idea of SSO algorithm is using the cooperative behavior of social spiders in colony. This 
algorithm works based on search agents that are modeled as spiders. Unlike most swarm intelligence methods 
where search agents have the same behavior; In SSO, two types of search agents (male and female spiders) with 
different behavior are defined, which can lead to a more efficient approach of searching the problem space. The 
SSO algorithm starts by initializing the population. Then an iterative mechanism is used for finding the optimal 
solution. At the beginning of each search cycle, the objective value of each spider is calculated. Then, based on 
the calculated weight, a weight value is assigned to each spider which can model the attractiveness of the spider 
for others27:

In the above equation, the term fitnessi represents the calculated objective value for solution i, while "worst" 
and "best" indicate the worst and best objective values in the current population, respectively. The weight of each 
spider is used to calculate the vibration level of each spider as follows27:

In the above equation, wj represents the weight assigned to spider j according to Eq. (4), and d represents the 
distance between two spiders. It should be noted that each spider, like i , accepts only three types of vibrations. 
The first type is represented as n and indicates vibrations generated by a closer spider with a higher weight. The 
second type represents vibrations generated by a female spider and is only accepted by male spiders. Finally, the 
third type represents vibrations generated by the best spider in the population. In the next step of SSO cycles, 
the position of each spider is updated. SSO uses two different strategies for simulating the movement pattern of 
male and female spiders. The position of female spiders is updated based on their current position and received 
vibrations as follows27:

In the above equation, the parameters α , β , and δ are random numbers in the range [0, 1]. Also, sn and sb 
represent the position of the neighboring and the best spider, respectively. Finally, fi(k) represents the current 
position of spider i, and fi(k + 1) describes its new position. On the other hand, the position of male spiders is 
updated by considering the vibration from female spiders, also27:

In the above equation, sf  represents the position of the nearest female spider. At the final step of each cycle in 
SSO, the mating and survival operators are applied to the population. If a male spider is dominant, it can perform 
a mating operation with female spider within range r. This will result in a new solution such as Cnew . In order to 
simulate the survival operation for Cnew , its objective value is compared with worst. If Cnew < worst , then the 
new solution is replaced with the worst solution in the population; otherwise, Cnew is discarded. The described 
cycle is repeated for a predetermined number of times. In the following, the pseudo code of proposed procedure 
for SVM optimization by SSO algorithm is presented.

(4)wi =
Objectivei − worst

best − worst

(5)V(i,j) = wje
d2i,j

(6)fi(k + 1) =

{

fi(k)+ α.Vi,n.(sn − fi(k))+ β .Vi,b.(sb − fi(k))+ δ.(rand − 0.5) with Pf
fi(k)− α.Vi,n.(sn − fi(k))− β .Vi,b.(sb − fi(k))+ δ.(rand − 0.5) with 1− Pf

(7)mi(k + 1) =







mi(k)+ α.Vi,f .(sf −mi(k))+ δ.(rand − 0.5) if mi(k) is dominant

fi(k)− α.

�

�

j∈ND mj(k).wj
�

j∈ND wj
−mi(k)

�

if mi(k) is nondominant



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

Algorithm 1.   SVM optimization by SSO.
After executing the above steps, the determined configuration in the solution vector with the minimum 

objective value is applied to the SVM model, and this model is used for the initial estimation of edges in the test 
samples. To do this, the test image is first converted to a grayscale system, and then the feature vectors of each 
pixel in the image are formed based on the process described at the beginning of this section. By feeding these 
vectors to the optimized SVM model, the membership of each pixel in the image to the edge region is deter-
mined. The binary matrix resulting from the aggregation of the SVM model outputs is considered as the initial 
approximation of the edge map of the grayscale image.

Edge enhancement based on SSO and difference with color channels combinations
After creating the edge approximation matrix, the SSO algorithm is used to improve the edge regions in the 
image. The search steps for finding the optimal solution by the SSO algorithm in this step are similar to the 
previous step, with the difference that a different structure is used for encoding the solution vector and evaluat-
ing its objective value. This structure is explained through an example. Consider an edge approximation matrix 
(result of the previous step) as shown in Fig. 3a. The SSO algorithm in this step attempts to match each pixel on 
the edge with the intensity values of the three matrices L1, L2, and L3 by displacing them. In this case, each edge 

1. Begin
2. t=1;

3. Initialize the population of spiders randomly within the search bounds;

4. For i=1 to p

5. Extract hyperparameters +, −, and γ from solution (i);

6. Apply hyperparameters to SVM model;

7. Train the tuned SVM model by X;

8. Calculate objective value of solution (i) using equation (3);

9. End for
10. Do
11. For i=1 to p

12. Calculate the weight value of each spider according to equation (4);

13. For j=1 to p

14. Calculate the vibration level of each spider agent based on equation (5);

15. End for
16. End for
17. For i=1 to p

18. If (spider i is female)

19. Update the position spider using equations (6);

20. Else
21. Update the position spider using equations (7);

22. End if
23. End for
24. For i=1 to p

25. If (spider i is male & dominant)

26. Apply mating operator between i and female spider j with dij<r to generate If ;

27. If ( < )

28. Discard ;

29. Else
30. Replace worst by ;

31. End if
32. End if
33. End for
34. For i=1 to p

35. Extract hyperparameters +, −, and γ from solution (i);

36. Apply hyperparameters to SVM model;

37. Train the tuned SVM model by X;

38. Calculate objective value of solution (i) using equation (3);

39. End for
40. Find best and worst spiders in current population;

41. t=t+1;

42. While (t ≤ T & objective(best) > 0)

43. Return hyperparameters +, −, and γ from the best solution found;

44. End

Input: population size (p), number of iterations (T), input training samples (X). 

Output: Optimal values of hyperparameters , , and γ 



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

pixel is considered as an optimization variable that can be moved by at most one pixel in the solution vector. In 
Fig. 3a, each edge pixel is represented by optimization variables v1 to v8. Thus, for this sample image, the length 
of the solution vector will be 8. An example solution vector for this example is shown in Fig. 3b. Each element 
of this vector corresponds to one of the optimization variables (edge pixels v1 to v8), and the value in each posi-
tion of the solution vector determines the displacement of that edge pixel. The encoding scheme for the solution 
vector for each pixel is shown in Fig. 3d. According to this figure, the number 0 indicates no displacement of 
the edge pixel, and numbers 1 to 8 indicate displacement in one of the surrounding directions with a radius of 
1. By applying the solution vector shown in Fig. 3b to the edge matrix in Fig. 3a, the resulting image will be as 
shown in Fig. 3c, where pixels v1, v2, v6, and v8 are displaced according to the assumed solution vector pattern.

With these explanations, each solution vector of the SSO algorithm in the second step of the proposed 
method will have a length equal to the number of pixels located on the edge in the initial approximation image. 
This length indicates the number of optimization variables, and each optimization variable is described by an 
integer in the range [0, 8].

After editing the edges based on the solution vector, the fitness evaluation is performed by comparing the 
values of edge pixels in pairwise combinations of color layers in the original image. For this purpose, each pair-
wise combination of color layers, in the form of <RG, GB, BR> , is transformed into a matrix using the following 
equation:

In the above equation I1, I2 represent two different layers of the RGB image, and Lc represents the uniform 
combination of these two layers. By applying the above equation to the combinations of <RG, GB, BR> layers, 
three matrices, denoted as L1, L2, and L3, will be obtained, corresponding to the combination of RG, GB, and BR 
layers, respectively. In this case, the fitness evaluation of the solution vector S is performed using the following 
equation:

In the above equation, Lji represents the edge pixel value in the layer Li , (i = 1, 2, 3) and N
(

L
j
i

)

 denotes the 
sum of values of its neighboring pixels (within a radius of 1). Additionally, the standard deviation function is 
shown as std(.) . Finally, |S| represents the number of optimization variables or the number of edge pixels. Accord-
ing to the equation, to evaluate the fitness of each solution vector, the edge pixels are first moved according to 
the displacement vector, and then the mean standard deviation at the positions corresponding to the edge pixels 
in the combined layer combinations L1, L2, and L3 is calculated. By performing this process, we can ensure that 
the edge pixels are located on the borders of the regions in the color layers of the initial image, and the maximum 

(8)Lc =
1

2
× (I1 + I2), I1, I2 ∈ {R,G,B}, I1 �= I2

(9)Fitness(S) =
1

1+ 1
3|S|

∑3
i=1

∑|S|
j=1 std(L

j
i ∪ N

(

L
j
i

)

)

v1 

v2 

v3 

v4 

v8 v7 

v6 v5 

Approximated edges

1 2 3 

8 

7 

0 4 

6 5 

v1

v2

v3

v4

v8

v7 v6

v5

Edited edges

(a) (b) (c)

Solution vector

4 4 0 0 0 6 0 2 

v1 v2 v3 v4 v5 v6 v7 v8

(d)

Coding of edge pixel movements

Figure 3.   An example of edge improvement process using the SSO algorithm.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

distinction between the color regions can be achieved based on the edges. Since the goal of the optimization 
algorithm is to maximize the mean standard deviation, Eq. (9) is formulated in an inverse form, and the addition 
of 1 is included to prevent division by zero (for completely uniform regions in the images). With these explana-
tions, the SSO algorithm in the second step of the proposed method attempts to edit the positions of the edge 
pixels in the initial approximation in a way that minimizes Eq. (9). The pattern obtained from the optimal solution 
vector in this step will be applied to the edge approximation matrix to obtain the output of the proposed method 
based on it.

Results and discussion
In order to implement the proposed method, MATLAB 2019a software has been used. All tests were performed 
on a personal computer, running 64-bits version of windows 10 on an Intel core i7 processor with a processing 
power of 3.8 GHz and 32 GB of RAM. Also, the proposed model in this research has been implemented using 
array processing technology in graphical memory, in which an NVIDIA RTX 2080 Ti graphics adapter is used. 
During implementation, the processes of data record extraction and edge improvement in the second step of the 
proposed method have been implemented using graphic processors. In this case, the image is divided into 64 
non-overlapping parts and the improvement of the edges of each part is performed by a separate process. Also, 
during the implementation, the Berkley Segmentation Dataset 500 (BSDS500)28 has been used.

Database and implementation scenario
For the implementation of the proposed method and evaluating its performance in edge detection, the samples 
from the BSDS500 database have been used. This database consists of three sets of images: a training set with 
200 samples, a validation set with 100 samples, and a testing set with 200 samples, collected for the purposes of 
segmentation and edge detection. All images are stored in the RGB color system and have different dimensions. 
Each sample in the BSDS500 database contains five ground truth edge annotations. During the experiments, 
the proposed model is trained based on the training set, specifically using Set 1. The SVM model employed in 
the proposed method is trained using the features of the training samples from the database, and then, for the 
optimization of the SVM model, the features of the validation samples are utilized with the SSO algorithm. 
Finally, in the testing phase, the performance of the proposed method is evaluated using the testing samples.

The BSDS500 training image set consists of more than 30.8 million pixels, with 506,113 pixels belonging to 
the image edges. Due to the highly unbalanced distribution of samples in the target classes, for training the SVM 
model, records corresponding to all edge pixels and 5% of the records corresponding to non-edge pixels have 
been used. The result of this process is 2,024,800 training records, which are reduced to 1,973,844 records after 
removing duplicate records. In this training set, there are 463,915 records for edge pixels (positive class) and the 
remaining records are for non-edge pixels (negative class). Repeating this process for validation samples resulted 
in the formation of 720,985 validation records, with 201,163 records belonging to the positive class and the rest 
belonging to the negative class. Finally, the test image set consists of more than 30.88 million pixels, all of which 
are evaluated by the proposed method for edge regions. After determining the image edges using the proposed 
method, each pixel can fall into one of the following four categories:

1.	 TP (true positive): represents the set of edge pixels that have been correctly detected by the edge detection 
algorithm.

2.	 TN (true negative): represents the set of non-edge pixels that the algorithm has correctly identified as not 
being part of an edge.

3.	 FP (false positive): indicates the set of non-edge pixels that have been mistakenly identified by the algorithm 
as edges.

4.	 FN (false negative): describes the set of edge pixels that the algorithm was unable to detect.

By measuring the four aforementioned sets, the performance of the algorithm in detecting image edges can 
be described based on precision, recall, and F-Measure metrics. The precision metric indicates the algorithm’s 
effectiveness in correctly identifying edge pixels and shows the proportion of correct positive outputs of the algo-
rithm. On the other hand, the recall metric indicates the algorithm’s ability to correctly identify the proportion 
of ground-truth edge pixels. Finally, the F-Measure metric describes the overall performance of the algorithm 
in edge extraction by calculating the harmonic average of precision and recall. These metrics are formulated as 
follows:

Furthermore, the similarity between the edge-detected images by the proposed method and the ground truth 
images has been measured using structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and mean 
squared error (MSE) metrics. The SSIM metric indicates the structural similarity between the detected edges 

(10)Precision =
TP

TP + FP

(11)Recall =
TP

TP + FN

(12)F −Measure = 2×
Precision× Recall

Precision+ Recall



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

by the proposed algorithm and the ground truth edges. In the ideal case, the structural similarity between the 
detected edges and the ground truth edges is maximum. The SSIM value varies between 0 and 1. Thus, in the 
best case, the SSIM value is 1, and in the worst case, it is 0. The SSIM metric can be calculated using the follow-
ing formula29:

where in the above equation, σQ represents the root mean square variance of the original image Q, and σQ0 rep-
resents the root mean square variance of the result image. µQ and µQ0 respectively indicate the mean intensity 
of the original and result images. Also, σQQ0 represents the root squared correlation among Q and Q0. In this 
equation, c1 = (k1L)

2 and c2 = (k2L)
2 are constant terms of the similarity index; where the values of k1, k2, and 

L are chosen to be 0.01, 0.03, and 255 respectively. The PSNR metric indicates the ratio between the maximum 
possible power of the signal (groung-truth edges) and the power of the noise (edge detection error). This metric 
can be calculated using the following formula29:

In the above equation, MSE represents the mean squared error. The goal of edge detection algorithms is to 
achieve a higher PSNR value. Finally, the MSE metric can be calculated as follows:

where, N represents the number of pixels in the images, and ei and gi denote the pixel values at position i in the 
edge detection and ground-truth images, respectively.

Results
In order to implement the proposed method, MATLAB 2019a software was used. According to the procedure 
described in the previous section, training and validation samples were used to build and optimize the SVM 
model, and test samples were used to evaluate its performance. In the SVM model optimization phase, the popu-
lation size and number of iterations of the SSO algorithm were set to 150 and 300, respectively. Additionally, in 
the edge improvement phase, these two parameters in the SSO algorithm were set to 200 and 400, respectively. 
Figure 4 shows the convergence plot of the SSO algorithm for optimizing the SVM model parameters. The plot 
demonstrates that by utilizing the SSO algorithm, the validation error can be reduced to less than 0.01. This 
optimal configuration was discovered in the 239th iteration of the SSO algorithm, and based on it, setting the 
parameters C+ , C− and γ to the values of 1.37, 15.89, and 0.0021, respectively, can result in the minimum valida-
tion error.

During the experiments, the performance of the proposed method was studied in two scenarios, R = 1 and 
R = 2. In the R = 1 scenario, the feature vector length for describing the attributes of each pixel is set to 9, while in 

(13)SSIM(Q,Q0) =
(2µQµQ0 + c1)(2σQQ0 + c2)

(µ2
Q + µQ2

0
+ c1)(σ

2
Q + σ 2

Q0
+ c2)

(14)PSNR = 10× log10(
2552

MSE
)

(15)MSE =
1

N

N
∑

i=1

(

ei − gi
)2

40 80 120 160 200 240 280
Iterations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fi
tn
es

s

Best Fitness
Mean Fitness

Figure 4.   Convergence plot of the average fitness and best fitness discovered for SVM parameter optimization 
by SSO.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

the R = 2 scenario, the attributes of each pixel are described using 25 features (see Fig. 2). Additionally, to evalu-
ate the effectiveness of each employed technique in the proposed method, the following cases were also studied:

•	 Proposed (without SSO): in this case, the SVM model optimization step using the SSO algorithm is ignored, 
and an SVM model with the RBF kernel function is used for the initial approximation of the image edges.

•	 Proposed (without L2): in this case, the edges approximated by the SVM model are considered as the final 
edges, and the edge refinement process using the SSO algorithm in the second step of the proposed method 
is ignored.

It should be noted that in both of the above cases, the neighborhood radius parameter is set to R = 2. Further-
more, the performance of the proposed method is compared with the methods of Soria et al.13 and Poma et al.15. 
In Fig. 5, several examples of edge-detected images using the proposed method from the BSDS500 database are 
displayed. In this figure, in addition to the output of the proposed method, the results of edge detection by the 
Canny, Prewitt, and Sobel algorithms are also shown.

As the results presented in Fig. 5 demonstrate, the edges identified by the proposed method are closer to the 
ground truth images. Comparing the results of the proposed method with the Canny, Prewitt, and Sobel edge 
detectors shows that the performance of the proposed method is clearly superior to the mentioned operators. 
This superiority in the proposed method can be attributed to the utilization of machine learning techniques, as 
machine learning models can perform edge detection with higher accuracy by learning edge patterns. On the 
other hand, comparing the two cases of R = 1 and R = 2 shows that increasing the neighborhood radius leads to 
improved edge detection results. In the R = 1 case, only pixels within a radius of one are considered for generating 
the feature vector of each pixel. In contrast, R = 2 increases the radius to 2 and employs a wider range of image 
features to describe the characteristics of each pixel. This property indicates that increasing the neighborhood 
radius can improve the accuracy of edge detection.

To provide a more accurate evaluation of the performance of the proposed method, precision, recall, and 
F-measure metrics can be utilized. In Fig. 6, the performance of various methods in detecting edges in color 
images from the BSDS500 dataset is shown based on these metrics.

Figure 5.   Several examples of edge-detected images using the proposed method and other methods from the 
BSDS500 database.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

According to the results presented in Fig. 6, the highest edge detection quality is achieved when using the 
proposed method (R = 2) for edge detection of images. The results show that in case of R = 1, the performance of 
proposed method is competitive with models presented by Soria et al.13 and Poma et al.15. On the other hand, if 
each one of SVM optimization or edge enhancement steps using SSO is ignored, the performance of the model 
considerably decreases. This shows that classical machine learning models such as SVM, if they take advantage 
of a precise hyperparameter configuration and output refinement, can still compete with deep learning methods 
in applications such as edge detection. The results indicate that the proposed method outperforms other com-
pared methods in terms of precision, recall, and F-measure. The higher precision of the proposed method in 
edge detection implies that the identified edge pixels by this approach have a higher probability of being correct. 
Moreover, the higher recall in the proposed method indicates that our solution has been able to correctly extract 
a higher proportion of ground truth edge pixels. Finally, the higher value of F-measure confirms the higher qual-
ity of the edge-detected images obtained by the proposed method compared to other methods. This means that 
the outputs of the proposed method have higher TP values and, at the same time, lower FP and FN values. The 
F-Measure of the proposed method for (R = 2) was found to be 80.76%, which shows a minimum improvement 
of 0.53% compared to previous methods.

In Fig. 7, the precision-recall curves for different methods are plotted. In this figure, the horizontal axis rep-
resents different recall values, and the vertical axis represents precision values for different thresholds. This curve 
can provide a detailed insight into the performance of different methods in terms of accuracy in identifying edge 
pixels. Comparing the performance curves of different methods in Fig. 7 shows that the proposed method can 
achieve higher precision and recall values. According to this figure, the area under the precision-recall curve 
for the proposed method is 0.8002, and the closest approach to the proposed method is the solution proposed 
by Soria et al.13 with an AUC of 0.7927, which utilizes convolutional neural networks for edge detection. These 
results report an improvement of about 1% for AUC criteria and confirm the higher effectiveness of the proposed 
method in edge detection of color images.

Continuing with the evaluation of the proposed method, its performance based on the SSIM, PSNR, and 
MSE metrics is discussed. The results related to these metrics are plotted in Fig. 8. In Fig. 8a, the performance of 
different methods is compared in terms of MSE. This metric describes the squared difference between the ground 
truth images and the edge detection results. It is obvious that the goal of an edge detection method is to identify 
edge pixels with the least deviation from the background. According to Fig. 8a, the proposed method with R = 2 
has the lowest average MSE for the test samples of the BSDS500 database. It should be noted that the ground 
truth and edge detection result images are binary, and each pixel can only have a value of 0 or 1. Based on these 
results, the MSE value in the proposed method is about one-fourth of the Soria et al.13 method (considered as 
the closest-performing method) and the proposed method can reduce MSE in edge detection by at least 0.0154. 
Additionally, Fig. 8b shows that the images resulting from edge detection by the proposed method have lower 
errors in terms of consistency with the ground truth images, leading to an increase in the PSNR metric. Finally, 
Fig. 8c confirms that the edge detection output of the proposed method has a higher structural similarity with 

Proposed (R=2)

Proposed (R=1)

Proposed (without SSO)

Proposed (without L2)

Soria et al

Poma et al

0

0.2

0.4

0.6

0.8

1

Precision Recall F-Measure

D
et

ec
tio

n 
Q

ua
lit

y

Figure 6.   Performance of different methods in edge detection of color images from BSDS500 dataset based on 
precision, recall, and F-measure.



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

the ground truth images, indicating the ability of our method to approximate the true edges of color images 
more accurately. This superiority in the proposed method can be attributed to the following two factors: firstly, 
the optimization of the SVM model by the SSO algorithm has allowed for a more accurate initial approximation 
of the input image edges based on this model. Secondly, the use of binary combinations of color channels to 
enhance edges by the SSO algorithm has facilitated the efficient utilization of color features in images for more 
accurate edge detection. The summary of the experimental results is presented in Table 2.

In Table 2, the performance of different methods is also compared in terms of processing time. It should be 
noted that the presented processing time values in this table are related to the testing phase using the trained 
model, and the training time (including model optimization for the proposed method) is not taken into account. 
Based on the results presented in Table 2, although the proposed method has better performance in identifying 
edges in color images, it requires a longer processing time, and this increase in processing time is due to the edge 
refinement step in the second step of the proposed method. Furthermore, these results are based on computa-
tions performed on graphics processors, and if the proposed method is executed on a CPU, the average edge 
detection time per image will increase to 335.595 s. Therefore, the increased computational burden resulting 
from the optimization step can be considered as one of the limitations of the proposed method, which should 
be addressed in future research.

In order to assess the performance of the proposed method more precisely, its flexibility in the condition 
of increasing noise and decreasing contrast in the images has been evaluated. Because the destructive effect of 
noise or low contrast are common in real-world images30. These results are presented in Fig. 9. In the left column 
of this figure, the results related to the effect of increasing noise on the performance of the proposed method 
in different conditions are given. Also, in the right column, the results related to assessing the effect of contrast 
changes are given. Each of these tests evaluated the performance of the proposed method in terms of precision, 
recall and F-Measure, the results of which are presented in the first to third rows of Fig. 9, respectively. Examining 
the performance of the proposed method in different situations shows its efficiency and flexibility in conditions 
of increased noise.

The results presented in Fig. 9 show that with a 30% increase in Gaussian noise in the input images, the edge 
detection quality of the proposed method (R = 2) decreases by only 6.4% in terms of F-Measure. On the other 
hand, if the edge enhancement process by SSO is ignored (Without L2 mode), this reduction will be 24.16%, 
which reports a more reduction compared to other operational scenarios of the proposed method. These results 
clearly show that the process of edge improvement by SSO in the proposed method has been able to significantly 
increase the resistance of this model against destructive effect of noise. On the other hand, examining the effect of 
contrast changes in Fig. 9 leads to similar results. These results show that 30% reduction of contrast, will result in 
only 4.36% reduction of F-Measure in the proposed method (R = 2). Meanwhile, if the SSO algorithm is removed 
in any step of SVM optimization or edge improvement, the F-Measure will drop by at least 11.7%. In this way, it 
can be concluded that the optimal performance of the proposed method and its resistance to the harmful effects 
of exposure depend on each step of SVM optimization and edge enhancement by SSO.

0 0.2 0.4 0.6 0.8 1
recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ec

is
io
n

Precision-Recall Curve

Proposed (R=2) [AUC=0.8002]
Proposed (R=1) [AUC=0.7582]
Proposed (without SSO) [AUC=0.7319]
Proposed (without L2) [AUC=0.7554]
Soria et al [AUC=0.7927]
Poma et al [AUC=0.7794]

Figure 7.   Precision–recall curve for different methods.



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

Time complexity analysis and optimization considerations
This section analyzes the time complexity of the proposed method for edge detection in color images. The overall 
time complexity of the proposed method can be expressed as:

where, TSVM is the time complexity of training and classifying using the SVM model. In this case, utilizing an 
RBF kernel leads to a time complexity of O

(

N ∗ S2
)

 in the worst case, where N is the number of training samples 
and S is the number of support vectors. Also, TSSO is the time complexity of the SSO optimization algorithm. 
This depends on the chosen implementation but is generally considered to be O(M ∗ I ∗ D) , where M = 150 is 
the population size, I = 300 is the number of iterations, and D = 3 signifies the number of hyperparameters being 
tuned for the SVM model (typically C + , C-, and γ for the RBF kernel). Finally, Tcolorprocessing is the complexity 
of processing pairwise color layer combinations. Since the color system is RGB (L = 3), this complexity can be 
estimated as O(W ∗H ∗ L) = O(W ∗H ∗ 3) , where W and H are the image width and height.

(16)Ttotal = TSVM + TSSO + Tcolorprocessing

(a) (b)

(c)

Proposed (R=2)

Proposed (R=1)

Proposed (without SSO)

Proposed (without L2)

Soria et al

Poma et al

0

0.01

0.02

0.03

0.04

M
SE

Proposed (R=2)

Proposed (R=1)

Proposed (without SSO)

Proposed (without L2)

Soria et al

Poma et al

0

5

10

15

20

25

PS
N
R

Proposed (R=2)

Proposed (R=1)

Proposed (without SSO)

Proposed (without L2)

Soria et al

Poma et al

0

0.2

0.4

0.6

0.8

1

SS
IM

Figure 8.   Performance comparison of different methods based on comparing edge detection results with 
ground truth edge image using (a) MSE, (b) PSNR, and (c) SSIM metrics.

Table 2.   Numerical values obtained from experiments.

Method F-measure Recall Precision SSIM PSNR MSE Time(s)

Proposed (R = 2) 0.8076 0.7130 0.9311 0.9011 24.6274 0.0034 3.3155

Proposed (R = 1) 0.7633 0.6559 0.9128 0.7327 14.0296 0.0395 2.0568

Proposed (without SSO) 0.7559 0.6629 0.8791 0.7287 14.0225 0.0396 3.3056

Proposed (without L2) 0.7725 0.6790 0.8959 0.6366 16.4970 0.0224 0.0015

Soria et al.13 0.8023 0.7091 0.9237 0.6524 17.2685 0.0188 2.0235

Poma et al.15 0.7975 0.7130 0.9047 0.7588 15.0237 0.0315 1.5856



15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

Dominant factors and potential optimizations in terms of complexity of the proposed method, includes the 
following:

•	 Investigating the alternative optimization algorithms that exhibit faster convergence for tuning SVM hyper-
parameters.

•	 Exploring the potential of utilizing approximate optimization methods that can provide good results with 
lower computational demands.

Applying Gaussian noise Reducing contrast

0 5 10 15 20 25 30
% of added Gaussian noise

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Pr
ec

is
io
n

Proposed (R=2)
Proposed (R=1)
Proposed (without SSO)
Proposed (without L2)

0 5 10 15 20 25 30
% of contrast reduction

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Pr
ec

is
io
n

Proposed (R=2)
Proposed (R=1)
Proposed (without SSO)
Proposed (without L2)

0 5 10 15 20 25 30
% of added Gaussian noise

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

R
ec

al
l

Proposed (R=2)
Proposed (R=1)
Proposed (without SSO)
Proposed (without L2)

0 5 10 15 20 25 30
% of contrast reduction

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

R
ec

al
l

Proposed (R=2)
Proposed (R=1)
Proposed (without SSO)
Proposed (without L2)

0 5 10 15 20 25 30
% of added Gaussian noise

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

F-
M
ea

su
re

Proposed (R=2)
Proposed (R=1)
Proposed (without SSO)
Proposed (without L2)

0 5 10 15 20 25 30
% of contrast reduction

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

F-
M
ea

su
re

Proposed (R=2)
Proposed (R=1)
Proposed (without SSO)
Proposed (without L2)

Figure 9.   The performance of proposed method in case of (left) applying Gaussian noise and (right) reducing 
contrast in images in terms of (top) precision, (middle) recall and (bottom) F-measure.



16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

•	 Designing the algorithm to leverage hardware acceleration capabilities (e.g., GPUs) for all processing steps 
of the proposed model (including training SVM model).

By analyzing the time complexity and exploring potential optimizations, the proposed method can be further 
improved for practical applications where computational efficiency is a concern.

Conclusion
Edge detection in color images is one of the most commonly used image processing techniques, which, if an 
efficient method is provided, can enhance a wide range of processing tasks. However, edge detection in color 
images has received less attention compared to other applications. Therefore, this research focused on proposing 
an efficient method for edge detection in color images. The proposed method utilized the combination of SVM 
and the SSO algorithm to achieve this goal. The proposed approach performs edge detection in two levels. In the 
first level, an initial approximation of the edges in the grayscale image is created using an SVM model optimized 
by the SSO algorithm. In the second level, the SSO algorithm is employed to improve the detected edges. For 
this purpose, the edge pixels are displaced based on their compatibility with the pair-wise combinations of color 
layers in the image, using the standard deviation measure, in order to obtain an optimal displacement pattern 
for accurate edge detection of image regions based on their color features. The findings of the research demon-
strated that the utilization of the SSO algorithm for optimizing the SVM model can be effective in achieving more 
accurate edge detection, leading to a reduction of edge detection error by approximately 5.17%. Furthermore, 
the adoption of the edge improvement strategy based on the SSO algorithm can decrease the edge detection 
error by approximately 3.51%. These results confirm that each of the techniques employed in the proposed 
method can have a positive impact on enhancing the accuracy of edge detection in color images. Additionally, 
the proposed model in this study was implemented using GPU-based parallel processing technology, and its 
effectiveness in accelerating the edge detection process was examined. The results of this analysis indicated that 
the utilization of this processing technology can increase the image processing speed by more than 100 times. 
Based on the results of the experiments, the F-Measure criterion of the proposed method for edge pixel detec-
tion in the BSDS500 image database was found to be 80.76%, which shows a minimum improvement of 0.53% 
compared to previous methods.

One of the limitations of the proposed method is the relatively high processing time in the second step (edge 
improvement). This increase in processing load is due to the extensive search space of the optimization problem 
for pixel edge editing. Although efforts were made in the proposed method to minimize this processing time by 
utilizing parallel processing techniques in GPU processors, real-time applications of color image edge detection 
still require faster solutions. Therefore, improving the processing speed in the second step of the proposed method 
can be a topic for future research. Additionally, in future studies, improving the performance of the proposed 
method can be attempted by replacing the SVM model with other learning models, such as CNNs.

Data availability
All data generated or analysed during this study are included in this published article.

Received: 10 July 2023; Accepted: 15 April 2024

References
	 1.	 - Zhao, J. X., Liu, J. J., Fan, D. P., Cao, Y., Yang, J., & Cheng, M. M. EGNet: Edge guidance network for salient object detection. In 

Proceedings of the IEEE/CVF International Conference on Computer Vision. 8779–8788 (2019).
	 2.	 Soomro, S., Munir, A. & Choi, K. N. Hybrid two-stage active contour method with region and edge information for intensity 

inhomogeneous image segmentation. PLoS ONE 13(1), e0191827 (2018).
	 3.	 Wang, L. et al. Active contours driven by edge entropy fitting energy for image segmentation. Signal Process. 149, 27–35 (2018).
	 4.	 Sun, R. et al. Survey of image edge detection. Front. Signal Process. 2, 826967 (2022).
	 5.	 - Jing, J., Liu, S., Wang, G., Zhang, W., & Sun, C. Recent advances on image edge detection: A comprehensive review. Neurocomput-

ing (2022).
	 6.	 Nichols, J. A., Herbert Chan, H. W. & Baker, M. A. Machine learning: Applications of artificial intelligence to imaging and diagnosis. 

Biophys. Rev. 11, 111–118 (2019).
	 7.	 Garcia-Lamont, F., Cervantes, J., López, A. & Rodriguez, L. Segmentation of images by color features: A survey. Neurocomputing 

292, 1–27 (2018).
	 8.	 Bhatti, U. A. et al. Advanced color edge detection using Clifford algebra in satellite images. IEEE Photon. J. 13(2), 1–20 (2021).
	 9.	 Mittal, M. et al. An efficient edge detection approach to provide better edge connectivity for image analysis. IEEE Access 7, 

33240–33255 (2019).
	10.	 Gandhi, M., Kamdar, J. & Shah, M. Preprocessing of non-symmetrical images for edge detection. Augment. Hum. Res. 5, 1–10 

(2020).
	11.	 Orujov, F., Maskeliūnas, R., Damaševičius, R. & Wei, W. J. A. S. C. Fuzzy based image edge detection algorithm for blood vessel 

detection in retinal images. Appl. Soft Comput. 94, 106452 (2020).
	12.	 Ismael, A. N. Comparative study for different color spaces of image segmentation based on Prewitt edge detection technique. J. 

Educ. Pure Sci.-Univ. Thi-Qar 10(1), 185–192 (2020).
	13.	 - Soria, X., Sappa, A., Humanante, P., & Akbarinia, A. Dense extreme inception network for edge detection. arXiv preprint arXiv:​

2112.​02250 (2021)
	14.	 Wang, D. et al. Deep learning approach for apple edge detection to remotely monitor apple growth in orchards. IEEE Access 8, 

26911–26925 (2020).
	15.	 - Poma, X. S., Riba, E., & Sappa, A. Dense extreme inception network: Towards a robust CNN model for edge detection. In Pro-

ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 1923–1932 (2020).
	16.	 Yang, M., Wang, H., Hu, K., Yin, G. & Wei, Z. IA-Net $: $ An inception–attention-module-based network for classifying underwater 

images from others. IEEE J. Ocean. Eng. 47(3), 704–717 (2022).

http://arxiv.org/abs/2112.02250
http://arxiv.org/abs/2112.02250


17

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9136  | https://doi.org/10.1038/s41598-024-59811-z

www.nature.com/scientificreports/

	17.	 Cong, R., Sheng, H., Yang, D., Cui, Z. & Chen, R. Exploiting spatial and angular correlations with deep efficient transformers for 
light field image super-resolution. IEEE Trans. Multimed. 26, 1421–1435. https://​doi.​org/​10.​1109/​TMM.​2023.​32824​65 (2024).

	18.	 Liu, H., Xu, Y. & Chen, F. Sketch2Photo: Synthesizing photo-realistic images from sketches via global contexts. Eng. Appl. Artif. 
Intell. 117, 105608 (2023).

	19.	 Qi, F., Tan, X., Zhang, Z., Chen, M. & XieMa, Y. L. Glass makes blurs: Learning the visual blurriness for glass surface detection. 
IEEE Trans. Indus. Inform. https://​doi.​org/​10.​1109/​TII.​2024.​33522​32 (2024).

	20.	 Versaci, M. & Morabito, F. C. Image edge detection: A new approach based on fuzzy entropy and fuzzy divergence. Int. J. Fuzzy 
Syst. 23(4), 918–936 (2021).

	21.	 - Peng, F., Wang, S., Wang, X., Yang, X., & Shen, Y. Research on recognition for subway track based on canny edge detection and 
Hough transformation. In 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference 
(ITNEC). Vol. 6. 1664–1667 (IEEE, 2023).

	22.	 Liu, Y., Xie, Z. & Liu, H. An adaptive and robust edge detection method based on edge proportion statistics. IEEE Trans. Image 
Process. 29, 5206–5215 (2020).

	23.	 - Horvath, M., Bowers, M., & Alawneh, S. Canny edge detection on GPU using CUDA. In 2023 IEEE 13th Annual Computing and 
Communication Workshop and Conference (CCWC​). 0419–0425 (IEEE, 2023).

	24.	 Livingston, M. L., Singh, S. C., Manojkumar, K. & Kumar, S. S. A study on parallel and pipelining simulation techniques for edge 
detection and their performance analysis. J. Comput. Theor. Nanosci. 16(2), 568–572 (2019).

	25.	 - Pisner, D. A., & Schnyer, D. M. Support vector machine. In Machine Learning. 101–121. (Academic Press, 2020).
	26.	 Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L. & Lopez, A. A comprehensive survey on support vector machine clas-

sification: Applications, challenges and trends. Neurocomputing 408, 189–215 (2020).
	27.	 Luque-Chang, A., Cuevas, E., Fausto, F., Zaldivar, D. & Pérez, M. Social spider optimization algorithm: Modifications, applications, 

and perspectives. Math. Probl. Eng. 2018, 1–29 (2018).
	28.	 Arbelaez, P., Maire, M., Fowlkes, C. & Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. 

Mach. Intell. 33(5), 898–916 (2010).
	29.	 - Zhuang, Y., Chen, S., Jiang, N., & Hu, H. An effective WSSENet-based similarity retrieval method of large lung CT image data-

bases. In KSII Transactions on Internet & Information Systems. Vol. 16(7) (2022).
	30.	 - Qi, M., Cui, S., Chang, X., Xu, Y., Meng, H., Wang, Y., & Arif, M. Multi-region nonuniform brightness correction algorithm based 

on L-channel gamma transform. In Security and Communication Networks, 2022 (2022).

Author contributions
All authors wrote the main manuscript text. All authors reviewed the manuscript.

Competing interests 
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1109/TMM.2023.3282465
https://doi.org/10.1109/TII.2024.3352232
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Optimizing support vector machine (SVM) by social spider optimization (SSO) for edge detection in colored images
	Literature review
	Frequency-domain methods
	Gradient-based methods
	Fuzzy-logic based methods
	Deep learning techniques
	Other techniques
	Computational efficiency considerations

	Proposed method
	Edge approximation based on SVM and SSO
	Edge enhancement based on SSO and difference with color channels combinations

	Results and discussion
	Database and implementation scenario

	Results
	Time complexity analysis and optimization considerations

	Conclusion
	References


