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Investigation of the effectiveness 
of a classification method 
based on improved DAE feature 
extraction for hepatitis C prediction
Lin Zhang 1, Jixin Wang 2*, Rui Chang 3 & Weigang Wang 2*

Hepatitis C, a particularly dangerous form of viral hepatitis caused by hepatitis C virus (HCV) infection, 
is a major socio-economic and public health problem. Due to the rapid development of deep learning, 
it has become a common practice to apply deep learning to the healthcare industry to improve the 
effectiveness and accuracy of disease identification. In order to improve the effectiveness and accuracy 
of hepatitis C detection, this study proposes an improved denoising autoencoder (IDAE) and applies it 
to hepatitis C disease detection. Conventional denoising autoencoder introduces random noise at the 
input layer of the encoder. However, due to the presence of these features, encoders that directly add 
random noise may mask certain intrinsic properties of the data, making it challenging to learn deeper 
features. In this study, the problem of data information loss in traditional denoising autoencoding 
is addressed by incorporating the concept of residual neural networks into an enhanced denoising 
autoencoder. In our experimental study, we applied this enhanced denoising autoencoder to the 
open-source Hepatitis C dataset and the results showed significant results in feature extraction. While 
existing baseline machine learning methods have less than 90% accuracy and integrated algorithms 
and traditional autoencoders have only 95% correctness, the improved IDAE achieves 99% accuracy 
in the downstream hepatitis C classification task, which is a 9% improvement over a single algorithm, 
and a nearly 4% improvement over integrated algorithms and other autoencoders. The above results 
demonstrate that IDAE can effectively capture key disease features and improve the accuracy of 
disease prediction in hepatitis C data. This indicates that IDAE has the potential to be widely used in 
the detection and management of hepatitis C and similar diseases, especially in the development of 
early warning systems, progression prediction and personalised treatment strategies.

Keywords  Hepatitis C, Autoencoder, Denoising autoencoder

Hepatitis, as an important global public health problem, its early diagnosis and precise treatment are crucial to 
reduce the disease burden and improve patient prognosis. In recent years, with the rapid growth of biomedical 
data, how to extract valuable information from massive and complex hepatitis-related data has become a major 
challenge for medical research. Although traditional machine learning techniques have gradually become the 
core means of mining the deep value of medical big data, and have made breakthroughs in the accurate diagnosis 
of diseases1, prospective prediction of patient treatment response, and formulation of individualised treatment 
strategies2. However, conventional machine learning methods have revealed a series of inherent limitations when 
applied to complex medical data like hepatitis C. An et al.3 found that conventional machine learning techniques 
are difficult to effectively mine the non-linear, high-dimensional pathophysiological patterns hidden in highly 
complex medical data containing multiple clinical indicators and biomarker information. Meanwhile, Rahman 
et al.4 suggested the prevalent category imbalance problem in medical datasets leads traditional machine learn-
ing models to be ineffective in dealing with rare and early-stage conditions, and to face significant challenges in 
terms of robustness and generalisation when coping with situations such as high noise, large amounts of missing 
data and outliers.
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It is in this context that deep learning, as an innovative driver in the field of machine learning, has rapidly pen-
etrated and deepened into medical data analysis in recent years. Traditional models are limited by the complexity, 
variability and noise of medical data. Therefore, researchers are increasingly adopting deep learning noise reduc-
tion techniques to effectively remove medical data noise and extract key features to improve diagnostic accuracy 
and clinical decision-making efficiency. For example: DnCNN5 adopts a residual learning strategy, where the 
model is dedicated to estimating the residuals of the noisy image relative to its corresponding noiseless original. 
This innovative approach means that the network only needs to focus on learning the properties of the noisy 
components, which reduces the difficulty of model training while effectively denoising. Cycle-GAN6 proposes 
the use of a discriminator network for distinguishing the real noise-free image from the image generated by the 
denoising network, by which the denoising network is forced to generate results closer to the real noise-free image 
for denoising purposes. RED-CNN7 utilises a residual learning structure, where the image features are captured 
by the encoder and reconstructed inversely in the decoder, and the network focuses on learning the residuals 
between the noisy image and the noise-free image, thus achieving effective noise removal. FFDNet8 dynamically 
adapts to different noise levels through a noise level-aware deep convolutional network that applies end-to-end 
learning to remove image noise. While AE, as an unsupervised deep learning framework derived from neural 
network theory, its variant DAE has likewise been widely used in medical data denoising and disease detection 
and classification tasks in recent years. For example, Liu et al.9 achieved effective extraction of extracted depth 
features from breast cancer gene expression and CNA data by changing the encoder is realistic dual input denois-
ing autoencoder. Im et al.10 combined a noise-reducing autoencoder and a variational autoencoder to denoise 
the data by introducing random noise and optimising the distribution of hidden variables to learn a robust and 
interpretive low-dimensional representation of the data during the training process.

However, the application of noise-reducing autoencoders to hepatitis C data has encountered several chal-
lenges: firstly, limited by small datasets, noise-reducing autoencoders are prone to simplify the feature overload 
in a small number of samples, and the deepening of the network may lead to gradient problems and performance 
degradation due to the high complexity of the features; secondly, the ability of the model to generalise is highly 
dependent on the type and strength of the added noise; and thirdly, the opacity of the deep learning models 
limits the intuitive understanding of predictive causal logic, which is critical for medical decision-making. In 
order to address the above problems and achieve fast convergence of the shallow network while learning more 
advanced features of the hepatitis C data, we propose to use an improved denoising autoencoder(IDAE), which 
introduces the concept of ResNet11 residual neural network in computer vision for compensating the features that 
are masked by the data itself by the random noise added to the input. The extracted features are finally used for 
hepatitis C disease detection. This work is expected to provide a powerful data-driven tool for early diagnosis and 
individualized treatment of hepatitis, as well as provide lessons and insights for deep learning feature extraction 
research for other chronic diseases The following are the main contributions of this paper:

•	 In this paper, machine learning algorithms such as SVM, KNN, Random and various types of autoencoder 
were used to model and analyze the hepatitis C data and determine the optimal model. It fills the gap in the 
field in the study of hepatitis C using advanced algorithms. It broadens the depth of knowledge about the 
complex data characteristics of hepatitis C and promotes the development of advanced algorithmic applica-
tions in the study of this disease.

•	 Applying the concept of residual neural network to DAE enhances the robustness of DAE, improves the stabil-
ity and reliability of the learnt features, and validates the feature learning capability of IDAE on the hepatitis 
C dataset. Meanwhile, using ablation experiments, it is demonstrated that IDAE accelerates the convergence 
of the model due to the inclusion of residual neural networks. The classification effect can also be improved 
by continuously deepening the neural network depth.

•	 The enhanced noise-reducing autocoder performs well for feature extraction from the hepatitis C dataset, 
which may be applied to downstream classification tasks to speed up testing and lower the risk of hepatitis 
C transmission during the window period, which has some clinical value.

The article is structured as follows: “Related work”  describes related work on deep learning in the field of liver, 
and encoders for medical applications. “Methods” discusses the model used in our work and its structure and 
included concepts. “Experiments and results” summarizes our experimental findings and observations and 
evaluates the model from several perspectives to support the model. “Conclusion” summarizes the research in 
this paper.

Related work
Application of machine learning to hepatitis disease detection
In recent years, machine learning (ML) techniques have played an increasingly important role in medical diag-
nosis and disease management, especially in the field of infectious diseases, such as the diagnosis, prognostic 
assessment, and selection of therapeutic strategies for Hepatitis C. With the help of Machine Learning techniques, 
Barakat et al.12 developed an intelligent diagnostic system by analysing data from 166 Egyptian chronic hepatitis 
C (CHC) children’s data, new APRI and FIB-4 cut-offs for predicting fibrosis were identified and predicted using 
a random forest (RF) model, which showed that RF performed well in fibrosis prediction and staging and was 
consistent with APRI and FIB-4 metrics, confirming the important role of machine learning in the non-invasive 
prediction of paediatric hepatic fibrosis.Mostafa et al13. used Artificial Neural Networks (ANN), Support Vector 
Machines (SVM) and RF to analyse and predict liver diseases by dealing with missing data, variable importance 
ranking and oversampling techniques, and found RF to be the best performing model with an accuracy of over 
98%.Similarly, Oladimeji et al.14 used Decision Tree (DT), RF, k Nearest Neighbours (KNN), Logistic Regression 
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(LR) and Plain Bayes (NB) combined with SMOTE technique to solve the data imbalance problem to classify the 
diagnostic tests for Hepatitis C. The performance of the model was evaluated by various metrics and the results 
showed that RF outperformed the other models, with an AUC-ROC of 0.99 and an accuracy rate of 98.97%. 
Safdari et al.15 investigated the use of machine learning techniques to address data imbalance by employing 
SMOTE to develop six classification models including SVM, Gaussian NB, DT, RF, LR, and KNN to classify 
patients with suspected HCV infection, based on the University of California, Irvine HCV dataset. Ultimately, 
the Random Forest (RF) model stood out in the performance evaluation with an accuracy of 97.29% and an 
AUC value of 0.998, demonstrating the efficiency of the model in predicting and classifying the stage of HCV 
infection. Li et al.16 developed an artificial intelligence-based two-stage hybrid model combining random forest 
and logistic regression algorithms to optimise critical thresholds through an artificial bee colony algorithm to 
automatically classify hepatitis C virus infections with multi-class probabilities, and the Cascade RF-LR (with 
SMOTE) model was validated by Monte Carlo cross-validation and quantitative metrics comparisons, and was 
found to be effective at identifying the early onset of HCV and improving the efficacy of treatments

In addition, with the development of medical informatisation, the amount of medical big data is proliferating, 
which lays a rich data foundation for the expansion of deep learning applications in various fields of medicine, 
such as diagnostic imaging (CT, MRI, PET, etc.) and electronic medical record analysis. For example, at the 
forefront of medical image processing research, the U-Net17 architecture, as a convolutional neural network 
model that combines an encoder-decoder structure and cleverly integrates shallow to deep features through 
hopping connections to achieve high-precision image segmentation, has been widely introduced to medical 
image segmentation tasks. Although the U-Net architecture itself suffers from high computational cost and 
overfitting, its simple U-shaped design and excellent performance have led to the emergence of many new net-
work architectures that are similar to its concept, such as Res-UNet18, Dense-UNet19, which are representative 
variants. Among them, the encoder part of Res-UNet follows the concept of ResNet and solves the problem of 
gradient vanishing in deep neural network training by introducing Residual Block, and the decoder part retains 
the structural features of U-Net by up-sampling layer by layer and merging the features of the corresponding 
layers of the encoder by skip-joining them to form the decoding process which contains the residual learning 
mechanism. decoding process that restores the compressed feature map in the encoder to the size of the original 
input image. From the architectural level, the above methods developed based on the U-Net principle are, to some 
extent, intrinsically similar to the construction of autoencoder. One of the inspirations for the design concept 
of the IDAE proposed in this paper is the innovative practice of Res-UNet.

Autocoder for medical applications
In medical research and practice, raw medical data often contain a certain level of noise due to factors such as 
equipment accuracy limitations, hardware stability variables, environmental perturbations, and intrinsic physi-
ological variations of the patient, which to a certain extent hinders the accurate acquisition and effective use of 
key information. In view of this, deep learning technology, as a powerful data processing tool, has been widely 
used in the field of medical data noise reduction, aiming at improving data quality, refining more accurate feature 
expression, and ultimately empowering clinical diagnosis and treatment strategy formulation. For example, For 
example, Asem Khmag20 proposed a moment invariant based clustering and Hidden Markov Model (HMM) 
for preclassification to capture the dependency of additive Gaussian white noise pixels and their neighbouring 
pixels on the wavelet transform.The HMM also allows the denoising of images by allowing hidden states to be 
interconnected in order to capture dependencies between coefficients in the transform domain. In addition, 
Asem Khmag21 proposed an innovative adaptive adversarial network algorithm that incorporates noise sup-
pression techniques and adaptively learnt Generative Adversarial Networks (GAN) mechanism, which firstly 
preprocesses the digital image by combining the image features, and then additionally suppresses the noise using 
adaptively learnt GAN models to obtain higher visual quality results. In addition, semi-soft thresholding is also 
used to remove residuals and avoid the phenomenon of “over-smoothing”, and both of the above algorithms can 
be used in medical image denoising.

However, the most used in medical data is the Denoising Autoencoder (DAE) DAE forces the encoder to 
learn to restore the original signal from contaminated data, allowing the encoder to learn a more robust and 
generalised feature representation. With the combination of deep learning and the medical field, DAE is widely 
used in disease detection. For example, Liu et al.9 proposed a design scheme for dual-input unsupervised denois-
ing autocoders (DIUDA), where the design contains two hidden layer constructions in the encoding stage and 
is equipped with one hidden layer unit in the decoding stage. The DAs model cleverly links the two consecutive 
encoding layers to jointly process the gene expression data and CNA data derived from the TCGA breast cancer 
project, effectively realizing the efficient extraction of biomarker features. Experimental evidence confirms that 
the model can effectively mine and extract biologically meaningful features from genomic data. By utilizing the 
concept of the AutoEncoder, Chenggang Lyu22 suggested a two-stage encoder-decoder based brain tumor sub-
region segmentation model. To avoid the overfitting issue, regularization is applied in both stages. On the BraTS 
2020 brain tumor dataset, the model’s improvement is also seen. For extremely complex medical data, noise-
reducing autoencoders can only handle a single level of random noise and may not be able to adequately extract 
high-level abstract features. Therefore, the Vincent et al proposed stacked denoising autoencoder23 (SDAE). By 
stacking multiple DAE, SDAE can build deeper network structures, giving the model the ability to learn more 
complex and abstract feature representations, which can be used to extract important features from medical data. 
It is currently successfully applied to industrial product detection24,25, and medical image detection. Guan et al.26 
constructed an innovative multi-label learning model based on a stacked denoising autoencoder, which enhances 
the low-dimensional coding effect produced by the model by optimizing the intrinsic representation learning 
capability, especially when coping with partially impaired input patterns, in order to capture the low-dimensional 
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coding effect on the noise portion of the input data with robustness. intermediate-level representations that are 
robust to the noisy portion of the input data, and consequently generating better quality low-dimensional coding. 
Gu et al.27 proposed a variant model of Stacked Denoising Autoencoder (SdA) for molecular typing studies of 
renal clear cell carcinoma (ccRCC), which in turn aids in the diagnosis of the disease, personalized therapeutic 
decision-making, and prognostic assessment. This study successfully identified two unique subtypes of ccRCC 
using five genomic datasets related to renal clear cell carcinoma (KIRC) provided by TCGA. Xu et al.28 proposed 
the use of Stacked Autoencoder (SAE) technology for high-level feature learning for each individual histological 
dataset and integrated it into the single-layer autoencoder framework in order to obtain more complex fusion 
representations for fine-grained subtype classification of cancer patients. In addition, other different types of 
autoencoders29–31 have arisen as research in the medical field has deepened. However, the above mentioned 
methods mainly focus on cancer detection applications, and it is worth noting that the noise-reducing autoen-
coder has the potential to exacerbate the complexity and challenge of training in the trade-off between noise 
suppression and effective feature learning, which in turn leads to difficulties in model convergence and is prone 
to the problem of gradient vanishing or gradient ex plosion, especially in deep neural network architectures. 
The IDAE proposed in this paper aims to target such convergence difficulties and the phenomenon of gradient 
vanishing or gradient explosion that may occur in deep neural networks, and its effectiveness is verified on the 
hepatitis C dataset.

Methods
General autoencoder
Autoencoder(AE) is a special type of neural network model that consists mainly of an encoder and a decoder. 
The encoder is responsible for transforming the input data into a low-dimensional, dense latent representation, 
while the decoder tries to restore the original data from this compressed representation. The whole process 
motivates the model to capture the most essential features in the data, and Fig. 1 illustrates the overall will 
structure of the autoencoder.

AE does not expect its output to be strictly consistent with the input in its regular operation, but rather seeks 
to maximally approximate the reconstruction of the input data by implementing an effective data encoding 
mechanism or implicitly learning the intrinsic representation of the data. Typically, the dimensionality of the 
output feature vectors generated by the autoencoder will be lower or equal to the dimensionality of the initial 
input vectors. The model is mostly used for feature extraction in practice, but is also suitable for tasks such as 
denoising and data dimensionality reduction.The operation of AE can be interpreted as a process of encoding 
the data from the input layer to the hidden layer, and then decoding the data from the hidden layer to the recon-
struction layer, with the following formula for the encoding phase:

Where X = Rd×n is the input of the AE, g is an activation function, H is the output of the encoder, We is the 
weight matrix between the encoding and input layers, and be is the node bias of the encoding layer, which is con-
verted to a signal H , which maps the input data to a low-dimensional hidden space through several hidden layers.

Receiving the output signal H from the encoder, the decoder is in charge of decoding the features that were 
encoded through the activation function g to produce the reconstructed signal X . The decoder can be viewed as 
a reconstruction function that strips away extraneous data from the encoder output. The reconstruction func-
tion looks like this:

where H is the input, X̂ is the decoder’s output, Wd is the weight matrix of the decoding layer, bd is the decoding 
layer’s node bias, and g′ is the node activation function. The objective of the AE is to obtain the matrix W and 
the bias b at the moment the loss function between X and X̂ is minimized, that is:

(1)H = g(WeX + be)

(2)X̂ = g
′

(WdH+ bd)

(3)argmin
W,b

J(W, b)

Figure 1.   The overall architecture AE model.
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To calculate the separation between X and X̂ , AE typically utilizes the squared error loss function or cross 
entropy loss function. The loss function of the model is the mean square error or cross entropy of each training 
session. For the input sample X =

{
xi ∈ Rd

}n
i=1

 and reconstruction X̂ =
{
x̂i ∈ Rd

}n
i=1

 , the algorithm’s precise 
optimization objective function is as follows:

Typically, during model pre-training, we decide to use AE for feature extraction. We also decide to use multiple 
AEs cascaded to create stacked AutoEncoders, and we use layer-by-layer greedy training to use the hidden layer 
output of the previous AE as the input of the next AE for hierarchical feature extraction, which is used as a 
downstream classification or regression task.

The structure of DAE and AE is similar, the difference is that the features of input data extracted by AE model 
are easily contaminated by noise.DAE is based on autoencoder, in order to solve the problem of overfitting, some 
noise is artificially added to the input data to simulate the loss of information, which reduces the dependence 
of the model on the input features to a certain extent, and makes the learning of the autoencoder robust to a 
certain extent. There are two common forms of DAE, one as shown in Fig. 2a, where random deactivation is 
applied as a form of noise injection in the encoder part. Stochastic deactivation usually temporarily shuts down 
a portion of the neurons during training, which again forces the network to learn a more robust representation 
of the features. The other, shown in Fig. 2b, adds noise directly in the encoder section, and a common type of 
noise is normally distributed noise with mean 0 and adjustable standard deviation.

DAE is widely used in medical data, especially in both denoising and feature learning of medical image data: 
DAEs are able to learn potential low-dimensional feature representations of complex medical data through 
training, which are usually more interpretive and discriminative than the original data, and help in the clas-
sification of diseases, detection of lesions, and tracking of disease progression. However, the complex biology of 
the hepatitis C virus and individual differences between patients lead to complex nonlinear interrelationships 
between features, and in order to learn such relationships, it is often necessary to deepen the layers of the encoder, 
but then introduce the problem of gradient vanishing or gradient explosion, and in the trade-off between noise 
suppression and effective feature learning, which can exacerbate the complexity and challenge of training, and 
consequently lead to difficulties in model convergence .

Improved denoising autoencoder
In this work, we propose an IDAE that incorporates a residual network module. By integrating the residual 
module and establishing a direct hopping connection between the encoder and the decoder, we effectively con-
struct a straight-through path from the input to the output, solving the problem of gradient disappearance or 
gradient explosion that occurs in the traditional deep network with the increase in the number of layers, and thus 
significantly improving the training efficiency and the overall performance of the model. This improvement not 
only helps to improve the dynamic characteristics of the gradient flow through the deep network, but also helps 
to simplify the optimization steps, so that the network can converge to the global optimal solution more quickly 
during the optimization iteration process, which significantly reduces the time required for model convergence. 
Specifically, compared to general denoising autoencoder, the IDAE proposed in this paper employs a residual 
neural network, as shown in Fig. 3. It also uses a symmetric encoding and decoding structure, adding the output 
of each fully connected layer of the encoder directly to the output of the fully connected layer of the correspond-
ing decoder as the input of the fully connected layer of the subsequent decoder.Additionally, a fully connected 
network is included as a classifier, the model is supervised trained using labeled data, and then the DAE with 
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Figure 2.   Two DAE architectures, the left figure simulates noise through node deactivation, and the right figure 
adds noise, such as Gaussian white noise, directly to the input again.
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classification function is obtained by fine-tuning the parameters of the entire network using the inverse algorithm 
and using the high-level features obtained from the training as inputs to the conventional supervised algorithm.

The structure of the model proposed in this paper is shown in Fig. 4:three fully linked layers are present in 
both the encoder and the decoder, and a classifier is introduced as a fourth fully connected layer. The residual 
deities introduce the network connection structure into the model. The corresponding layers of encoders and 
decoders are realized as layer-hopping connections between them, vectorially summing the inputs of the encoder 
units of the corresponding layers with the decoder output vectors, and then passing through one fully connected 
layer and the activation function.

The algorithm itself is sensitive to hyperparameters like degradation rate; too small a degradation rate makes 
it difficult to improve the performance of the algorithm efficiently, while too large a degradation rate causes the 
input samples to become seriously distorted and reduce the accuracy of the algorithm. Adding additional deg-
radation processes to the model increases both the training time of the model and the algorithm’s performance. 
As a result, the enhanced noise reduction dynamic encoder decides to directly inject Gaussian noise rather than 
simulating the noise with the input layer dropout.

The coding procedure of IDAE is described in the following equation:

where X is the encoder’s input and consists primarily of the output of the layer before it plus random noise; 
Xnoise follows a Gaussian distribution; We and be are the encoder’s parameter matrices and biases; and Hnoise is 
the encoder’s output.

The decoding procedure is as follows:

where Wd and be are the parameter matrices and biases of the decoder, g is the relu activation function, (.||.)) 
signifies the splicing of the two vectors, and be is the output of the decoder.

(5)Hnoise = g(WeX + be + Xnoise)

(6)X̂ = g((WdH+ bd)||(WeX + Xnoise))

Figure 3.   Model structure of the forward propagation layer in residual neural networks.

Figure 4.   The overall architecture of IDAE.
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In this study, the classification model uses the cross-entropy loss function as the cost function, and the param-
eters are updated similarly to the AE, using the gradient descent method to find the best solution that minimizes 
the loss function J(We ,Wd , be , bd) in order to update the parameter matrix and the bias:

Most importantly, the enhanced noise-reducing autoencoder model has the ability to adapt to and capture such 
complex nonlinear features by increasing the network depth, which is expected to extract more discriminative 
and interpretive features of high-quality data in the face of complex nonlinear biological interactions, such as 
those of hepatitis C patients.

Experiments and results
In this subsection, we evaluate the feature extraction effect of the IDAE by conducting experiments on the 
Hepatitis C dataset with different configurations to test its generalization ability. We would like to investigate 
the following two questions:

•	 How effective is IDAE in classifying the characteristics of hepatitis C ?
•	 If the depth of the neural network is increased, can IDAE mitigate the gradient explosion or gradient vanish-

ing problem while improving the classification of hepatitis C disease ?
•	 Does an IDAE of the same depth tend to converge more easily than other encoders on the hepatitis C dataset ?

Datasets and baselines
Firstly, out of public health importance, Hepatitis C (HCV) is a global public health problem due to the fact that 
its chronic infection may lead to serious consequences such as cirrhosis and liver cancer, and Hepatitis C is highly 
insidious, leading to a large number of undiagnosed cases.It is worth noting that despite the wide application 
of traditional machine learning and deep learning algorithms in the healthcare field, especially in the research 
of acute conditions such as cancer, however, there is a significant lack of in-depth exploration of chronic infec-
tious diseases, such as hepatitis C. In addition, the complex biological attributes of the hepatitis C virus and 
the significant individual differences among patients together give rise to the challenge of multilevel nonlinear 
correlation among features. Therefore, the application of deep learning methods to the hepatitis C dataset is not 
only an important way to validate the efficacy of such algorithms, but also an urgent research direction that needs 
to be put into practice to fill the existing research gaps.

The Helmholtz Center for Infection Research, the Institute of Clinical Chemistry at the Medical University of 
Hannover, and other research organizations provided data on people with hepatitis C, which was used to compile 
the information in this article. The collection includes demographic data, such as age, as well as test results for 
blood donors and hepatitis C patients. By examining the dataset, we can see that the primary features are the 
quantity of different blood components and liver function, and that the only categorical feature in the dataset is 
gender. Table 1 shows the precise definition of these fields.

This essay investigates the categorisation issue. The Table 2 lists the description and sample size of the five 
main classification labels. In the next training, in order to address the effect of sample imbalance on the classi-
fication effect, the model will be first smote32 sampled and then trained using the smote sampled samples. With 
a sample size of 400 for each classification.

(7)J(We ,Wd , be , bd) =

n∑

i

∥∥∥X − X̂
∥∥∥
2

2

(8)argmin
W,b

J(We ,Wd , be , bd)

Table 1.   Description of each field in the hepatitis C patient data set.

Type Field Name Field Description Normal value range

Continuous feature

Age – F and M

ALB Albumin 35–55 g/L

ALP Alkaline phosphatase 0–40 U/L

ALT Glutamicpyruvic transaminase M: 5–40 U/L F: 5–35 U/L

AST Glutamic oxaloacetic transaminase 0–40 U/L

BIL Bilirubin 5.10–19 µmol/L

Classification feature

CHE Serum cholinesterase 4.3–10.5 U/L

CHOL Total cholesterol 2.83–5.18 mmol/L

CREA Creatinine substance M: 50–110 µmol/L F: 40–100 µmol/L

GGT​ Glutamyl transpeptidase 3–50 U/L

PROT Total protein 20–80 mg/L

Sex – F and M
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The aim of this paper is to investigate whether IDAE can extract more representative and robust features, and 
we have chosen a baseline model that includes both traditional machine learning algorithms and various types 
of autoencoders, which will be described in more detail below:

•	 SVM: support vector machines are used to achieve optimal classification of data by constructing maximally 
spaced classification hyperplanes and use kernel functions to deal with nonlinear problems, aiming to seek 
to identify decision boundaries that maximize spacing in the training data.

•	 KNN: the K Nearest Neighbors algorithm determines the class or predictive value of a new sample by calcu-
lating its distance from each sample in the training set through its K nearest neighbors.

•	 RF: random forests utilize random feature selection and Bootstrap sampling techniques to construct and 
combine the prediction results of multiple decision trees to effectively handle classification and regression 
problems.

•	 AE: autoencoder is a neural network structure consisting of an encoder and a decoder that learns a compact, 
low-dimensional feature representation of the data through a autoreconfiguration process of the training 
data, and is mainly used for data dimensionality reduction, feature extraction, and generative learning tasks.

•	 DAE: denoising autoencoder is a autoencoder variant that excels at extracting features from noisy inputs, 
revealing the underlying structure of the data and learning advanced features by reconstructing the noise-
added inputs to improve network robustness, and whose robust features have a gainful effect on the down-
stream tasks, which contributes to improving the model generalization ability.

•	 SDAE: stacked denoising autoencoder is a multilayer neural network structure consisting of multiple noise-
reducing autoencoder layers connected in series, each of which applies noise to the input data during train-
ing and learns to reconstruct the undisturbed original features from the noisy data, thus extracting a more 
abstract and robust feature representation layer by layer.

•	 DIUDA: the main feature of Dual Input Unsupervised Denoising Autoencoder is that it receives two different 
types of input data at the same time, and further enhances the generalization ability of the model and the 
understanding of the intrinsic structure of the data by fusing the two types of inputs for the joint learning 
and extraction of the feature representation.

Configurations
In this paper, 80% of the Hepatitis C dataset is used as model training and the remaining 20% is used to test the 
model. Since the samples are unbalanced, this work is repeated with negative samples to ensure that the samples 
are balanced. For the autoencoder all methods, the learning rate is initialized to 0.001, the number of layers for 
both encoder and decoder are set to 3, the number of neurons for encoder is 10, 8, 5, the number of neurons 
for decoder is 5, 8, 10, and the MLP is initialized to 3 layers with the number of neurons 10, 8, 5, respectively, 
and furthermore all models are trained until convergence, with a maximum training epoch is 200. The machine 
learning methods all use the sklearn library, and the hyperparameters use the default parameters of the cor-
responding algorithms of the sklearn library.

Model classification performance
To answer the first question, we classified the hepatitis C data after feature extraction using a modified noise-
reducing auto-encoder and compared it using traditional machine learning algorithms such as SVM, KNN, and 
Random Forest with AE, DAE, SDAE, and DIUDA as baseline models. Each experiment was conducted 3 times 
to mitigate randomness. The average results for each metric are shown in Table 3.From the table, we can make 
the following observations.

Firstly, the IDAE shows significant improvement on the hepatitis C classification task compared to the 
machine learning algorithms, and also outperforms almost all machine learning baseline models on all evalua-
tion metrics. These results validate the effectiveness of our proposed improved noise-reducing autoencoder on 
the hepatitis C dataset. Secondly, IDAE achieves higher accuracy on the hepatitis C dataset compared to the 
traditional autoencoders such as AE, DAE, SDAE and DIUDA, etc., with numerical improvements of 0.011, 0.013, 
0.010, 0.007, respectively. other metrics such as the AUC-ROC and F1 scores, the values are improved by 0.11, 
0.10, 0.06,0.04 and 0.13, 0.11, 0.042, 0.032. From Fig. 5, it can be seen that the IDAE shows better clustering effect 
and class boundary differentiation in the feature representation in 3D space, and both the experimental results 
and visual analyses verify the advantages of the improved model in classification performance. Both experimental 
results and visualisation analysis verify the advantages of the improved model in classification performance.

Table 2.   Description of each field in the hepatitis C patient data set.

Field name Field description Sample size Smote oversampling

0 Qualified blood donors 533 400

1 Confirmed diagnosis of hepatitis C 24 400

2 Confirmed patients with liver fibrosis 21 400

3 Confirmed patients with liver cirrhosis 30 400

0s Suspected hepatitis patients 7 400
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Finally, SVM and RF outperform KNN for classification in the Hepatitis C dataset due to the fact that SVM 
can handle complex nonlinear relationships through radial basis function (RBF) kernels. The integrated algo-
rithm can also integrate multiple weak learners to indirectly achieve nonlinear classification. KNN, on the other 
hand, is based on linear measures such as Euclidean distance to construct decision boundaries, which cannot 
effectively capture and express the essential laws of complex nonlinear data distributions, leading to poor clas-
sification results.

In summary, these results demonstrate the superiority of the improved noise-reducing autoencoder in feature 
extraction of hepatitis C data. It is also indirectly verified by the effect of machine learning that hepatitis C data 
features may indeed have complex nonlinear relationships.

Influence of the number of autoencoder layers
To answer the second question, we analyze in this subsection the performance variation of different autoencoder 
algorithms at different depths. To perform the experiments in the constrained setting, we used a fixed learning 
rate of 0.001. The number of neurons in the encoder and decoder was kept constant and the number of layers 
added to the encoder and decoder was set to {1, 2, 3, 4, 5, 6}. Each experiment was performed 3 times and the 
average results are shown in Fig. 6, we make the following observations:

Under different layer configurations, the IDAE proposed in this study shows significant advantages over the 
traditional AE, DAE, SDAE and SDAE in terms of both feature extraction and classification performance. The 
experimental data show that the deeper the number of layers, the greater the performance improvement, when 
the number of layers of the encoder reaches 6 layers, the accuracy improvement effect of IDAE is 0.112, 0.103 , 
0.041, 0.021 ,the improvement effect of AUC-ROC of IDAE is 0.062, 0.042, 0.034,0.034, and the improvement 
effect of F1 is 0.054, 0.051, 0.034,0.028 in the order of the encoder.

It is worth noting that conventional autocoders often encounter the challenges of overfitting and gradient 
vanishing when the network is deepened, resulting in a gradual stabilisation or even a slight decline in their 
performance on the hepatitis C classification task, which is largely attributed to the excessive complexity and 
gradient vanishing problems caused by the over-deep network structure, which restrict the model from finding 
the optimal solution. The improved version of DAE introduces residual neural network, which optimises the 

Table 3.   Results of various algorithmic indicators.entropy.

IDAE 0.9970 0.9862 0.9895 0.9843 0.5180

SVM 0.9056 0.9792 0.7913 0.8924 3.0144

KNN 0.8346 0.9217 0.7719 0.8012 6.1164

RF 0.9556 0.9885 0.8939 0.9421 0.9164

AE 0.8856 0.9795 0.7539 0.8521 5.2164

DAE 0.8920 0.9666 0.7987 0.8842 3.2671

SDAE 0.9472 0.9613 0.8928 0.9414 1.0224

DIUDA 0.9562 0.9646 0.9026 0.9512 0.9122

Figure 5.   The left figure shows the 3D visualisation of t-SNE with features extracted by DAE, and the right 
figure shows the 3D visualisation of t-SNE with features extracted by IDAE.
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information flow between layers and solves the gradient vanishing problem in deep learning by introducing 
directly connected paths, and balances the model complexity and generalisation ability by flexibly expanding 
the depth and width of the network. Experimental results show that the improved DAE further improves the 
classification performance with appropriate increase in network depth, and alleviates the overfitting problem at 
the same depth. Taken together, the experimental results reveal that the improved DAE does mitigate the risk of 
overfitting at the same depth as the number of network layers deepens, and also outperforms other autoencod-
ers in various metrics.

Autoencoder convergence speed
To answer the third question, in this subsection we analyse the speed of model convergence for different autoen-
coder algorithms. The experiments were also performed by setting the number of layers added to the encoder 
and decoder to {3, 6}, with the same number of neurons in each layer, and performing each experiment three 
times, with the average results shown in Fig. 7, where we observe the following conclusions: The convergence 
speed of the IDAE is better than the other autoencoder at different depths again. Especially, the contrast is more 
obvious at deeper layers. This is due to the fact that the chain rule leads to gradient vanishing and overfitting 
problems, and its convergence speed will have a decreasing trend; whereas the IDAE adds direct paths between 
layers by incorporating techniques such as residual connectivity, which allows the signal to bypass the nonlinear 
transforms of some layers and propagate directly to the later layers. This design effectively mitigates the problem 
of gradient vanishing as the depth of the network increases, allowing the network to maintain a high gradient 
flow rate during training, and still maintain a fast convergence speed even when the depth increases. In sum-
mary, when dealing with complex and high-dimensional data such as hepatitis C-related data, the IDAE is able 
to learn and extract features better by continuously increasing the depth energy, which improves the model 
training efficiency and overall performance.

Conclusion
This study is dedicated to exploring the potential of machine learning methods in the early diagnosis of hepatitis 
C. A DAE model IDAE containing a residual neural network structure is innovatively constructed, aiming to 
alleviate the overfitting problem caused by the random noise in training, and thus to improve the generalisation 
performance of the model. In addition, by utilising the residual connection design, the IDAE effectively enhances 
the training efficiency while strengthening the representation learning capability. The research team applied this 
improved model to the hepatitis C related dataset for unsupervised feature learning, and the experimental results 

Figure 6.   Effects of various types of autoencoders at different depths.

Figure 7.   Comparison of model convergence speed for different layers of autoencoders.
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show that compared with the conventional denoising autoencoder and machine learning methods, the model 
achieves significant improvement in all kinds of evaluation indexes of the hepatitis C dataset. However, in real 
hepatitis C clinical testing, the recall rate is particularly important because it reflects whether the testing method 
misses the real cases. Especially in infectious diseases such as hepatitis, a high recall rate can maximise the detec-
tion of infected individuals and prevent the spread of the disease. However, despite the excellent performance of 
IDAE in terms of recall, it is still not possible to completely circumvent the possibility that negative test results 
may be underdiagnosed, which is an important limitation of the current study. Future research directions are 
expected to extend IDAE to more feature learning tasks within the healthcare domain, while continued attention 
and efforts are needed to address the limitations of such models in clinical applications. Looking ahead, given the 
advantages demonstrated by the improved noise-reducing autoencoder on the Hepatitis C dataset and its poten-
tial in medical data research, we believe that its extension to other feature learning tasks within the healthcare 
domain has positive application prospects. In particular, in the current context of medical data analysis, which 
is placing more and more emphasis on unsupervised learning techniques, further exploring the applicability of 
autoencoder techniques in different disease diagnosis, biomarker identification and pathological state classifica-
tion is undoubtedly a direction worthy of attention and expansion in subsequent research.
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