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Scaling theory of fractal complex 
networks
Agata Fronczak *, Piotr Fronczak , Mateusz J. Samsel , Kordian Makulski , Michał Łepek  & 
Maciej J. Mrowinski 

We show that fractality in complex networks arises from the geometric self-similarity of their built-in 
hierarchical community-like structure, which is mathematically described by the scale-invariant 
equation for the masses of the boxes with which we cover the network when determining its box 
dimension. This approach—grounded in both scaling theory of phase transitions and renormalization 
group theory—leads to the consistent scaling theory of fractal complex networks, which complements 
the collection of scaling exponents with several new ones and reveals various relationships between 
them. We propose the introduction of two classes of exponents: microscopic and macroscopic, 
characterizing the local structure of fractal complex networks and their global properties, respectively. 
Interestingly, exponents from both classes are related to each other and only a few of them (three out 
of seven) are independent, thus bridging the local self-similarity and global scale-invariance in fractal 
networks. We successfully verify our findings in real networks situated in various fields (information—
the World Wide Web, biological—the human brain, and social—scientific collaboration networks) and 
in several fractal network models.

Revising paradigms of fractal complex networks
It will soon be two decades since it was first shown that some real networks (such as the World Wide Web 
[WWW] and different biological networks) have fractal properties1,2. This means that, when covered with non-
overlapping boxes, with the maximum distance between any two nodes in each box less than lB , they exhibit 
power-law scaling1–5:

where NB(lB) is the number of boxes of a given diameter, and dB is the fractal (or box) dimension of the network 
of size N. Such fractal networks are also said to be self-similar, because their power-law degree distributions,

remain invariant under a renormalization scheme6,7, according to which a new network emerges from the origi-
nal one when nodes belonging to the same box in the original network are replaced by one supernode in the 
renormalized network. In this case, the supernode is connected to another supernode if in the original network 
there is at least one link between the nodes of the corresponding boxes.

Here, at least two critical remarks can be made. The first remark is that an analogous invariance of the degree 
distribution with respect to the box-covering renormalization scheme is also observed in networks that do not 
satisfy Eq. (1) (in this respect, well-known examples are the internet and Barabási-Albert (BA) networks2,8,9). The 
second remark is that it is not entirely clear, what structural characteristics of fractal networks exhibits geometric 
self-similarity and remain invariant10 under the described renormalization. Clearly, the power-law node degree 
distribution cannot be considered such a characteristic because it is intrinsically invariant under the rescaling 
of the degree11. Its invariance under box-covering renormalization may only suggest the existence of some 
(presumably) degree-dependent network measure, whose self-similarity under the renormalization procedure 
could result in the observed invariance of the degree distribution. One argument supporting this statement is 
that random networks, where the degree distribution is not a power law, can also exhibit fractal properties (in 
this regard, the best example is the giant component of classical random graphs near the percolation transition).

If the above remarks, indicating an incomplete understanding of fractality in complex networks, are rea-
sonable, pertinent questions would be: What are the real origins and potential consequences of fractality in 

(1)NB(lB)/N ≃ l−dB
B ,

(2)P(k) ∼ k−γ ,
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complex networks? What determines networks’ fractal dimension? Indeed, several studies have been published 
throughout the years that focus on the exploration of the origins of fractality12–19. However, these efforts did 
not lead to consensus. Thus, there is a lack of realistic (and not just deterministic20,21, or reflecting the renor-
malization procedure2,22,23) fractal network models that would allow testing the role of fractality in the context 
of geometry-involving issues24, such as navigability, localization of information sources, prediction of hidden 
network connections, etc. These are of particular importance when faced with the confirmed fractal properties 
of different information, biological, and even social networks (see e.g.25,26). The goal of this article is to initiate 
far-reaching changes in this state of affairs.

In what follows, we will first argue that the correct scale-dependent network measure, which is self-similar 
(i.e. geometrically invariant) under the lB-box-covering renormalization procedure, is the normalized mass of 
the box - µ(L, k) = m(L, k)/�m� , where m(L, k) is the number of nodes in the box of diameter L ≥ lB and hub 
degree k, and �m� = N/NB(L) = LdB (1) is the average mass of non-overlapping boxes of this diameter. It should 
be emphasized here that although the definition of the box is the same throughout the paper, we distinguish 
between lB-boxes used to renormalize the network and L-boxes (where L ≥ lB ) whose self-similarity we examine. 
This distinction is crucial to make it easier to understand the main idea of the paper.

Then, we show that one of the consequences of this result is the previously discovered scaling relation between 
the degree k′ of the supernode in the renormalized network and the degree k of the hub of the corresponding 
lB-box in the network before renormalization: k′ = l

−dk
B k , where dk is only one of four scaling exponents that 

characterize microscopic structure of the fractal complex network and determine its box dimension. We also 
show that if the fractal complex network has a power-law node degree distribution (which is traditionally referred 
to as the scale-free property), then the mass box distribution also follows the power-law, and it is invariant under 
the box renormalization procedure. Furthermore, the characteristic exponents of both distributions are related 
to the microscopic scaling exponents describing the masses of the boxes, thus bridging local self-similarity and 
global scale invariance in fractal complex networks. Lastly, we successfully verify our findings in real networks 
situated in various fields (information - the World Wide Web, biological - the human brain, and social - scientific 
collaboration networks) and in several fractal network models.

Local self‑similarity and global scale‑invariance in fractal networks
Geometric self‑similarity
In classical fractals27, which reproduce themselves at different space scales, self-similarity manifests itself in 
the scale-invariant equation10, which describes how the mass m(L) of the system changes with its linear size L:

where b > 0 . In theoretical physics, this type of equation is, for example, encountered in the theory of critical 
phenomena11,28. Mathematically, this equation defines a homogeneous function. Its solution is simply a power 
law:

which, in the case of fractals, determines their fractal dimension, df = lnµ/ ln b , and leads to the well-known 
scaling relation29:

Moving forward, to address the problem of geometric self-similarity in complex networks, we first argue that 
Eq. (1) can be treated as a special case of Eq. (5). Then, building on this observation, we assume that Eq. (5) is 
also a special case of a more general equation in which the masses of the system and its parts, which are further 
identified with the number of nodes in the network and the number of nodes in different L-boxes extracted 
from this network, respectively, do not only depend on the diameter of the examined set of nodes (i.e. the entire 
network or a box) but also on the degree of the best-connected node in this set. This assumption leads us to the 
consistent scaling theory of fractal complex networks.

To grasp the relation between Eqs. (1) and (5), it is enough to analyse the meaning of Eq. (5), which can be 
interpreted in two ways. More directly, it states that if one considers a smaller part of the system, let’s say of size 
L′ = bL (with b < 1 ), then m(L′) , as compared to m(L), is decreased by a factor µ(b) = bdf  , which only depends 
on b. However, this equation also applies to the masses of the system on two different scales, or resolutions, 
which, from a formal point of view, can be treated as two stages of some renormalization procedure applied to 
that system. (A network-based illustration of these two interpretation schemes is shown in Figs. 1 and 2a–c.) 
Accordingly, to make Eq. (5) more operationalizable, it can be rewritten as:

where the notation with the apostrophe is introduced to indicate the relation between the mass of the system 
before renormalization, m(L), to its mass after renormalization, m′(L′) . Now, it is easy to see that Eq. (1) is 
indeed a special case of Eq. (6), with: df = dB , b = l−1

B  , m(L) = N , and m′(L′) = NB(lB) , where L and L′ stand 
for diameters of the network before and after renormalization, respectively.

In what follows, to extend the concept of geometric self-similarity to fractal complex networks, we assume 
that Eq. (6) can be rewritten in the form:

(3)m(bL) = µ(b)m(L),

(4)m(L) = ALdf ,

(5)m(bL) = bdf m(L).

(6)m′(L′) = bdf m(L),

(7)m′(L′, k′) = l−dB
B m(L, k),
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where dB is the box dimension of fractal networks, whereas m(L, k) and m′(L′, k′) stand for the number of nodes 
and supernodes in the same box, before and after its renormalization with boxes of diameter lB < L , respectively. 
In other words, in Eq. (7), m′(L′, k′) is equal to the number of lB-boxes used to cover the initial box of mass 
m(L, k). As indicated in this equation, during renormalization, when lB-boxes are replaced with supernodes, not 
only the mass of the initial box changes, but also its diameter (from L to L′ ) and the degree of its hub (from k to 
k′ , where k′ is the degree of the best-connected lB-box within the initial L-box).

Now, since Eq. (7), like Eqs. (5) and (6), defines a generalized homogeneous function28 of the form:

after its substitution into (7), we obtain several scaling relations characterizing fractal networks. The first rela-
tion poses:

where dL = 1 is a direct consequence of the applied renormalization procedure, assuming perfect tiling of the net-
work with boxes of diameter lB each2. The second relation has the form of the long-confirmed empirical relation1,

but in the context of Eq. (7), which applies to boxes of any diameter L ≥ lB , the range of its applicability is much 
wider than previously thought (according to our notation, it was limited to the case of L = lB and L′ = 1 ). Finally, 
taken together Eqs. (7)–(10) give the following scaling relation:

which is one of the most important results of this article.
According to Eq. (11), the box dimension dB of fractal networks is only determined by the scaling expo-

nents characterizing the microscopic structure of the network at the box level. In particular, as follows from 
Eq. (7), beside the method of determining the box dimension, which involves counting non-overlapping boxes 

(8)m(L, k) = B Lαkβ ,

(9)L′ = L/l dLB = L/lB,

(10)k′ = k/l
dk
B ,

(11)dB = αdL + βdk = α + βdk ,

Figure 1.   Schematic illustration of the idea of geometric self-similarity in complex networks on the example 
of the fractal model of nested BA networks (for the definition of the model, see “Methods” section). Part (a) of 
the figure shows that the network can be subdivided into parts—boxes of a given diameter—each of which is (at 
least approximately) a reduced-size copy of the entire network. In the top picture shown, one such box, marked 
in red, is extracted from the original network and treated as a new network (shown below). It is divided again 
into new smaller boxes, some of which are marked with different colours. Both macroscopic and microscopic 
characteristics of this new network (represented by green squares in Fig. 2) are similar to those of the original 
network (indicated by navy circles in Fig. 2). Part (b) of this figure illustrates renormalization procedure applied 
to the same network as in part a. The top original network is divided into boxes of a fixed diameter, some of 
which are marked with different colours. In the new network after renormalization (shown below), these boxes 
are replaced by nodes with the corresponding colours. Again, the macroscopic and microscopic characteristics 
of the network after renormalization (represented by red triangles in Fig. 2) are similar to those of the original 
network.
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(see Fig. 2a), dB can also be obtained by subsequent renormalizations of a single L-box with smaller boxes of a 
given diameter lB < L (see Fig. 2d). The decreasing sequence of renormalized masses of the box obtained in this 
way: m,m′,m′′, . . . ,m(i),m(i+1) . . . , when presented on a graph in the form of points (m(i),m(i+1)) , can be used 
to determine the coefficient l−dB

B  in Eq. (7). Repeating this procedure for different values of lB , a set of points 
(lB, l

−dB
B ) can be obtained which, when fitted with straight line on a double logarithmic scale, gives the same value 

of dB , as that resulting from the classical method based on Eq. (1).
The form of Eq. (11) is also very suggestive. It is the sum of two components, each of which is the product of 

scaling exponents relating to specific quantities characterizing the mass of the box before and after renormaliza-
tion. In classical fractals, in which the mass of the box depends only on its linear size L, this sum has only one 
component. For this reason, in classical fractals, the fractal dimension can be determined by one of two methods: 
the box-covering method or the cluster-growing method, which are equivalent to each other. However, this is 
not the case of fractal complex network1,30, where α , playing the role of the spreading dimension, only describes 
how the mass of the box, Eq. (8), varies with its diameter:

where b > 0 . In a similar vein, the second addend in (11), which is further called the mass exponent (in analogy 
to the degree exponent, dk),

(12)m(bL, k) = bαm(L, k),

Figure 2.   Macroscopic characteristics of fractal complex networks: corresponding to (a) the number of 
boxes—NB(lB) needed to cover the considered networks as a function of the diameter lB in the box, (b) the node 
degree distributions—P(k), and (c) the distributions of normalized masses of L-boxes—P(µ) , for L = 3 . To 
construct these graphs, a nested BA network of size N ≃ 5 · 104 and diameter d = 475 was created (this data 
are marked with navy circles, see also Table 1). To analyse the self-similarity of the network parts, the original 
network was covered with boxes of diameter lB = 40 , and the largest box of size M ≃ 1.4 · 103 was extracted 
as a new network (this data are marked with green squares). To create the renormalized network of size 
N

′ ≃ 6.1 · 103 , the original network was covered with boxes of size lB = 6 , and then each of these NB(6) = N
′ 

boxes was replaced with a supernode (these data are marked with red triangles). In the graph (d), results of 
repeated lB-renormalizations of a single box of size m ≃ 3.5 · 104 and diameter L = 300 are shown, which allow 
for an alternative determination of the box dimension of the studied fractal network (see the description in the 
main text of the paper).
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only characterizes, how the local network density (understood as the number of nodes per local area of dimeter 
L = L′ ) changes as a result of renormalization:

Finally, an observation of great importance for the scaling theory of fractal complex networks (see “Scale-free 
property” section) is that when the box mass m(L, k) (8) is divided by the average mass �m� = N/NB(L) = LdB 
(1) one gets the normalized mass:

which turns out to be the invariant of the lB-renormalization procedure, since

Indeed, the normalized box mass (15) is a local network measure that behaves the same regardless of the scale 
of observation, as the following scaling relations clearly describe:

and

A proper perspective on the meaning of these two relations is gained when comparing them with the corre-
sponding relations for classical fractals, namely Eqs. (5) and (6). From this perspective, the scaling exponent dm 
appears to be the self-similarity dimension of fractal complex networks, which, remarkably, is different from 
the box dimension dB.

Scale‑free property
At this point, we would like to emphasize the lack, in our considerations so far, of scale-free node degree distribu-
tions, whose invariance due to the renormalization procedure is considered an attribute of fractal networks1–3. 
Interestingly, this lack clearly shows the otherwise obvious fact that fractal networks may not have the scale-free 
property. Nevertheless, when they reveal the property, then both the node degree distribution, P(k) ∼ k−γ , and 
the box mass distribution, P(m) ∼ m−δ , are invariant under the box-covering renormalization procedure, with 
their invariance being a consequence of the already discussed geometric self-similarity of boxes and the scale-
free property of the distribution of normalized masses P(µ) ∼ µ−δ , from which P(m) inherits its characteristic 
exponent δ (see Fig. 2b,c).

To show this, let us assume that P(µ) is scale-free:

where, by writing P(µ; L) instead of P(µ) , we emphasize that all boxes in the network have the same diameter 
L. To clarify, this distribution refers to the normalized masses of non-overlapping boxes of diameter L used to 
cover the network. Invariance of this distributions in networks after lB-renormalization is due to the property 
(16) which implies that P(µ; L) = P(µ′; L′) , i.e.

Now, having the relationship between µ , m and k (15) and using it together with Eq. (19) in the balance equations 
between the corresponding distributions, i.e. P(µ)dµ = P(m)dm and P(µ)dµ = P(k)dk , it is easy to show that

and

where the characteristic exponent γ is given by:

The invariance of these distributions in networks after lB-renormalization is obvious due to Eq. (20).
The above reasoning shows that the geometric self-similarity of the boxes (16)–(18) and the scale-free dis-

tribution of their normalized masses (19) themselves guarantee the invariance of P(k) and P(m) under renor-
malization. Another consequence of these two assumptions (i.e. self-similarity and scale-freeness), which is not 
obvious, although it may seem so at first glance, is independence of P(µ; L) (19) from the diameter of the boxes 
L (of course, the same applies to P′(µ′; L′) ). In general, this feature can be shown to be true by comparing the 
numbers of boxes having the same hub nodes when the network is covered with boxes of different diameters. 

(13)dm = βdk ,

(14)m′(L, k′) = l−dm
B m(L, k).

(15)µ(L, k) =
m(L, k)

�m�
= B L−dmkβ ,

(16)µ(L, k) =
m(L, k)

�m�
=

l dBB m′(L′, k′)

LdB
=

m′(L′, k′)

L′ dB
=

m′(L′, k′)

�m′�
= µ′(L′, k′).

(17)µ(bL, k) = b−dmµ(L, k),

(18)µ′(L, k′) = l−dm
B µ(L, k).

(19)P(µ; L) ∼ µ−δ ,

(20)P′(µ′; L′) ∼ µ′−δ .

(21)P(m; L) ∼ m−δ ,

(22)P(k; L) ∼ k−γ ,

(23)γ = 1+ β(δ − 1).
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Because the diameter and degree of the hub determine the mass of the box, such a comparison comes down to 
comparing the number of boxes with the given normalized masses:

where the relationship between the considered masses is determined by Eq.  (17). Making the appro-
priate substitutions in this equation, i.e.  NB(µ(L, k)) = NB(L) P(µ; L) ∼ L−dB (L−dmkβ)−δ and 
NB(µ(bL, k)) = NB(bL) P(µ; bL) ∼ (bL)−dBP(µ; bL) , cf. Eqs. (1), (15) and (19), not only do we confirm that 
the distribution P(µ; bL) is scale-free regardless of b (19), but we also obtain a new relation between the scaling 
exponents:

Interestingly, using Eqs. (13) and (23), the above relation can be easily transformed into the well-known relation1

At this point, a natural question to ask is: How is it possible that the relation (26) was originally derived without 
having to refer to the self-similarity of the boxes? In fact, as we show below, self-similarity cannot be ignored, 
and the derivation described in Ref.1 takes it into account, albeit implicitly.

More precisely, in the original reasoning leading to Eq. (26), one starts with the following equation:

where N(k) (respectively, N ′(k′) ) is the number of nodes with k (respectively, k′ ) links in the network before 
(after) renormalization. Then, substitutions are made in this equation: N(k) = NP(k) and N ′(k′) = N ′P′(k′) , 
where N and N ′ = NB(lB) = Nl−dB

B  (1) stand for the number of nodes in the network before and after renormali-
zation, respectively. These substitutions lead to the following density balance equation:

from which Eq. (26) is obtained under the assumptions that both node degree distributions are scale-free with 
the same scaling exponent, i.e. P(k) ∼ k−γ and P′(k′) ∼ k′−γ , and that Eq. (10) is met between k and k′ . It should 
be emphasized, however, that what underlies validity of these assumptions is the geometric self-similarity of the 
boxes and the scale-free distribution of their masses. Furthermore, this derivation itself is a special case of more 
general considerations, in which the starting point is the below equation:

whose logic is similar to that behind Eq. (24). To explain, the left-hand side of Eq. (29) represents the number of 
boxes with diameter L and hub degree k in the network before renormalization, while the right-hand side is the 
number of boxes with the same diameter L and hubs of degree k′ in the network after lB-renormalization. The 
numbers of these boxes must match because hubs of degree k′ in the network after renormalization arise from 
those lB-boxes in the network before renormalization that contained hubs of degree k. The relation between the 
masses of the considered boxes is given by Eq. (18).

Interestingly, for arbitrary value of L, the scaling analysis of Eq. (29) leads to the scaling relation (25). However, 
when L=1 is assumed, then Eq. (29) can be transformed to Eq. (27). In particular, the left hand side of Eq. (29) 
becomes: NB(µ(1, k))dµ(1, k) = NP(µ(1, k)) dµ(1,k)dk dk = βNk−β(δ−1)−1dk = βNk−γ dk = βN(k)dk , where we 
one by one used Eqs. (1), (19), (15), and (23). Similar transformations applied to the right-hand side of Eq. (29) 
result in: N ′

B(µ
′(1, k′))dµ′(1, k′) = βN ′(k′)dk′ , what was to be shown.

From microscopic to macroscopic scaling exponents in real and model‑based fractal 
networks
All scaling exponents discussed in this article, which describe fractal complex networks, can be divided into two 
groups. The first group refers to the macroscopic characteristics of the network ( dB , γ , and δ ), and the second 
group includes the exponents that characterize the network structure at the microscopic level ( dk , dm , α and 
β ). Interestingly, exponents from both groups are related to each other and, as in the scaling theory of critical 
phenomena, only a few of them, three to be exact, are independent. The choice of the three fundamental expo-
nents depends on the focus of the study. Here, to validate our results in real and model-based fractal networks, 
we take the easier to measure macroscopic exponents as independent. This choice results in the following set of 
test relations, cf. Eqs. (25) and (26):

and, cf. Eqs. (11) and (13):

(24)NB(µ(L, k)) dµ(L, k) = NB(µ(bL, k)) dµ(bL, k),

(25)δ = 1+
dB

dm
.

(26)γ = 1+
dB

dk
.

(27)N(k)dk = N ′(k′)dk′,

(28)P(k)dk = l−dB
B P′(k′)dk′,

(29)NB(µ(L, k)) dµ(L, k) = N ′
B

(

µ′(L, k′)
)

dµ′(L, k′),

(30)dm =
dB

δ − 1
, dk =

dB

γ − 1
,

(31)α =
δ − 2

δ − 1
dB, β =

γ − 1

δ − 1
,
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of which only the relation for dk (30) has been verified in real1 and model2 networks, and the results of the valida-
tion of relations (31) are summarized below.

The real networks analyzed in this paper come from various fields and represent information, social, and 
biological networks. We analyzed: (1) a sample of the WWW with nodes corresponding to web pages and links 
standing for hyperlinks31; (2) a coauthorship network (DBLP), where nodes are scientists and edges are placed 
between two scientists if they have co-authored a paper32,33; (3) a functional brain network, which reflects the 
correlation between the activity of different areas in the human brain34,35. In addition to real networks, we have 
also analyzed several fractal network models, including our own network model, which is based on nested BA 
networks36, the Song–Havlin–Makse (SHM) model2 and (u,v)-flowers20. Detailed information on all these net-
works (real and synthetic) can be found in “Methods” section.

Table 1 presents the theoretical and empirical values of the scaling exponents of all analyzed networks. The 
theoretical values, which are given in brackets, are of two types. For the deterministic model-based networks—the 
SHM model and (u,v)-flowers—their values can be calculated using the appropriate formulas, the details of which 
are provided in “Methods” section (more precisely: “SHM model” and “(u,v)-Flowers” subsections, respectively). 
For real networks and for the numerical model of nested BA, the theoretical values of α and β were calculated 
from Eqs. (31) using the empirical values of the macroscopic exponents.

Correspondingly, the empirical values of the scaling exponents were calculated from Figs. 3 and 4 accord-
ing to the following protocol (the same for each network): First, we determined the box dimension dB of these 
networks resulting from tiling the network with boxes of different sizes lB , see Figs. 3, 4a–c. To this end, we used 
the algorithm developed by Song et al.37, and in the case of deterministic models of fractal networks, shown 
in Fig. 4, we additionally analysed the tiling consistent with their deterministic construction procedures, finding 
that they use a much smaller number of boxes than the Song method. We confirmed that the value of dB after 
renormalization (even multiple times) remains the same as before renormalization, see Fig. 2a. We then examined 
the invariance of distributions P(k) and P(µ) . The given values of lB refer to the diameter of the boxes that are used 
to renormalize the network. As already stated, lB = 1 refers to the original network - before renormalization. In 
the case of P(µ) distributions, the diameters L of the boxes whose mass was studied are also given. With respect 
to these distributions, the provided values of lB and L should be read as follows: The relevant distribution P(µ) 
refers to the network that was first renormalized with boxes of diameter lB and then covered with non-overlaying 
boxes of diameter L. Regarding P(µ) , however, due to the low statistical reliability of the data for lB, L > 1 , in 
this paper, we only present data for the largest networks (i.e. WWW and model based networks). It should be 
noted that in all networks we studied, both distributions are scale-invariant, with well-defined characteristic 
exponents γ and δ (see Figs. 3, 4d–i). Lastly, having determined the macroscopic scaling exponents: dB , γ , and 
δ , we were able to calculate the theoretical values of the local exponents—α and β , Eqs. (31)—which we used 
to obtain the adequately rescaled masses of boxes to determine their empirical values (see Figs. 3, 4j–l). In 
particular, to obtain the empirical value of α , the masses of all the internally connected boxes, obtained during 
tiling the network with different lB-boxes, were divided by the hub’s degree raised to the power of the theoreti-
cally obtained β . Such rescaled masses m/kβ were then plotted against the actual diameters of the boxes, L < lB , 
which had been specified individually for each box. A similar procedure was applied to determine the empirical 
value of β . (For more details see the subsection titled “Numerical calculation of microscopic scaling exponents” 
in the ”Methods” section).

Interestingly, in the case of deterministic fractal network models, only the box-covering method which takes 
into account the network construction procedure while using a smaller number of boxes than Song’s method, 
leads to microscopic exponents consistent with their theoretical predictions (cf. Fig. 4k,l and Table 1). In the 
case of these networks, the poor performance of Song’s method (e.g., compare Fig. 7a vs. Fig. 7b) is especially 
visible in the range of small masses of the P(µ) distributions (see subset graphs in Fig. 4h,i). We suspect, this 

Table 1.   Values of the scaling exponents for various fractal networks. In the table, N is the number of nodes 
in the analyzed network, 〈k〉 is the average node degree, and d corresponds to the diameter of the network. The 
empirical values of the scaling exponents were determined by fitting the appropriate scaling relations to real 
data and results of numerical simulations, for real and model networks, respectively. The theoretical values of 
microscopic exponents, which are given in brackets, are of two types. For real networks and for the nested BA 
model, they were calculated on the basis of appropriate scaling relations using empirical values of macroscopic 
exponents, and for deterministic models of fractal networks, they were calculated on the basis of derived 
theoretical relations.

Network N 〈k〉 d dB γ δ α β

WWW​ 325,728 4.6 46 4.8 2.4 2.2 0.68 (0.63) 1.22 (1.22)

DBLP 2523 2.5 62 2.0 3.2 3.4 1.23 (1.17) 0.86 (0.92)

Brain 2920 4.7 77 2.2 2.8 2.3 0.57 (0.51) 1.39 (1.38)

Nested BA 50,000 2 475 1.92 3.2 3.8 1.24 (1.23) 0.84 (0.79)

SHM model 78,126 2 4373 1.46 3.32 3.32 0.82 0.96

s=2 , a=3 , n=2s+1=5 (tree)
(

ln n
ln a

≃ 1.46

) (

1+ ln n
ln s

≃ 3.32

) (

1+ ln n
ln s

≃ 3.32

) (

ln(n/s)
ln a

≃ 0.83

)

(1)

(u,v)-flowers 43,692 3 416 2.0 3.0 3.0 0.99 0.98

u=2 , v=2 , w=u+v=4
(

lnw
ln u

= 2

) (

1+ lnw
ln 2

= 3

) (

1+ lnw
ln 2

= 3

) (

ln(w/2)
ln u

= 1

)

(1)
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latter observation may explain the occurrence of two different scaling behaviours (for small and large µ ) in P(µ) 
of other fractal networks (cf. Figs. 3g–i and 4g).

Perspectives
The origins and consequences of fractality are one of the three main research directions in the geometry of 
complex networks24, next to the hyperbolic geometry of hidden network spaces38,39 and the geometry induced by 
dynamic processes in networks40–42. Although these three geometries, due to the various definitions of distance 
in each of them, are defined differently, there is no doubt that they must be closely related to each other. While 
these relationships have yet to be explored, evidence of their existence can be found in our results.

For example, when examining deterministic models of fractal networks (SHM model and (u,v)-flowers, 
see “SHM model” and “(u,v)-Flowers” subsections, respectively), we noticed that while macroscopic scaling 
exponents are very stable in the sense that they do not depend on the box-covering method37,43, this may not be 
the case for microscopic exponents. In particular, in the mentioned models, gathering nodes according to their 
kinship—which is the most optimal, because it corresponds to the smallest number of boxes—gives the values of 
microscopic exponents closest to their theoretical predictions. Since the degree of kinship can be thought of as a 

Figure 3.   Scale-invariant and self-similar scaling in real fractal networks. The graphs placed in the same 
column refer to the same network (i.e. WWW, brain and DBLP, respectively, starting from the left), and those 
placed in the same row to the same scaling relation. In particular, the following graphs show: (a–c) A log-log 
plot of NB versus lB revealing the fractal nature of the studied network according to Eq. (1). (d–f) Invariance 
of the node degree distribution P(k) under the renormalization for different box sizes lB (the case of lB = 1 
corresponds to the original network). (g–i) Invariance of the normalized mass box distribution P(µ) (where L 
represents diameter of the considered boxes). (j–l) Scaling of the masses of boxes according to Eq. (8). (See the 
description given in the main text.).
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distance in some metric space—the space of kinship—this observation is important. In fact, the fractality of these 
models may be considered a feature they inherit from their kinship spaces. Here, natural questions arise, such 
as whether the fractality of real complex networks may result from the properties of hidden (similarity-based) 
metric spaces44. Similar studies on community structure confirm the existence of such a relationship45–47. The 
mention of the community structure is not entirely accidental here, because, as the example of the DBLP network 
shows—in which the removal of weak ties reveals its fractal properties (see also26,33)—the fat-tailed community 
size distribution48,49 may result from the scale-invariant distributions of box masses observed in (not necessarily 
tree-like) fractal skeletons13,14 of these networks.

The second thread that we would like to emphasize concerns the geometry induced by diffusion-like dynamic 
processes in networks40–42. In classical fractals, this kind of geometry is closely related to the cluster-growing 
method of calculating their fractal dimensions, which is actually a way of measuring the distance27. In complex 
networks, establishing an analogous relationship has not been possible so far due to the lack of theoretical founda-
tions distinguishing between the box dimension - dB (7) (which can be determined by the box covering method) 
and the spreading dimension - α (12) (which corresponds to the cluster-growing method). It seems that the scal-
ing theory of fractal complex networks presented in this paper has the potential to break this impasse. This is even 

Figure 4.   Scale-invariant and self-similar scaling in model-based fractal networks. As in Fig. 3, the graphs 
placed in the same column refer to the same model of fractal networks (i.e. the nested BA networks, the SHM 
model, and (u,v)-flowers, respectively, starting from the left), and those placed in the same row to the same 
scaling relation. The presentation of data in this figure compared to Fig. 3 differs only in that the graphs relating 
to deterministic models show two types of points: closed and open. For these models, closed points refer to 
the box-covering method resulting from their deterministic construction procedure, which uses a significantly 
smaller number of boxes than the Song’s algorithm, whose results correspond to open points (see the main text 
of the paper for more detailed explanation). Table 1 shows the results obtained based on the closed points.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9079  | https://doi.org/10.1038/s41598-024-59765-2

www.nature.com/scientificreports/

more likely since in its general findings, with box masses depending not only on the diameter of the boxes but 
also on the degree of the best-connected node inside the box, the theory refers to the well-established heteroge-
neous (degree-based) mean-field theory commonly used to study dynamical processes on complex networks50.

Methods
Real and model‑based fractal networks analysed in the paper
The real networks analysed include:

•	 WWW network: The web subset analysed consists of 326 k web pages that are linked if there is a URL link 
from one page to another31. This dataset has been analysed for fractal properties in many other papers (see 
e.g.1,2). It is publicly available in many network repositories (e.g.52).

•	 DBLP coauthorship network: DBLP is a digital library of article records published in computer science32,53. 
In this study, we use the 12th version of the dataset (DBLP-Citation-network V12; released in April 2020, 
which contains information on approximately 4.9 M articles published mostly during the last 20 years). We 
ourselves processed the raw DBLP data into the form of coauthorship network, from which we extracted the 
network backbone by imposing a threshold on the minimum number of joint papers ( ≥ 25 ) two scientists 
should have. This procedure significantly reduces the size of the studied network (from 2.9 M nodes and 
12.5 M links to 2.5 k nodes and 3.2 k edges), but thanks to it the network becomes naturally fractal.

•	 Human brain networks: The networks are based on functional magnetic resonance imaging (fMRI). The 
fMRI data consists of temporal series, known as the blood oxygen level dependent (BOLD) signals, from 
different brain regions. To build brain networks, the correlations Cij between the BOLD signals are calculated 
and the two nodes (brain regions) are connected if Cij is greater than some threshold value T. In our case we 
assume T = 0.85 . The brain networks analysed here were used in34,35 and can be found at54.

The studied models of fractal networks include:

•	 SHM model: The details of the model are presented in “SHM model” subsection, where local scaling expo-
nents for this model were also derived.

•	 (u,v)-Flowers: The details of the model are presented in “(u,v)-Flowers” subsection, where local scaling 
exponents for this model were also derived.

•	 Nested BA networks: The nested BA network model has three parameters: N - the number of nodes, kmax - the 
degree of the best connected node in the network, and m - the number of edges by which the newly created 
node connects to the already existing nodes. The network evolution procedure is as follows: 

1.	 First, a BA network with the hub of degree kmax is created (that is, the network grows until one of the 
nodes reaches degree kmax).

2.	 Then, as long as the size of the network is less than N (see Fig. 5): 

(a)	 a node is chosen proportionally to its degree k and it is replaced with a BA subnetwork with the 
largest node degree k;

(b)	 edges that were connected to the removed node are reconnected to randomly selected nodes of 
the newly created subnetwork.

Figure 5.   Single step of the construction procedure of the nested BA network. First, one node is chosen with 
probability that is proportional to its degree, in the figure k = 4 . Then the node is replaced by the corresponding 
BA network with the best connected node of the same degree k = 4 , as the removed one. Green edges of the 
removed node are reconnected to randomly selected nodes of the newly created subnetwork.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9079  | https://doi.org/10.1038/s41598-024-59765-2

www.nature.com/scientificreports/

Figure 6.   Numerical calculation of microscopic scaling exponents. Detailed description of this figure is given in 
the text.

Figure 7.   (2,2)-Flowers of generation t = 5 . (a) The network was covered with boxes of diameter lB = 8 
according to the degree of kinship of the nodes. (b) The node is covered with boxes of diameter lB = 8 according 
to the algorithm developed by Song et al.37. It is clear that in the studied deterministic network, Song’s random 
algorithm performs worse than the covering according to the kinship space.
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Numerical calculation of microscopic scaling exponents
In Figs. 3j–l and 4j–l we presented the microscopic scaling exponents α and β . Their values result from fitting a 
straight line to the set of points marked with blue circles and red triangles, respectively. These points represent 
the geometric mean of logarithmically equal sized bins of the original data which were obtained as follows. First, 
we estimated the range of lB for which dependence of NB on lB is linear in log-log scale. In Fig. 6a, which shows 
an example analysis of nested BA model, this range is indicated by a gray rectangle. Then, for each lB in this 
range, we performed box covering, obtaining a triple of values (m, L, k) for each box. Based on the set of such 
triples and the theoretically calculated value of the α or β exponent, a set of points (k,m/Lα) or (L,m/kβ) was 
created, respectively. In Fig. 6d, the later set is represented by yellow circles. Having this raw data, logarithmic 
binning has been performed and geometric mean has been calculated for each bin. Figure 6d, in addition to the 
blue points denoting the geometric mean, also shows the geometric standard deviation and the fitted line, whose 
slope corresponds to the α value we are looking.

If we restrict our analysis to one specific value of lB (for example, in Fig. 6b we take lB = 32 , while in Fig. 6c 
we take lB = 8 ), we end up with a much smaller set of triples that would not allow for a reliable results. These 
limitations are particularly severe for small real, DBLP, and brain networks, with sizes N < 3 · 103 each. The blue 
lines in Fig. 6b,c are not a result of fitting but are shown for comparison purposes only.

Microscopic scaling exponents for deterministic fractal network models
In this section, we derive exact formulas for microscopic scaling exponents ( α and β ) characterising deterministic 
fractal network model.

SHM model
In the Song–Havlin–Makse (SHM) model2, at t = 0 , the network starts to grow from two nodes connected by one 
link. Then, during subsequent, t + 1 , time steps, next (t + 1)-generations of the network recursively emerge, in 
which: s new nodes are attached to the endpoints of each link of the previous t-generation, old links are removed 
from the network, and new links are created in place of those removed, which connect pairs of offspring-nodes 
attached to the endpoints of the deleted ones.

As a result of this construction procedure, in successive generations, every node i increases its degree 
multiplicatively:

where

is the time that has elapsed since the node appeared in the network for the first time, at time ti , assuming that 
its initial degree was equal to ki(tt , ti) = 1 (in fact, the initial degree of one newcomer out of s is ki(ti , ti) = 2 . 
However, since the nodes’ initial degrees does not affect our further calculations, we will not be concerned with 
this minor oversight.).

It is also easy to see that a similar multiplicative dynamics is also shown by the diameter Li and mass Mi of the 
largest box where the i-th node of degree ki(t, ti) acts as a hub (such a box consists of all nodes that can be treated 
as the offspring of i, for which the i-th node is the parent, grandparent, great-grandfather, etc.). Specifically, the 
maximum diameter of such a box is given by:

with a = 3 (the value of a results from the construction procedure of the model, since removing the old edges 
and replacing them with new ones, which are created only between newly added nodes, is formally equivalent 
to replacing the old edges with paths of length 32.) and Li(ti , ti) = 1 , whereas its mass satisfies the following 
recurrence relation:

where n = 2s + 1 and Mi(ti , ti) = 1 . The reasoning behind the factor n is the following: at time t, the largest box 
that can be created around the node i consists of the same nodes that formed its largest box at time t − 1 (the 
number of which is: Mi(t − 1, ti) ) and all descendants of those nodes that were created in the last time step (the 
number of which, due to the tree-like structure of the network, is: 2s(Mi(t − 1, ti)− 1) ≃ 2sMi(t − 1, ti) ). This 
leads to the following relation: Mi(t, ti) = Mi(t − 1, ti)+ 2sMi(t − 1, ti) , which is equivalent to the first part of 
Eq. (35).

At this point, it is worth noting a few remarks regarding Eqs. (34) and (35).
First, Eq. (34), when applied to the largest boxes with the oldest nodes, i.e. those from which the network’s 

evolution began, shows how the diameter of the entire network changes in subsequent generations:

Correspondingly, by applying Eq. (35) to these boxes, one finds the analogous formula for the total number of 
nodes in the network:

(32)ki(t, ti) = s ki(t − 1, ti) = s�t ,

(33)�t = t − ti ,

(34)Li(t, ti) = a Li(t − 1, ti) = a�t ,

(35)Mi(t, ti) = nMi(t − 1, ti) = n�t ,

(36)L(t) = Li(t, 0) = a Li(t − 1, 0) = a L(t − 1).

(37)N(t) = Mi(t, 0) = nMi(t − 1, 0) = nN(t − 1).
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In Ref.2, the above recurrence relations, Eqs. (36) and (37), together with Eq. (32), were used to derive exact 
expressions for the box dimension of the considered fractal network model, cf. Eq. (1):

and for its degree exponent, cf. Eq. (8):

thus enabling verification of the scaling relation (17), according to which, in this model, the characteristic expo-
nent of the degree distribution is given by:

The second remark regarding Eqs. (34) and (35) it that boxes containing hubs of degrees ki(t, ti) > 1 may have 
diameters and masses smaller than Li(t, ti) and Mi(t, ti) , respectively. For example, when the diameter of the 
i-th box is li = 1 , then the box is confined to the node itself and as a result its mass is equal to mi = 1 . Similarly, 
when li = a = 3 , then the box, apart from the hub itself, also contains all its neighbours, making the mass of the 
box equal to mi = 1+ ki ≃ ki . More generally, the diameter of the i-th box can be equal to:

where

with the value of τ affecting its mass, which can be determined from:

In fact, the rationale behind Eq. (43) is the same as for Eq. (35). The only difference between Mi and mi is that 
the initial condition for the multiplicative growth of the latter is mi = 1+ ki(t − τ , ti) ≃ ki(t − τ , ti) and not 
just Mi(ti , ti) = 1 . Now, substituting Eq. (32) into (43), one gets:

Then, using Eq. (41) in (44), one obtains the following relation for the mass of the box as a function of its diameter 
and hub’s degree, cf. Eq. (9):

where the local scaling exponents are given by:

and

It is easy to see that, together with the previously obtained expressions for dB (38) and dk (39), the obtained above 
expressions for α and β satisfy the scaling relation: dB = α + dk β , Eq. (10), which has been derived in the main 
text of the paper.

(u,v)‑flowers
In the deterministic fractal network model called (u,v)-flowers20, networks start to grow, at t = 0 , from two nodes, 
so-called initial hubs, connected by one link. Then, subsequent (t + 1)-generations of the model are obtained 
from t-generations by replacing each link by two parallel paths of u > 1 and v ≥ u links long. An essential and 
not obvious at first glance property of this construction procedure is its equivalence to another procedure in 
which to obtain (t + 1)-generation one produces w = u+ v copies of the previous t-generation and then joins 
the copies at their initial hubs.

From the second method of constriction, it is easy to see20 that the number of links in (u,v)-flowers of gen-
eration t > 0 is given by:

the number of nodes is:

and the diameter of the networks grows as:

(38)dB =
ln n

ln a
,

(39)dk =
ln s

ln a
,

(40)γ = 1+
dB

dk
= 1+

ln n

ln s
.

(41)li = aτ ,

(42)0 ≤ τ ≤ �t,

(43)mi = nτ ki(t − τ , ti).

(44)mi =

(n

s

)τ

ki(t, ti).

(45)mi = lαi k
β
i ,

(46)α =
ln n− ln s

ln a
,

(47)β = 1.

(48)Et = wEt−1 = wt ,

(49)Nt = wNt−1 − w ∝ wt ,
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Furthermore, by construction, the networks have only nodes of degree

where n = 1, 2, . . . , t , and their node degree distribution is scale-free (2) with the characteristic exponent equal to:

It was also shown that the box dimension (1) of (u,v)-flowers is:

and their degree exponent (8) is:

in accordance with the scaling relation (14).
In what follows, we show that the local scaling exponents, α and β (9), of the model are given by:

and

respectively, so their values satisfy the scaling relation (10).
We first consider the scaling exponent β . From Eq. (9), it follows that if the degree of the hub inside the box 

increases x times, then the mass of the box will increase xβ times. Correspondingly, the second method of con-
struction of (u,v)-flowers assumes that in successive generations of these networks, the degrees of the initial hubs 
double, i.e. x = 2 , which is due to the merger of two initial hubs from two copies of the network of the previous 
generation. Moreover, since the merged copies are identical, the masses of the boxes with the initial hubs also 
double, i.e. xβ = 2 . Thus, we come to the conclusion that the masses of the boxes are proportional to the degrees 
of their hubs, which gives β = 1 , i.e. Eq. (56).

To find α , we again consider boxes with the initial hubs of degree ki = 2t , Eq. (51), in networks of generation 
t > 0 . Such boxes can be of various diameters. For example, when the diameter of the box is twice the diameter 
L(t−1) of the network of (t − 1)-generation, then the mass of the box is twice the number of nodes N(t−1) in the 
network of (t − 1)-generation. In general, when the box has a diameter of 2Ln (with 0 < n < t ), then its mass 
is equal to (cf. Fig. 7a):

Comparing the above relationship with Eq. (9) one gets:

where α = (lnw − ln 2)/ ln u , cf. Eq. (55).

Data availability
The datasets used and the complete Python code for all calculations can be obtained from51.
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