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Prediction of jumbo drill 
penetration rate in underground 
mines using various machine 
learning approaches and traditional 
models
Sasan Heydari , Seyed Hadi Hoseinie * & Raheb Bagherpour 

Estimating penetration rates of Jumbo drills is crucial for optimizing underground mining drilling 
processes, aiming to reduce costs and time. This study investigates various regression and machine 
learning methods, including Multilayer Perceptron (MLP), Support Vector Regression (SVR), 
and Random Forests (RF), to predict the penetration rates (ROP) using multivariate inputs such 
as operation parameters and rock mass characteristics. The Rock Mass Drillability Index (RDi), 
incorporating both intact rock properties and structural parameters, was utilized to characterize 
the rock mass. The dataset was split into 80% for training and 20% for testing. Performance metrics 
including correlation coefficient  (R2), variance accounted for (VAF), mean absolute error (MAE), mean 
absolute percentage error (MAPE), and root mean square error (RMSE) were calculated for each 
method to evaluate the accuracy of the predictions. SVR exhibited the best prediction performance 
for ROP, achieving the highest R2, lowest RMSE, MAE, and MAPE, as well as the largest VAF values of 
0.94, 0.15, 0.11, 4.84, and 94.13 during training, and 0.91, 0.19, 0.13, 6.02, and 91.11 during testing, 
respectively. With this high accuracy, we conclude that the proposed machine learning algorithms are 
valuable and efficient predictors for estimating jumbo drill penetration rates in underground mining 
operations.

Keywords Penetration rate prediction, The Rock Mass Drillability Index (RDi), Traditional models, 
Multilayer perceptron neural networks (MLP), Support Vector Regression (SVR), Random Forests (RF)

The drill and blast method is the most important method used in underground excavation. In the drill and blast 
method in tunneling, drilling constitutes the largest cost and  time1. In drilling operations, many factors such as 
geological, geotechnical, operational, and machine characteristics, affect drilling performance. These parameters 
can be generally classified into two major groups controllable and uncontrollable  parameters2,3. Operational 
factors and machine characteristics are variables that can be controlled but geological and geotechnical conditions 
are unique to each site and cannot be easily  altered4. The key factors that impact the Rate of Penetration (ROP) 
are shown in Fig. 1.

Predicting the ROP based on drilling variables is essential aiming to maximize ROP or minimize total time 
or cost. For that, the accuracy of the ROP model is  crucial4. Despite the importance of predicting ROP for better 
drilling efficiency, accurately establishing a prediction model is  challenging5. The empirical approach, commonly 
used to study penetration rates, utilizes field data and is developed for varying ground conditions. Various 
studies conducted by researchers on percussive and rotary drilling have revealed that the rate of penetration is 
contingent upon the properties of the  rock6. The relationship between rock properties and ROP is complex and 
nonlinear. Many researchers developed statistical models to predict ROP based on the experimental  data7–17. 
Various statistical models and classification systems have been developed to predict penetration rate, but they 
often lack generalizability across different drilling  conditions18. Existing methods may not accurately predict 
ROP in different geological settings or with different drilling  rigs19–24. Many of these statistical relations only 
show the effect of different rock parameters on ROP separately. Few of them can predict ROP based on few 
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rock properties.The Norwegian Institute of Technology introduced the Drilling Rate Index (DRI) for assessing 
drillability in percussive  drilling25. Linear predictive equations were developed correlating rate of penetration 
with various rock properties such as compressive strength, tensile strength, and Young’s modulus. Despite 
investigating numerous rock mechanical properties, researchers found that only compressive strength, tensile 
strength, and Young’s modulus were indicative parameters for predicting penetration  rate26. Furthermore, 
researchers noted that penetration rate closely relates to bulk density, compressive strength, apparent porosity, 
P-wave velocity, and Schmidt hammer  value27. Correlations between ROP and different rock hardness test results 
were demonstrated, with compressive strength and tensile strength showing a strong correlation with  ROP9,16. 
Multiple regression analysis was employed to construct PR models for various drill types, including rotary, 
Down-the-Hole (DTH), and hydraulic top hammer  drills17. Moreover, a new index named the Rock Penetrability 
Index (RPi) was developed, considering factors like UCS, Schimazek’s F-abrasivity, Mohs hardness, rock texture, 
grain size, and Young’s  modulus28,29. Density was also identified as an important parameter for predicting  ROP12. 
Apart from intrinsic rock properties, discontinuities, such as the Rock Quality Designation (RQD), significantly 
affect the cutting  performance30. Additionally, researchers have presented a drillability prediction model based on 
parameters such as UCS, Schmidt hammer hardness value, quartz content, fragment size, alternation, joint dip, 
bit rotational speed, and  thrust31. Furthermore, studies have explored the relationship between ROP and drill rig 
operational parameters, with theoretical and experimental investigations suggesting that ROP can be predicted by 
specific energy and certain design and operational parameters of the drilling  machine32. Relationships between 
ROP and drilling thrust, as well as the influence of rock strength, drill rig power, drill bit shape, and geological 
discontinuities on ROP, have also been  highlighted33. Some of the research findings include empirical models 
based on the uniaxial compressive strength of rocks, the impact of geological features on penetration rate, and 
the use of Artificial intelligence techniques to predict rock classification around tunnels. The studies also cover 
topics related to percussive and rotary drilling, the influence of different parameters on penetration rate, and the 
development of new models for predicting drilling  performance34–51.

Statistical approaches in ROP prediction suggest relationships between input and output parameters, but 
these methods may not always effectively handle non-linear and complex  problems52,53. The traditional multiple 
regression model lacks adequate prediction stability and struggles to solve nonlinear problems due to the impact 
of multicollinearity among independent  variables54. Artificial Intelligence Based models have been introduced 
to address these limitations and, over time, have demonstrated improvements in prediction  accuracy55.

The advancement of information technology has led to the emergence of intelligent drilling and completion 
technology in the field. Currently, there is a growing trend in the application of various machine learning 
techniques for estimating ROP as they continue to evolve and advance  rapidly56. Due to the need for frequent 
recalibration with traditional physics-based models based on auxiliary data, machine learning models strive to 
overcome these challenges by utilizing data to identify correlations among various drilling  variables57. Machine 
learning algorithms can take any number of measured variables as inputs, making them a powerful tool for 
ROP  modeling4. ML algorithms have an advantage over analytical ROP models as they offer flexibility in model 
form, which allows them to effectively segment the drilling operational parameter space. Unlike analytical 
models, ML algorithms do not require predefined equations, as hyperparameters specific to each algorithm can 
control the model architecture. However, increased model complexity can lead to reduced interpretability and 
an increased risk of overfitting. Also, in the presence of multiple collinearity between input variables, Methods 
like neural networks often encounter challenges such as an unstable learning process and slow convergence 
speed in  calculations58.

The application of machine learning techniques in underground mines extends beyond the study of ROP 
(Rate of Penetration), and nowadays, it is also utilized in other fields of engineering. With the widespread use of 
jumbodrills equipped with Measurement While Drilling (MWD) systems, it has become customary to employ 
machine learning and deep learning techniques for classifying the rock mass in tunnels, Predictive modeling of 

Figure 1.  The most important factors influencing drilling performance.
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drilling rate, as well as detecting deviations in bore holes within the  face51. In addition to the aforementioned 
applications, given the paramount importance of safety in underground mines, the utilization of these techniques 
in various areas such as fire prediction, column stability, androckburst in underground engineering structures 
is rapidly  expanding59–61.

One of the early applications of Machine Learning for predicting drilling parameters, was presented by 
Arehart  199062. Arehart employed Artificial neural networks (ANN) to predict a crucial drill bit parameter, 
specifically bit wear. Subsequently, Bilgesu et al. published the first study applying ANN for predicting the  ROP63. 
In drilling, machine learning techniques such as ANN, random forests, and other regression and classification 
methods, along with deep learning methods, have demonstrated numerous applications applications. They have 
proven to be  advantageous64. The findings suggest that artificial neural networks are the most commonly used 
machine learning technique for managing the rate of penetration. Among ANNs, basic models outperform 
modified versions in this context. However, while modified ANNs demonstrate greater accuracy in predicting 
ROP, they are not superior to other machine learning methods such as linear regression (LR) and random for-
est (RF) in making highly accurate predictions. These alternative approaches have been shown to be effective 
and practical in compensating for the limitations of ANNs in ROP  management3,65. Moreover, similar studies 
have been conducted to predict drilling rate using machine learning techniques such as random forest. How-
ever, these models encounter constraints due to the utilization of laboratory samples. It is imperative that these 
models undergo testing in the field with real-time drilling data to gain further insight into their performance 
in practical  scenarios66,67.

After reviewing the literature on the subject, it was discovered that only a few researchers have developed 
relationships to predict the penetration rate of jumbodrills. Kahraman calculated the performance prediction 
of a jumbo drill based on intact rock and rock mass  properties45. The relationship he presented focuses on the 
discontinuities within the rock mass. Shen found relationships between the drilling rate and drilling parameters 
based on drilling data. To explore the variations in drilling parameters, drilling tests were conducted on a rock 
block. His relations do not take into account the characteristics of the rock  mass68. Su developed multiple regres-
sion models using UCS, DRI, impact energy, blows per minute of the piston, hole area, and some rock properties 
for predicting the penetration rate and specific energy of  drilling69.

Prasad developed an experimental methodology to measure the expected bit life along with ROP using a 
single test method and Compendious Index for  Drillability70.

As far as the available literature suggests, there have been no attempts made to conduct a comprehensive 
review solely focusing on the recent advancements of machine learning techniques for predicting the jumbo 
drill penetration rate. Thus, the main aim of this paper is to fill this research gap and address crucial queries 
related to intelligent prediction techniques for jumbo drill’s ROP. In this paper, in addition to regression methods, 
three machine learning methods, Multilayer perceptron (MLP), Support Vector Regression (SVR), and Random 
Forests (RF), are used to estimate ROP. All calculations in this paper were performed using a custom program 
code written in the R Statistical Programming Language.

Case study and data collection
The objective of this paper is to develop an empirical model with machine learning algorithms that can predict the 
penetration rate of jumbo drills in underground mines. The collection of real field data constitutes a significant 
and essential part of this study. The models were developed using real data collected from seven underground 
lead and zinc mines that were extracted by sublevel stoping mining method located in the Irankouh and Sormeh 
mining districts of Iran. To create the models, the study considered six parameters, which relate to drilling and 
rock properties. In these mines, the tunnel face area is about 16–24 square meters and contains approximately 
30 ~ 35 blasting holes per face. The jumbo drills used for the study included four different brands, with drill bit 
diameters of 51 and 64 mm. The collected parameters are described in Table 1.

Relationship between rock mass parameters and ROP
Having reviewed the studies conducted thus far, it becomes apparent that several rock mass parameters sig-
nificantly influence drilling operations. These include the origin of the rock formation, Mohs hardness, texture 
(grain shape and size), porosity, density, abrasiveness, rigidity, P-wave velocity, elasticity, plasticity, UCS (point 
load index and Schmidt hammer), tensile strength, and structural parameters (such as joints, cracks, and bed-
ding) alongside RQD.

Table 1.  Description of parameter symbols and values used in the model.

Parameter Unit Symbol Description

Feed pressure bar PF The hydraulic pressure inside the cylinders required to keep the bit in contact with the bottom of the hole

Rotation pressure bar PR The pressure of the bit against the rock to maintain the required rotation

Hammer pressure bar PP The measurement of the impact pressure of the bit against the rock mass

Borehole Diameter mm Dh Borehole Diameter, The diameter of the bits used to drill the boreholes is 51 and 64 mm

Rock mass drillability index – RDi Rock mass drillability index, include physical parameters of the rock materia, strength parameters of the rock material and 
structural parameters of the rock mass

The rate of penetration m/min ROP The result of dividing the drilling time by the length of the borehole
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Rock classification poses a challenge due to the selection of parameters deemed most significant. No single 
parameter or index can comprehensively describe a jointed rock mass for engineering purposes. Consequently, 
it is impractical to incorporate all parameters into a classification system. In the rock mass drillability index 
classification scheme (RDi), four guiding principles have been adopted: a limited number of parameters, 
avoidance of equivalent parameters, categorization of parameters into groups, and field applicability of the 
classification. Adhering to these principles, the RDi assessment focuses on three categories of parameters: physical 
parameters of the rock material: texture and grain size, (b) strength parameters of the rock material: UCS and 
Mohs hardness, and (c) structural parameters of the rock mass: joint spacing, joint filling and aperture, and joint 
dipping. Except for UCS, all parameters are readily measurable in the field. Since it is not possible to measure the 
UCS in the field, one can use point load index and Schmidt hammer results as equivalent values for the  UCS27.

Based on the points mentioned, there are many uncontrollable parameters that affect the penetration rate. 
However, incorporating all these variables is complex, time-consuming, and costly. Therefore, this paper employs 
the Rock Mass Drilling Index (RDi) as a representative of rock mass properties. RDi encompasses both intact 
rock properties and structural parameters, serving as a comprehensive indicator of rock mass characteristics.

To date, there has been no index used for underground mining that comprehensively encompasses all rock 
mass characteristics. The RDi, developed by Hosseini, provides a qualitative representation of the drilling rate by 
considering both intact rock properties and structural parameters of the rock  mass27. This classification system 
is presented in Table 2, and the qualitative predictions are shown in Table 3. By summing the ratings in Table 2, 
a qualitative prediction of the rock mass drilling rate can be calculated.

Before commencing tunnel drilling, relevant information such as depth, cross-sectional area, water presence, 
and other parameters was gathered. Prior to jumbo drill operations in each tunnel face, data on discontinuity 
properties were collected, comprising joint spacing, joint aperture and filling, and the angle between the joint 
and borehole axis. A select number of suitable samples from each face underwent laboratory studies to determine 
the physical and mechanical properties of the rock. A total of 737 boreholes in 26 faces, equivalent to more than 
2400 m, were considered for this study. Uniaxial compressive strength was calculated following International 
Society for Rock Mechanics (ISRM) guidelines (RTH 325–89), and density and porosity tests were conducted 
in accordance with ISRM Suggested Methods. Additional assessments included grain size, texture, and Mohs 
hardness determination. Each face was divided into distinct zones based on the rock mass drillability index 
(Refer to Fig. 2), and these zones were designated for borehole drilling. Data related to drilling in each specific 
area were recorded.

The Rock Mass Drillability Index (RDi) parameters collected from tunnels were rated as per Table 2 to classify 
rock mass drillability (see Table 3). To evaluate the correlation between RDi and the Rate of Penetration (ROP), 
correlation diagrams were created for two borehole diameters (51 and 64 mm) with respect to penetration rate 
(Fig. 3). The analysis revealed a linear increase in penetration rate with higher RDi values in the rock mass. This 
linear relationship was chosen based on the highest correlation coefficients among linear, logarithmic, power, 
and exponential functions. The variability in penetration rate for each RDi value is attributed to differences in 
machine operating parameters. To clarify the correlation between these two factors, the data related to each RDi 

Table 2.  Rock mass drillability index (RDi)  classification27.

Texture Porous Fragmental Granitoid Porphyritic Dense

Grain size –  > 5 mm 2–5 mm 0.05–1 & 2–5 mm 0.05–1 mm

Rating 15 10 7 4 1

Mohs Hardness 1–3 3–4.5 4.5–6 6–7  > 7

Description Very soft–soft Comparatively soft Comparatively hard Hard Very hard

Rating 18 13 9 4 1

UCS (MPa) 1–25 25–50 50–100 100–200  > 200

Description Very low strength Low strength Average strength High strength Very high strength

Rating 22 16 11 6 2

Joints Spacing  > 2 m 1–2 m 0.5–1 m 0.15–0.5 m 0–0.15 m

Rating 18 13 9 5 1

Joint aperture & filling Closed joint 0–2 mm  > 20 mm 12–20 mm 9–12 mm 2–9 mm

Rating 15 10 7 4 1

The angle between the joint & 
borehole axis 70°–90° 55°–70° 35°–55° 20°–35° 0°–20°

Rating 12 8 6 3 1

Table 3.  Qualitative prediction of the penetration rate of drilling in the rock mass using  RDi27.

RDi 7–20 20–40 40–60 60–80 80–100

Prediction of drilling rate Slow Slow–medium Medium Medium–fast Fast
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Figure 2.  Different steps of data collection in this paper.
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Figure 3.  Relationship between RDi and all available datasets penetration rate and the average of many 
numbers of blasting holes (a) 51 mm (b) 64 mm.
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class was clustered. Each solid point in Fig. 3 represents the average of multiple blasting holes, ranging from 32 
to 75, with one point representing each group.

Data preprocessing
To ensure accurate model training, it is crucial to preprocess raw data due to its high level of noise and outlier 
data. Neglecting to remove outliers and reduce noise can impede the model learning process and prolong training 
time. At this stage, the collected data undergoes review and analysis to prepare for program entry, with 80% of 
the data used for training and 20% for testing randomly. To ensure accurate data analysis, it is critical to take two 
necessary actions: First, data analysis, verification of their accuracy and precision and Second, data matching; to 
avoid scattering and place all the data in a specific interval. Non-quantitative data can be handled using various 
techniques. Improper scaling can cause regression analysis to misestimate the significance of each variable, and 
deleting or averaging out-of-range data can be used as a solution. This study employs the IQR method, one of 
the most commonly used outlier labeling techniques. To handle extreme values that can behave as outliers in a 
noisy dataset, it is necessary to perform outlier labeling before processing. The IQR method is considered one of 
the best approaches, which takes the interquartile range (IQR) into account for labeling outliers, using Eq. (1):

In Eq. (1),  Q3 represents the 3rd quartile, and  Q1 represents the 1st quartile of the data. To determine the upper 
and lower limits of the extreme boundaries, the IQR value is multiplied by a factor and then subtracted from  Q1 
and added to  Q3. The most commonly used factor for this is 1.5. To analyze the sample data outliers, box diagrams 
were drawn according to the drilling parameter and rock mass drillability index classification that is shown in 
Fig. 4. In Fig. 4, under different Rock mass Drillability index, all four drilling parameters contained outliers. To 

(1)IQR = Q3 −Q1

Figure 4.  Drilling parameter box diagrams for each RDi. (a) Feed pressure  (PF, bar); (b) Rotation pressure  (PR, 
bar); (c) Hammer pressure  (PP, bar); (d) The rate of penetration (ROP, m/min).
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eliminate the effects of the outliers, the average value of the parameter was used to replace the outlier of data in 
this paper. The changes in data characteristics before and after cleaning are compared in Table 4, after cleaning.

After data cleaning; to avoid scattering and place all the data in a specific interval, in the field of machine 
learning, different evaluation indexes (that is, different features in feature vectors are described as different 
evaluation indexes) often have different dimensional and dimensional units, which will affect the results of 
data analysis. In order to eliminate the dimensional influence between indexes, data normalization is required.

Normalization is a technique used to limit input data to a specific range, often between 0 and 1. In this study, 
the data were normalized using the min–max normalization method, which is defined in Eq. (2):

In Eq. (2), x represents the value of the original data,  xmax represents the maximum value of the original data, 
 xmin represents the minimum value of the original data, and x’ represents the normalized value.

Validation of the models
In computational mechanics, several metrics are available in statistics. This research implements five performance 
metrics. The testing performance is assessed based on five statistical performance criteria, namely determina-
tion coefficient  (R2), variance accounted for (VAF), mean absolute error (MAE), mean absolute percentage 
error (MAPE), and root mean square error (RMSE). VAF can be used to evaluate the variance proportion of 
the variables, while RMSE, MAE, and MAPE are frequently used to compare the prediction errors of different 
models—the lower the RMSE, MAE, and MAPE, the better the model performs. These statistical indices are 
expressed as follows (Eqs. 3–6)71–73:

where var denotes the variance, Ti and Oi are the measured and predicted values, n is the sample size.

A penetration rate model for Jumbo drills
Drilling performance assessment using non‑linear regression analyses
Assessment of geo-mechanical properties of rock formations plays a crucial role in determining the efficacy of 
rock drilling, as well as predicting drilling-related costs, timing, and productivity. Predictive modeling tech-
niques, such as regression analysis, can provide valuable insights into the relationships between independent 
and dependent variables.

In order to ensure that a model is capable of making accurate predictions on unseen data, it is necessary 
for it to perform well not only on the data that it was trained on but also on novel data. To accomplish this, the 

(2)x
′ = (x− xmin)/(xmax − xmin)

(3)RMSE =

√

∑n
i (Ti −Oi)

2

n

(4)MAE =

∑n
i=1 |Ti −Oi|

n

(5)MAPE =
100

n
×

n
∑

i=1

∣

∣

∣

∣

Ti −Oi

Ti

∣

∣

∣

∣

(6)VAF =

[

1−
var(Ti −Oi)

var(Ti)

]

× 100

Table 4.  Comparison of the data characteristics before and after cleaning.

RDi Index

PF PR PP ROP

Before After Before After Before After Before After

20–40

mean 80.83 80.90 69.96 69.75 125.51 125.61 2.07 2.08

std 16.02 15.66 10.00 9.49 7.09 6.81 0.40 0.40

min 40 50 49 50 100 105 1.28 1.28

max 105 105 105 90 140 140 2.95 2.95

40–60

mean 85.05 86.92 78.36 78.61 124.76 125.30 2.74 2.78

std 16.99 14.29 12.93 11.22 7.42 6.35 0.45 0.37

min 33 38 55 55 100 110 1.34 1.85

max 110 110 115 102 145 145 3.84 3.69

60–80

mean 87.15 88.88 82.62 80.15 133.78 133.45 3.78 3.81

std 11.69 10.88 9.15 4.42 11.01 10.73 0.52 0.51

min 70 70 72 72 119 119 3.15 3.15

max 101 101 110 90 147 147 4.58 4.58
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dataset is partitioned randomly into two subsets, with 80% of the data used for training and the remaining 20% 
used for testing.

Initially, we conducted several basic regression analyses utilizing linear, logarithmic, power, and exponential 
functions to establish the correlation between each independent variable and the rate of penetration. The 
coefficients of determination resulting from these basic regression analyses are compiled in Table 5. Based on 
the findings of the correlation analysis between each independent variable and ROP, it became evident that the 
rate of penetration cannot be anticipated by a single variable alone. Instead, it is impacted by numerous factors. 
Consequently, statistical methods and machine learning methods were used to attain more precise predictions 
of the rate of penetration. The correlogram of the dataset is represented in Fig. 5. In Fig. 5, scatter plots for 
each pair of variables are presented on the lower left, correlation coefficients are shown on the upper right, and 
histograms are placed in the middle. It is apparent from Fig. 5 that there was no substantial overlap between the 
independent variables, and none of them were removed while constructing the model.

In contrast to the limited scope of traditional linear regression, non-linear regression is capable of estimat-
ing models that encompass complex relationships between independent and dependent variables. In this paper, 
different algorithms were used to describe nonlinear multivariate regression functions, especially focusing on 
simple regression functions. The resulting models were then compared to identify the most accurate one based 
on the model development data. Table 6 presents five distinct non-linear multivariable regression equations that 
were derived using the model development data. As shown in Table 6, the correlation coefficients for these models 
ranged from 0.82 to 0.87 when assessed solely on the model development datasets. However, when considering 
the testing datasets, the correlation coefficients were found to be between 0.81 and 0.86.

Table 5.  Correlation analysis of rate of penetration and individual parameters.

Parameters Linear Logarithmic Power Exponential

PF 0.13 0.19 0.25 0.18

PR 0.45 0.49 0.53 0.46

PP 0.27 0.28 0.34 0.31

RDi 0.72 0.72 0.70 0.68

Figure 5.  Correlogram of the dataset.
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By examining the developed nonlinear regression models, it was found that the model specified by the below 
equation is the most accurate model among the models.

The cross-correlation graph of the nonlinear multiple regression model is presented in Fig. 6.

Drilling performance assessment using machine learning methods
Model complexity significantly influences the trade-off between bias and variance. Bias arises when complex 
relationships are oversimplified, and variance measures the sensitivity to dataset variations. In ROP modeling, an 
analytical model assuming a power law for drilling speed based on a few variables can introduce notable bias due 
to oversimplification. Analytical ROP models tend to exhibit high bias as they oversimplify the complex drilling 
process. In contrast, machine learning algorithms allow for the inclusion of numerous input variables. However, 
increasing model complexity raises the risk of overfitting, which adds variance. Machine learning algorithms 
provide flexibility in exploring drilling parameters by adapting to the data’s characteristics via algorithm-specific 
hyperparameters rather than predefined  equations4. Artificial neural networks, support vector machines, and 
random forests were chosen as the algorithms chosen for this paper based on performance and applicability to 
a wide range of problems.

The architectures of machine learning models can be controlled by hyperparameters, but there are no hard 
and fast rules for selecting the optimal hyperparameters, as the ideal model structure can differ depending on 
the application. To find the best hyperparameter combinations, researchers often define a grid and employ cross-
validation techniques. The current study also uses this methodology. To obtain an optimal network structure 
with the most suitable hyperparameters, multiple networks were constructed and their results were compared 
to determine the best one. The overall outcomes of the finest constructed networks are presented in Table 7. 
The selection and prediction of the ANN model involve several important factors including feature selection, 
network architecture, and transfer of functions across layers, along with the choice of the training algorithm. 
Eventually, a network with 7 hidden layers (as depicted in Fig. 7) was chosen. The transfer function used in the 
hidden layers is hyperbolic tangent, while the output layer employs the exponential transfer function. Cross-
correlations graphs of MLP, SVR, and RF models are presented in Fig. 8. The results and performance indices of 
developed models are presented in Table 8.

(7)ROP = 2.39×
P0.11F × P0.3R × P0.6P × RDi0.59

D1.73
h

Table 6.  Correlation coefficients for non-linear multivariable regression models.

Model Regression equation R2 (Training) R2 (Testing)

1 ROP = 2.39×
P
0.11
F

×P
0.3
R

×P
0.6
P

×RDi0.59

D
1.73

h

0.87 0.86

2 ROP = 199P
0.001
F

+ 295P
0.002
R

+ 254P
0.001
P

+ 0.07RDi0.006 − 744D
0.005

h
0.85 0.82
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Figure 6.  The cross-correlation graph of the nonlinear multiple regression model.
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Sensitivity analysis
To recognize the most sensitive factors affecting penetration rate, the cosine amplitude method (CAM) was 
utilized. To apply this method, all the data pairs are expressed in a common X-space which is used to construct 
a data array X, defined  as74:

Each of the elements, Xi, in the data array X is a vector of lengths of n, that is:

Thus, each of the data pairs can be thought of as a point in n dimensional space, in which each point requires 
n coordinates for a full description. Each element of the relation, rij, results in a pairwise comparison of two data 
pairs. The strength of the relation between the data pairs,  xi and  xj, is given by the membership value expressing 
the strength:

where i, j, and k represent respectively the counters of the number of input indicators in each data series, the 
indicators or factors related to each data series, and the number of data series or samples. The closer Rij is to one, 
the greater the impact of the input indicator on the target index. If there is no effect, the value of Rij will be zero.

The strengths of relations (rij values) between the ROP and input parameters are shown in Fig. 9. Considering 
that the values of Rij are high for all parameters affecting the penetration rate, and based on the graph presented 
in Fig. 9, it can be concluded that all of the considered parameters are significantly involved in the rate of 

(8)X = {X1, X2, X3, . . . .Xn}

(9)Xi = {Xi1, Xi2, Xi3, . . .Xin}

(10)Rij =

∑n
k=1(xik × xjk)

√

∑n
k=1x

2
ik ×

∑n
k=1x

2
jk

Table 7.  Hyperparameter grid search for Multilayer perceptron, support vector machines and random forests 
ROP models.

Multilayer perceptron Grid Best hyperparameter

Solver SGD, Adam, LBFGS LBFGS

Number of Neurons in the Hidden layer 3, 4, 5, 6, 7, 8, 9, 10, 11 7

Activation function Logistic, Tanh, exponential tanh

l2 Regularization (α) 0.0001, 0.001, 0.01, 0.1 0.001

Support vector machines grid Best Hyperparameter

Kernel function Linear, 3rd Degree Polynomial, Gaussian Gaussian

Epsilon (ε) 0.01, 0.1, 1, 10 0.1

Budget (C) 1, 10, 100 10

Kernel coefficient (γ) 0.1, 0.2, 0.5 0.2

Random Forests Grid Best Hyperparameter

Number of Trees 50, 100, 150, 300, 500 150

Number of. Features 3, 4, 5 5

Figure 7.  The architecture of the MLP model used in the paper.
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penetration. As it is shown, the most effective parameter on the ROP is Rock mass drillability index. In other 
words, the characteristics of the rock mass have a great influence on the drilling speed.

Results and discussion
The application of an index that reflects the general characteristics of the rock mass can be instrumental in 
expediting the estimation of rock mass characteristics and reducing costs. The rock mass drillability index (RDi) 
possesses this ability and can prove beneficial in penetration rate studies. However, before utilizing any index 
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Figure 8.  Correlations of predicted ROP versus the measured ROP for machine learning models.
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or parameter in the field of modeling for prediction, it is imperative to establish the effect of that parameter on 
the output result. Since the RDi has not been implemented in underground mines and underground drilling 
techniques differ from open pit mining, it is crucial to first demonstrate the efficacy of the RDi in underground 
drilling and investigate its effect on the penetration rate. After studying the relationship between the penetration 
rate and RDi, the index was considered as one of the inputs of the model that represents the characteristics of 
the rock mass.

The dataset utilized for calculations comprises 737 rows. Initially, missing values are eliminated. Subsequently, 
the IQR method is applied to detect outliers and bad data readings, and they are replaced with the parameter’s 
average value to neutralize their effects. The resultant dataset comprises 737 rows, which are normalized using 
the min–max normalization method. Thereafter, the dataset is randomly split into 80–20% train and test subsets. 
The machine learning hyperparameters are fine-tuned utilizing the grid search range srategies, and the optimal 
hyperparameters are listed in Table 7.

Various metrics can be employed to evaluate the accuracy of the desired model in approximation. For 
instance, smaller values of MAE, MAPE, and RMSE indicate a higher accuracy in approximation, whereas big-
ger values of  R2 and VAF indicate the same. Furthermore, the MAPE values can be used to calculate the absolute 
value of the average percent relative error, which provides a comprehensive analysis of the model’s performance. 
In addition,  R2 is instrumental in determining the percentage of the model outputs that can be defined by the 
fitted line on the data points, and a value of  R2 close to one is indicative of good accuracy in approximation.

The development of regression models and subsequent comparison between them revealed that the relation-
ship between the penetration rate and its predictive parameters is nonlinear. Due to the potential for complex 
nonlinear relationships that regression models cannot extract between data, methods based on artificial intel-
ligence were employed to develop the model. Upon analysis of the training and test data results, it was discovered 
that machine learning models exhibit higher accuracy and lesser error than regression models. This highlights 
the veracity of the assumption regarding the existence of complex relationships between the parameters that 
predict penetration rate. Thus, it can be inferred that mathematical models are comparatively less accurate than 
computational intelligence-based models. The mathematical models assume that the effect of some drilling vari-
ables on ROP has a linear and absolute incremental behavior. Upon scrutinizing the models generated through 
the machine learning method, it is evident that the SVR method outperforms the other models in terms of higher 
accuracy and lesser error.

To compare the results obtained from the machine learning (ML) models with the previous Rate of Penetra-
tion (ROP) models, a ROP model (Shen model) was selected, the mathematical relations of which are depicted 
in Eq. (11)68.

where ʋ denotes the rate of penetration (mm/s), pt is Propelling pressure (MPa) and pe is Percussive pressure 
(MPa).

(11)υ = −0.77pt
(

0.5p2e − 15.7 pe + 117.6
)

Table 8.  The results and performance indices of developed models.

Model type

Training set Testing set

R2 RMSE MAE MAPE VAF R2 RMSE MAE MAPE VAF

NLMR 0.87 0.25 0.19 8.81 85.17 0.86 0.25 0.19 9.8 83.45

MLP 0.92 0.16 0.11 5.34 92.36 0.90 0.22 0.14 6.94 91.29

SVR 0.94 0.15 0.11 4.84 94.13 0.91 0.19 0.13 6.02 91.11

RF 0.91 0.20 0.15 6.60 90.52 0.90 0.22 0.16 7.20 89.49
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Figure 9.  Strengths of relation  (Rij) between the penetration rate and each input parameter.
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A comparison was then conducted between these models using the database. Further details regarding these 
models can be found in the relevant research  literature68. Figure 10 illustrates the outcomes of the previous model, 
demonstrating the prediction error. It is evident from the figure that this model poorly fits the data, exhibiting 
high error and significant deviation in ROP values. This inadequacy stems from the model’s failure to account 
for the effect of rock mass discontinuities. Also, the model developed in this research provides better results due 
to the use of more parameters. Based on the observations from Fig. 10, it can be inferred that the mathematical 
models are notably less accurate when contrasted with the computational intelligence-based models.

Conclusions
Efficient drilling processes can lead to cost savings through increased penetration rates. Optimizing drilling 
processes requires a thorough understanding of the interplay between various parameters affecting the process. 
Estimating the penetration rate factor enables engineers to better plan for the future and adjust drilling param-
eters for optimal results. To prepare a suitable database, effective parameters affecting the Rate of Penetration 
(ROP), including rock mass properties and machine specifications for 737 boreholes in the mentioned under-
ground mines, were collected and datasets were divided randomly into training (80%) and testing (20%) datasets. 
These parameters served as model inputs to predict ROP. By utilizing machine parameters and rock properties, 
multiple regression analyses and machine learning methods were implemented, revealing their dominant effect 
on jumbo drill performance. These algorithms attempt to learn the physical behavior between independent and 
dependent parameters based on the underlying theory. The learned relation can then be generalized to predict 
system behavior. In summary, the following outcomes can be drawn from this research:

• Several simple regression analyses were conducted, determining correlations between different variables and 
penetration rate. Results showed that determination coefficients of simple regression analyses were rather 
low.

• Regression models were developed with high correlation coefficients. The regression model for jumbo 
drill penetration rate (Eq. 7) can effectively predict rock drill performance by utilizing rock properties and 
machine parameters. Other proposed models (Table 6) for predicting penetration rate were also found to be 
reliable.

• Machine learning algorithms demonstrated better results than regression algorithms for predicting ROP.
• The Support Vector Regression (SVR) model exhibited good predictive results for both training and test-

ing databases compared to other machine learning models. SVR also had the lowest error rate compared to 
Random Forest (RF) and Multi-Layer Perceptron (MLP) methods. However, the use of these methods may 
be conditional.

• According to the sensitivity analysis of the effective parameters in the penetration rate, it can be concluded 
that all of the considered parameters significantly contribute to the rate of penetration.The most influential 
parameter on the ROP is the Rock Mass characteristic.

The Rock Drillability Index (RDi) being unaffected by rock type suggests that the prediction models developed 
in this study can estimate jumbo drill performance across different challenging rock conditions. While our model 
shows promise for application in dry and semi-dry rock formations, it’s essential to recognize its limitations in 
saturated rock conditions and high-water-volume mines, as these scenarios may introduce complexities not 
accounted for in the model, potentially affecting prediction accuracy. Additionally, the model’s applicability may 
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be limited in less jointed rock masses, particularly those lacking cohesion, such as homogeneous rock forma-
tions, posing challenges for accurately predicting drilling rates. Furthermore, our model is tailored specifically 
for underground drilling conditions, and its effectiveness in scenarios involving drilling in open pits or larger 
diameter holes may be compromised due to distinct challenges not addressed in its design. The prediction models 
established in this research can be further refined, suggesting significant possibilities for drilling automation in 
underground mines. Hence, the findings of this study hold great potential for the field of drilling automation 
in underground mines.

Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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