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With current and predicted economic pressures within English Children’s Services in the UK, there is a 
growing discourse around the development of methods of analysis using existing data to make more 
effective interventions and policy decisions. Agent‑Based modelling shows promise in aiding in this, 
with limitations that require novel methods to overcome. This can include challenges in managing 
model complexity, transparency, and validation; which may deter analysts from implementing such 
Agent‑Based simulations. Children’s Services specifically can gain from the expansion of modelling 
techniques available to them. Sensitivity analysis is a common step when analysing models that 
currently has methods with limitations regarding Agent‑Based Models. This paper outlines an 
improved method of conducting Sensitivity Analysis to enable better utilisation of Agent‑Based 
models (ABMs) within Children’s Services. By using machine learning based regression in conjunction 
with the Nomadic Peoples Optimiser (NPO) a method of conducting sensitivity analysis tailored for 
ABMs is achieved. This paper demonstrates the effectiveness of the approach by drawing comparisons 
with common existing methods of sensitivity analysis, followed by a demonstration of an improved 
ABM design in the target use case.

Within Local Authority Children’s Services in the UK, the current and predicted economic  outlook1 has increased 
pressure on resources and the strategic planning capabilities available. Thus, there has been renewed discussion 
on the improvement of the decision-making processes within local authorities (LAs) and calls for significant 
policy  changes2. The impact of the COVID-19 pandemic has also been keenly felt by local authorities, with 
substantial changes to practice being made within Children’s Services across the  UK3.

Existing literature within Children’s Social Care frequently proposes policy changes as drivers for improve-
ment in services and outcomes for Children in  Care2,4–7. Examination and evaluation of these proposals, in the 
context of existing practices would provide LAs with further informed decision-making to lead future policy 
and practice development. Despite existing data quality issues present within these  contexts8, there is an appetite 
within LAs for improved understanding of data and the effects of policy decisions made clear by projects such 
as the Local authority interactive tool (LAIT) produced by the Department of  Education9. This understanding 
of data is crucial for LAs to be able to measure service performance quantitatively. Furthermore, providing 
understanding between LAs would further benefit each authority, as demand is often shared between authorities.

Agent Based  Modelling10 is a prominent and popular technique within social sciences and used to conduct 
analysis of social systems, such as the Linked Lives model for examining parent-child  relationships11. This tech-
nique shows promise in relation to Children’s Services due to a focus on individual level interactions which could 
be related to practice and service delivery in LAs by social workers and  others12. Utilising Agent Based Models 
(ABMs) would expand the tools used by data analysts within LAs as per recommendations made in the reports 
such as the Missing Numbers in Children’s  Services8 and  others13, namely the increase in data and data science 
literacy. Such potential has been explored recently in a previous work by using an ABM designed to emulate a 
Local Authority Children’s Services, which was calibrated with a Genetic Algorithm against real-world  data14.
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Simulations in general also provide some additional advantages that align with challenges identified within 
the Missing Data in Children’s Services  report8, including the establishment of a common framework of analysis. 
With a shared understanding of analysis in place, various roles within Children’s Services could provide exten-
sive domain knowledge to guide and inform simulation design and validation. Such collaboration may lead to 
more effective models of LA operations that could be utilised by the  sector15. Furthermore, simulations provide 
a route for analysts to combine other available data to produce complex insights that may leverage areas present 
within LA remit such as, demographics, socioeconomic factors, social determinants, budgets, and  workforce8,15.

There are some additional benefits that ABMs specifically provide, including focusing on granular agent 
interactions and ‘micro’ level attributes that could correlate with aspects of social worker practice and child 
 behaviours12. Additionally, the implementation of ABMs within LA analysis teams could be completed effectively 
using existing libraries for Python, such as  Mesa16,17. A highlighted challenge within LAs from the Missing Data 
in Children’s Services  report8 and  others13, was the improvement of data science practices and literacy. The crea-
tion of such new tools would aid in this challenge.

An integral part of creating ABMs is the validation of the model design against real-world data. Part of this 
can include the use of Sensitivity Analysis to interpret model  behaviour18. Sensitivity Analysis methods look to 
analyse a given model to understand how changes in model input can result in changes in model output, and 
importantly how significant those changes in output can be. The results of such analysis provide a measure for 
each input parameter of the given model, with a higher value indicating that the input parameter has a stronger 
impact on the output of the model. Conversely, a lower value can indicate that the input parameter has little 
impact on the model output, which may then demonstrate that the processes related to that input parameter are 
not having the intended impact on model behaviour. This is useful for developing an understanding of model 
behaviour and robustness, of which for ABMs, is important for model validation and for model  refinement19. 
Refinement in particular would then involve the application of fixes to the issues identified in the analysis leading 
to a new iteration of the model design to meet expected behaviours. Whilst these methods do offer approaches 
to better understand ABMs, there are limitations with existing methods of Sensitivity Analysis. This includes 
the inability to model non-linear dynamics in model behaviour, which are frequently seen in ABMs and allows 
them to model complex systems.

Frequently seen methods of Sensitivity Analysis include One Factor at a Time (OFAT), Regression Analysis, 
and Sobol’  Method18,20–22. The latter examples: Regression Analysis and Sobol’ Method are considered Global 
Sensitivity Analysis methods, where the model is examined across the full parameter space which would be of 
particular use for creating a holistic understanding of model behaviour.

Examining these two methods more closely, Regression Analysis is often conducted with linear models to 
enable interpretation of the ABM interactions through  coefficients20. This therefore presents a limitation in the 
existing approaches used in regression-based global sensitivity analysis as ABMs often have non-linear inter-
actions between model inputs and  outputs19, making the analyses less reliable. Variance based methods such 
as Sobol’ Method do not demonstrate the same limitations. However, Sobol’ does have shortcomings related 
to sampling and computational  complexity18,19. In order to conduct robust sensitivity analysis it is therefore 
observed that multiple methods should be employed to provide the best analyses possible. It is therefore desirable 
to enable the use of non-linear models within Regression-based Global Sensitivity Analysis, as to accompany 
other methods such as Sobol’ for understanding ABMs.

Observing the current literature on sensitivity analysis methods, regression-based approaches are conducted 
in a similar process to typical machine learning tasks. Within machine learning there is often additional processes 
conducted on top of the original modelling workflow to further improve performance, this can be referred to 
as Meta-optimisation. Meta-optimisation23 can be seen as the technique or set of techniques employed in some 
common machine learning related tasks, such as hyper-parameter tuning or feature selection; often to improve 
the performance and training time of the subsequent model. Furthermore, the term meta-optimisation refers 
specifically to the use of an optimiser to optimise the parameters of another optimiser. The wider term for such 
methods and tasks is Automated Machine  Learning24.

Meta-optimisation can be conducted using various algorithms, which may include genetic  algorithms25, 
swarm  algorithms26, and simulated  annealing27. The choice of which algorithm to use for a given meta-optimi-
sation task may be dependent on the specifics of the task, however the aforementioned methods have been seen 
to be used to improve machine learning model  performance28–30.

Thus, a possibility arises whereby it is desired to understand the significance of an ABM’s parameters (Sen-
sitivity Analysis) and this need can be seen akin to Feature Selection, a meta-optimisation task, where model 
parameters act like features in a dataset. Feature  selection31 is often performed to reduce the size of training 
 data32, which can increase model performance by removing features that may be considered either redundant 
or irrelevant. Using this same process, it is plausible that a metric of parameter significance can be derived from 
feature selection and used as an approach to sensitivity analysis.

Such a method of sensitivity analysis would resolve the issues identified previously by enabling the use of 
non-linear models within a regression analysis approach. This can be done as the internal machine learning 
workflow would use a non-linear model and a meta-optimiser would run atop this to identify the most significant 
parameters of the target ABM in a feature selection type process. This method would accompany using Sobol’ to 
provide a more robust analysis of a given ABM and provide insight necessary for the improvement of the target 
ABM design. This method in conjunction with ABMs generally would subsequently be beneficial for analysts in 
Children’s services as models can then be created, analysed, and refined more effectively by analysts to provide 
more insights and extract additional value from existing public data.

Thus, presented in this paper, will be a sensitivity analysis method designed to accommodate the non-linear 
nature of ABMs. By leveraging a feature selection approach, a novel sensitivity analysis metric can be created that 
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allows for non-linear models to be used to conduct the analysis, aiding in better understanding a given ABMs 
behaviour and to more robust analysis when combined with other methods such as Sobol’.

Results
Using the design and methodology outline in this paper, results were collected from the proposed method 
called Temporal Meta-optimiser based Sensitivity Analysis (TMSA), and the selected existing methods of Linear 
Regression and Sobol’ method. These three methods were used to conduct sensitivity analyses against a target 
ABM. Figures 1, 2 and 3 present the outputs from these methods totalled over the full target simulation period, 
consisting of 364 steps to align with a single year of real-world data. Table 1 further displays these results as it 
presents a full comparison of the methods when measured over the full simulation period. As can be seen, TMSA 
ranks the target ABMs parameters comparably to both Linear Regression and SOBOL.

Following on from this, Figs. 4, 5 and 6 present more granular data over the full 364 time-steps, divided into 
26 intervals (14 time-steps each) to provide a heat-map of the TMSA/SOBOL values over the simulation period.

As can be seen in Figs. 4 and 5, TMSA indicates that more of the parameters are having significant impact 
on the model output in comparison to SOBOL, which highlights a small number of parameters as significant 
with the remaining parameters having a lower significance. Linear Regression appears to show a small group of 
parameters with high significance but many others offer little to no significance. All methods signal a similar 
group of parameters, demonstrating consistency between TMSA and the existing methods.

TMSA shows two distinct groupings of parameter significance in Fig. 4, namely a group with high significance 
during the first 3 intervals and another group with high significance for the remainder of the simulation. These 
groups correspond directly to groups of parameter types within the design of the ABM, namely the pre-allocation 
parameters which have the most impact at the start of the simulation; the other grouping being the conversion 
rate parameters, which have the most impact for the rest of the simulation. SOBOL identifies a parameter from 
each group within the design as significant, however it does not then mark other parameters within that group 
with the same significance. Linear Regression highlights the second group of parameters similar to SOBOL, but 
shows a lower significance on the remaining parameters.

However, there is some observed differences between TMSA and SOBOL of note. There is another group of 
parameters in the ABM, namely x0 through x4, which govern the length of a given type of case within the simula-
tion. These parameters are given some uniform significance by TMSA, however SOBOL gives a high significance 
to one parameter in this group (x0) and the others a lower significance. This may be explained by the stochastic 
elements of the meta-optimisation algorithm used in TMSA (NPO) whereby these parameters are being selected 
nearly uniformly due to the random initial values used to initialise the NPO algorithm for each time-step analysis. 
This can also be seen in the other parameter group mentioned previously, x5 through x9. Thus, it can be seen 
that SOBOL, in the case of the ABM analysed here, appears to highlight a single parameter from each grouping 
due to their similar significance on the output but mainly due to the deterministic nature of SOBOLs calculation. 
This may provide an advantage to the use of TMSA over SOBOL as this effect results in easier identification of 
parameters with shared effects on the output of the target ABM, whether intended by design or not.

Figure 1.  TMSA values averaged over all six model outputs and 364 time-steps.
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Validation against use case
Using these figures, it was clear that some ABM parameters relating to average case length (x0 through x4) were 
not having any significant impact on the model output, namely: x2, x3, x4 which relate to the case lengths of Chil-
dren in Need (CIN), Child Protection Plan (CPP), and Children in Care (CIC) cases. Furthermore, all parameters 
relating to pre-allocation ranges (x15 through x19) saw little significance other than in the first time-step interval. 
This also applied to a lesser extent to the other pre-allocation parameters relating to the limits in the number of 

Figure 2.  SOBOL First-order sensitivities averaged across all six model outputs and 364 time-steps.

Figure 3.  Linear Regression coefficients averaged over all six model outputs and 364 time-steps.
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each type of case that can be pre-allocated (x10 through x14). The most significant parameters were conversion 
rates (x5 through x9) and the length of referrals and assessments (x0 and x1). The less significant processes and 
parameters mentioned previously were reworked and or removed completely from the ABM design. This led to a 
smaller set of parameters (15), fewer agent processes, and a reduction in computation time to run the model itself. 
With the reworked model completed, the TMSA process was conducted again and yielded the following outputs.

It is clear from Figs. 7 and 8, that the reworked ABM has parameters that have greater significance for more of 
the simulation period. Within these outputs, none of the reworked parameters has a low measure of significance 
to the model output.

Table 1.  Comparison of values and ranking of parameters between LR, SOBOL, and TMSA.

Parameter

LR SOBOL TMSA

Value Rank Value Rank Value Rank

x0 0.23 11 0.17 2 0.16 8

x1 0.14 12 0.063 6 0.15 9

x2 0.0054 19 0.027 15 0.0014 18

x3 0.0063 18 0.034 11 0.00046 20

x4 0.0025 20 0.020 20 0.00092 19

x5 30.73 2 0.096 3 0.63 1

x6 43.95 1 0.17 1 0.55 2

x7 12.78 4 0.044 7 0.37 5

x8 17.40 3 0.033 12 0.46 3

x9 6.17 5 0.023 17 0.45 4

x10 3.25 6 0.035 10 0.13 11

x11 2.07 8 0.078 4 0.19 7

x12 2.46 7 0.065 5 0.23 6

x13 0.96 9 0.021 19 0.15 10

x14 0.64 10 0.026 16 0.11 12

x15 0.047 14 0.029 14 0.085 13

x16 0.050 13 0.039 9 0.069 15

x17 0.015 16 0.031 13 0.020 16

x18 0.017 15 0.043 8 0.071 14

x19 0.0075 17 0.023 18 0.011 17

Figure 4.  TMSA values over the full simulation period.
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The ABM was originally designed to use an accompanying process to calibrate it’s parameter values to a given 
LAs real-world data. With this reworked ABM this calibration process was run and compared to the previous 
model, with the results presented in Table 2.

The redesigned ABM was also able to improve upon computation time: the original ABM required 0.159 
seconds to execute a full simulation period, whilst the redesigned ABM required 0.125 seconds to execute. 
This represents a 21.38% improvement and was conducted via an average of 1000 sampled ABM runs based on 
Rutland local authority. The full set of sample authorities were also examined for computation time, the results 
of which may be found in Table 3. From the compute times, it is clear that the redesigned ABM provided a sig-
nificant improvement over the original with and average reduction in compute time of 21.02%.

Discussion
With the results demonstrated, the proposed method appears to present a comparable analysis to the existing 
methods of Sobol and Linear Regression. Namely, the most highlighted parameters of the ABM align with each 
of the analysis methods, therefore aiding in validating the analysis produced by the TMSA method.

Figure 5.  SOBOL first order sensitivities over the full simulation period.

Figure 6.  Linear Regression coefficients over the full simulation period.
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When examining the most significant parameters provided by TMSA compared to the other methods, TMSA 
appears to highlight contextually related parameters with a comparable amount of significance. This is most 
evident in the aforementioned parameters x5 through x9, as these are all used within the Social Worker case 
management process within the ABM. This propensity for TMSA to highlight complete processes may be of 
importance for identifying key processes within a target ABM that can be further examined to improve the 
overall ABM design. This was used to great effect in the results presented.

A key area identified in the literature was the use of linear models within regression-based sensitivity analysis, 
thus presenting potential difficulties when examining ABMs due to their non-linear design. The results presented 
demonstrate that the proposed TMSA method provides valid and useful analysis for a given ABM example. 
While further investigation can be conducted to further verify this method, it is clear that TMSA provides a 
potential novel sensitivity analysis method that enables the use of non-linear regression models for more effective 
regression-based sensitivity analysis. There are some limitations to the current implementation of the TMSA 
method used in this experiment, namely that the time to conduct the analysis was significantly slower than the 
other methods used. This could be remedied by a more optimal implementation of the optimisation algorithm 
used: the Nomadic Peoples Optimiser. Despite this, along with further investigation into using other optimisation 
algorithms for potential improvements, the TMSA method shows promise for the intended target contexts. The 

Figure 7.  TMSA values averaged over all six model outputs from the redesigned ABM.

Figure 8.  TMSA values over the full simulation period from the redesigned ABM.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9105  | https://doi.org/10.1038/s41598-024-59743-8

www.nature.com/scientificreports/

overall performance of the TMSA method shows that this approach may be of significance for furthering ABM 
analysis techniques, especially when in conjunction with existing methods such as Sobol.

Through the results presented, the proposed TMSA method has potential value as an additional sensitiv-
ity analysis approach. With the advantages outlined previously, TMSA could complement analyses made on 
ABMs specifically, which could be largely beneficial for use cases where ABMs may be the preferred modelling 
approach. Namely for children’s services in the UK, the improvement of methods for analysing ABM behaviour 
would allow for greater confidence in and adoption of ABMs for use cases such as demand modelling, policy 
evaluation, and forecasting.

Further work into this area could yield further techniques that would be of value to contexts such as children’s 
services, whereby using analysis methods such as TMSA, processes and behaviours within the ABM could be 
specifically identified as being influential on model output. This could be further extended to propose changes 
that suggest behaviour alterations to align with real-world data more, using a process such as calibration. This 
could be beneficial, especially to children’s services, where existing assumptions could be examined and possible 
unexpected behaviours could be identified and investigated.

Overall, with further pressure on children’s services in the UK and demand for more effective data analytics 
capabilities, TMSA may provide a potential approach that can accompany ABMs to create additional value for 
children’s services from existing models and data. Additionally, the work presented can act as a tool in future 
investigations for both ABMs and the further development of novel methods of ABM analysis and validation.

Methods
In order to examine and evaluate the potential for the proposed approach, an experimental methodology was 
used where an example ABM will be examined with the proposed method and compared to other common 
approaches, as identified previously in the literature.

The selected ABM was developed to simulate a LA children’s services, which was used in previous work with 
a calibration process to optimise parameter values to allow the ABM to produce outputs in line with publicly 
available  data14. The ABM is designed with two agents: an administrative Children’s Social Care Services (CSCS) 
agent, and a Social Worker agent. The CSCS Agent’s designed processes could be summarised as: the delegation 

Table 2.  Results of comparison between the original ABM Average full-time worker caseload (AFWC) mean 
squared error (MSE) errors (AFWC previous) from the calibration process, and the reworked ABM design 
(AFWC rework).

Local authority AFWC previous AFWC rework Change

Warrington 0.23 0.60 + 0.37

Darlington 3.93 1.38 – 2.55

York 0.05 0.002 – 0.048

Rutland 0.003 0.35 + 0.347

Herefordshire 0.27 0.008 – 0.262

Luton 0.0005 0.11 + 0.1095

Hammersmith & Fulham 0.004 0.14 + 0.136

Merton 4.0 1.05 – 2.95

Bracknell Forest 0.03 0.026 – 0.004

Bath & NE Somerset 0.03 0.12 + 0.09

Average 0.852 0.3786 – 0.4734

Table 3.  Computation time in seconds (S) of local authority simulations using the original ABM design and 
the re-designed ABM, conducted over 1000 sample runs each.

Local authority Original ABM (S) Re-designed ABM (S) Improvement

Warrington 0.430 0.335 22.10%

Darlington 0.234 0.208 11.11%

York 0.299 0.249 16.72%

Rutland 0.159 0.125 21.38%

Herefordshire 0.373 0.268 28.15%

Luton 0.459 0.329 28.32%

Hammersmith & Fulham 0.358 0.290 18.99%

Merton 0.370 0.292 21.10%

Bracknell Forest 0.271 0.210 22.51%

Bath & NE Somerset 0.308 0.247 19.81%

Average 0.326 0.255 21.02%
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of new work (Referrals) to Social Workers, and the handling of LA statistics. The Social Worker Agent’s processes 
can also be summarised as: the handling of new and existing cases assigned to themselves, and the pre-allocation 
of existing work based on the current caseload. The design of the ABM was based on the statutory guidance 
provided by the Department of Education regarding Children’s  Services33.

Figure 9 summarises the aforementioned design and expected behaviour from each agent type. Furthermore, 
the parameters of the original ABM that were grouped into differing application areas: Environmental, Case 
Lengths, Conversion Rates, Starting Case Limits, and Starting Case Age. This can be seen in Table 4.

The agents processes in the original ABM were designed to be simple whilst following the aforementioned 
guidance. There were four key processes in the ABM, two for each agent type. For the CSCS agent these consisted 
of the allocation of new referral cases to workers, and the calculation of worker statistics with the management 
of workers should they need to be removed or added to the simulation.

Referral allocation was simulated by using the amount of daily referrals, supplied by the real-world data, and 
randomly adding new referrals to the list of cases that each worker agent has.

The addition and removal of Worker agents that is managed by the CSCS agent is also determined from the 
real-world data. The difference in social workers from the previous simulation step to the current step is used to 
determine if the CSCS agent creates or removes social worker agents from the ABM. If a worker agent is removed 
then the cases assigned to that worker are then redistributed randomly to other workers. If however, a new worker 
agent is added, then cases will be randomly taken from existing workers to provide the new worker with a list 
of cases. The calculation for the difference in number of worker agents, and the full management algorithm can 
be seen in Eq. (1) and Algorithm 1 respectfully. SW represents the number of worker agents in the simulation.

(1)diffSW = SWCurrent − SWPrevious

Figure 9.  High-level view of simple local authority ABM.
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Algorithm 1.  Social worker agent management algorithm.

For the Social Worker agent the designed processes consisted of the pre-allocation of cases at the beginning of 
the simulation to represent existing cases, and the management of cases for each time-step.

In the case of the pre-allocation process, the number and age of the cases is determined using the limit and 
range parameter respectfully for each case type. The age of an existing case cannot exceed the age described in 
the associated length parameter. Algorithm 2 demonstrates how this age is calculated for the referral case type.

Algorithm 2.  Age of pre-allocated referrals algorithm.

To simulate the workflow of Social Workers within the ABM, each case is processed and actions are decided 
using the aforementioned length and conversion rate parameters. If the age of a case exceeds the respective length 
parameter, then the case may advance to the next case type, subject to the probability set by the respective rate 

Table 4.  Configurable parameters of the original ABM.

Parameter Symbol

Average referral length x0

Average assessment length x1

Average CIN length x2

Average CPP length x3

Average CIC length x4

Referral no further action rate x5

Assessment no need rate x6

CIN conversion rate x7

CPP conversion rate x8

CIC conversion rate x9

Pre-allocation referral limit x10

Pre-allocation assessment limit x11

Pre-allocation CIN limit x12

Pre-allocation CPP limit x13

Pre-allocation CIC limit x14

Pre-allocation referral range x15

Pre-allocation assessment range x16

Pre-allocation CIN range x17

Pre-allocation CPP range x18

Pre-allocation CIC range x19
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parameter, otherwise it is removed from the case list. Once a case has been processed and remains on the list, the 
age of the case is increased by 1 day. Algorithm 3 outlines this process with the referrals case type.

Algorithm 3.  Referrals case management algorithm.

The original ABM produces 6 output values per time-step, these include: average worker caseload, active refer-
rals, active assessments, active children in Need (CIN) cases, active child protection plans (CPP), active children 
in care cases (CIC). In the case of the proposed method, the average worker caseload will be analysed, as this is 
the main target output of the ABM.

This ABM was designed with the intention of being flexible in order to model for the variety of LAs within 
the UK. However, limitations were identified during the previous evaluation when using the accompanying 
calibration  process14. Namely, the ABM failed to find as optimal solutions for 2 of the 10 sample authorities: 
Darlington and Merton.

The approach used to examine the effectiveness of the proposed TMSA method will consist of multiple 
analyses of the existing example ABM, using the previously identified common sensitivity analysis methods. 
These will then be compared against TMSA and the ABM will then be re-designed based on the conclusions of 
the TMSA analysis to validate the findings.

ABM dataset generation
To conduct the proposed analysis method, a dataset is required. The dataset is generated from a sample num-
ber of full simulation runs, with each simulation consisting of 364 time-steps to represent a year of time. Each 
simulation in the sample was created by using a random selection of parameter values within an upper and lower 
bound for the value of each parameter. The complete sample contained 1000 simulations and was used as the 
dataset for evaluation of the proposed method.

The design of the dataset can be seen as per Table 5. For each time-step of a given sample run, we store the 
output values from the ABM, in the case of the Local Authority Model there were 6 outputs included in the 
dataset. From these we selected a target output that the evaluation of the proposed method would be conducted 
against, which was the Average Full-time worker Caseload (AFWC). The final dataset was stored in a Comma 
Separated Values (CSV) file and the algorithm used is described in Algorithm 4.

Table 5.  Example of the dataset generated from the sample runs of the ABM, with t denoting the time-step of 
the data.

x0 ... x19  t AFWC Refs Assess CIN CPPs CICs

35 ... 720 0 17.0 89 56 218 0 0

35 ... 720 1 19.1 94 57 230 2 0

35 ... 720 2 20.1 89 59 233 2 0

35 ... 720 3 20.1 86 61 237 2 0

35 ... 720 4 20.2 83 65 241 2 0
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Algorithm 4.  Data generation using target ABM.

Meta‑optimiser based sensitivity analysis
The proposed method seeks to create a novel approach to Sensitivity Analysis by viewing the analysis akin to a 
Feature Selection problem. In Feature Selection it must be determined the most optimal set of features for typi-
cally a machine learning model to use in its training process, whereby selecting the most optimal features can 
improve the trained models performance significantly. We therefore draw parallels to the questions Sensitivity 
Analysis looks to answer, namely which parameters have the most significance to a given models output; and to 
the questions Feature Selection looks to answer, namely identifying the optimal features for improving trained 
machine learning model performance.

Thus, our proposed method seeks to generate a Sensitivity Analysis metric from using an implementation of 
Feature Selection. The method uses a target ABM and its parameters and identifies the optimal selection of those 
parameters to train a machine learning model. The score produced by the machine learning model is used to 
identify how optimal a candidate set of parameters is. This process is conducted over each time-step of a target 
simulation period, and by taking each optimal set of parameters found per time-step, it can be calculated how 
frequently each parameter appeared to create a final Sensitivity Analysis metric based on how often the parameter 
appeared. This would result in a metric where when a parameter appeared more in the sets of optimal parameters, 
it will receive a higher value, implying a higher significance to the target ABMs output.

To facilitate the optimal selection of parameters for the machine learning model, we use a meta-optimiser. 
The meta-optimiser will take an objective function, which in this case will be to minimise the error produced 
from the machine learning model, and identify the set of parameters that achieves the lowest loss.

To evaluate the proposed method, we select a meta-optimisation algorithm and a machine learning model 
to be trained. The machine learning model selected for this evaluation is a K-Nearest Neighbour Model (KNN), 
chosen for its non-linearity and fast computation speed, which runs through a 5-fold cross-validation (CV) of 
a train/test split of the generated dataset mentioned previously, to ensure that the performance of the trained 
model is measured accurately.

The algorithm chosen to act as a meta-optimiser for this evaluation is the Nomadic Peoples Optimiser 
(NPO)34. This was selected due to its comparatively quick convergence time and its minimal need for configura-
tion. These traits are desired by the target context, Children’s Services, due to inexperience with such  techniques35. 
Other optimisation algorithms may be used depending on contextual needs.

With these choices in mind, a high level overview of the process can be seen in Fig. 10, with the algorithm of 
the proposed method in Algorithm 6 with the objective function defined in Algorithm 5.

Algorithm 5.  Objective function algorithm.
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Algorithm 6.  Temporal meta-optimiser based sensitivity analysis algorithm.
For the NPO algorithm to be able to select candidate sets of parameters for the KNN model, an additional 

step is needed to convert the floating point (decimal) values that NPO generates which will be referred to as 
Dimension Values, to a discrete set of binary values (either 0 or 1) to then be able to determine the parameters 
to include in the KNN model training. This was done using the algorithm outlined in Algorithm 7.

This process uses whole integer division to enable a binary representation to be created, this is then used to 
flag each feature to be used within the internal machine learning model training. The calculation for this division 
can be seen in Eq. (2), which returns a set of selected features, based on an input set of dimension values and the 
set of features available. The dimension values represent the selected combination of features to be used in train-
ing the internal machine learning model, such that the combinations from a large search space can be selected 
within the limitations of the software implementation. This reduces the possible combinations by partitioning 
the parameter search space into a desired number of dimensions. This was necessary as a means to convert the 
decimal value that the NPO algorithm uses for a given dimension into a binary value that further translates to 
a feature selection. Having only one dimension for searching was also sub-optimal; in the implementation, the 
decimal number is directly mapped to its binary equivalent. Thus, to search for all 20 parameters in the model 
within a single dimension value, the boundaries for that value would range from 0 to 220 . Should there be 4 
dimensions used instead, then each dimension would correspond to a boundary range of 0 to 25 . This provides a 
smaller search space for the NPO algorithm to optimise within and then allows TMSA to accommodate models 
with significantly more parameters.

An example of the output this algorithm would be as per Table 6.

Figure 10.  Proposed meta-optimisation based approach.
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Algorithm 7.  Binary encoding for feature selection algorithm.

Once the optimal feature selections have been found for each time step in the simulation period, the TMSA 
values can be calculated. In the case of calculating the values over the entire simulation period, the frequency 
of a given parameter appearing in optimal selections is divided by the total simulation period, as per Eq. (3).

For a more granular visualisation of the TMSA values over the simulation period, the gathered selection data can 
be divided into intervals and the same process applied, whereby the TMSA value would be calculated over the 
interval rather than the entire simulation period. These interval TMSA values can then be visualised as a heat 
map to demonstrate the changes in TMSA values over the simulation, as per Fig. 4.

Comparisons
In order to compare TMSA with other methods such as SOBOL, the same analyses are conducted as described 
previously. In the case of SOBOL, sensitivity indices are calculated for each time step and model output of the 
simulation period. First order sensitivities will then be examined using the same visualisations for the entire 
simulation period and for each interval period to provide granularity.

Calibration use case
To validate the proposed TMSA process, the calibration use case that the original ABM was developed for was 
used. Using the TMSA process, the original ABM is analysed to identify limitations with the design and then 
modified to address the found limitations. The aforementioned calibration process will then be conducted and 
the performance of the new design will be compared to the original ABM design.

Calibration refers to the optimal adjustment of a given ABMs parameters to best match a desired output 
from that model, by using an automated approach that can take advantage of optimisation algorithms such as 
Genetic Algorithms (GA). In the case of the ABM used in this comparison, it was desired that the ABM pro-
duce outputs to closely match real-world data that was publicly available, such as the Average Full-time Worker 
Caseload (AFWC) seen previously. This process is needed due the variety in which LAs behave differently, thus 
it is impractical to manually determine the best values for the model parameters to represent a given authority.

The calibration process consists of a GA based multi-objective optimisation of model parameter values to 
real-world data, through 10 sample LAs. The performance of the fit of parameter values is conducted using Mean 

(2)

Divide(D, F) =

{⌊

FLength

DLength

⌋

+ x | x ∈ range(DLength), if x < Flength mod DLength then x = 1 else x = 0

}

(3)TMSA(P) =
Frequency(P)

Period

Table 6.  Examples of the conversion of decimal dimension values to a binary representation to enable Feature 
Selection.

Dimension values Number of features Binary output

(11.2) 4 1011(11) = 1011

(3.0, 2.0) 4 11(3), 10(2) = 1110

(480.4, 780.7) 20 0111100000(480), 1100001101(781) = 01111000001100001101

(10.3, 16.7, 8.1, 25.8) 20 01010(10), 10001(17), 01000(8), 11010(26) = 01010100010100011010
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Squared Error calculations on the model outputs compared to the real-world data. The GA used in the case of 
the calibration process, was NSGA-III36, as this was found to be the most performant algorithm through iterative 
experimentation. It can also be seen in the literature that NSGA-III is likely more suitable for multi-objective 
optimisation  tasks37. The objective function used in the process measures 10 different objectives, which measure 
the variance of the model outputs against the real-world data and ensure any unreasonable outputs are penalised, 
such as having no remaining social care cases within the simulation.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Code availability
The code created during the current study are available from the corresponding author on reasonable request.
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