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Modulation instability in nonlinear 
media with sine‑oscillatory 
nonlocal response function 
and pure quartic diffraction
Yuwen Yang  & Ming Shen *

Modulation instability of one-dimensional plane wave is demonstrated in nonlinear Kerr media with 
sine-oscillatory nonlocal response function and pure quartic diffraction. The growth rate of modulation 
instability, which depends on the degree of nonlocality, coefficient of quartic diffraction, type of 
the nonlinearity and the power of plane wave, is analytically obtained with linear-stability analysis. 
Different from other nonlocal response functions, the maximum of the growth rate in media with sine-
oscillatory nonlocal response function occurs always at a particular wave number. Theoretical results 
of modulation instability are confirmed numerically with split-step Fourier transform. Modulation 
instability can be controlled flexibly by adjusting the degree of nonlocality and quartic diffraction.

Modulation instability (MI) refers to spontaneous growth of modulation or perturbations in the amplitude or 
phase of a wave propagating through a nonlinear media, which usually occurs when the delicate balance between 
dispersion and nonlinearity is disrupted, leading to the self-induced generation of sidebands in the waveform1. 
MI is a fascinating phenomenon in various physical systems2. During the past two decades, modulation insta-
bility (MI) has been widely studied in nonlocal nonlinear media2–9. Nonlocality means that the response of the 
media at a particular point is not determined solely by the wave intensity at that point(as in local media), but 
also depends on the wave intensity in its vicinity2. It has been shown that properties of MI, such as maximum 
and bandwidth of the growth rate, can be greatly affected by spatial nonlocality3,4. Transverse instability and 
dynamics of bright soliton stripes in two-dimensional nonlocal nonlinear media were investigated using multi-
scale perturbation method10. In the recent years, MI has also been investigated in the presence of competing 
nonlocal nonlinearities11–16.

Generally, characteristics of nonlocal MI are related to the specific form of nonlocal response function, e.g., 
Gaussian, exponential, and rectangular nonlocal response functions3,4 have been used to study MI in nonlocal 
media. These response functions are always positive definite. Recently, MI has been also demonstrated in nonlo-
cal media with sine-oscillatory response function17–19. This kind of nonlocal response function can be proposed 
in quadratic nonlinear media20,21 and nematic liquid crystals with negative dielectric anisotropy22,23. It has been 
shown that nonlocal media with sine-oscillatory response function provides new physical mechanisms on chaotic 
dynamics24,25, solitons induced by boundary confinement26–28, and novel solitons states29–31.

In the recent years, the effects of higher-order, in particular, quartic (fourth-order) dispersion/diffraction on 
MI have attracted much interest. In nonlinear optical fibre, quartic group velocity dispersion introduces novel 
features of MI32–38. In spatial domain, quartic diffraction is an unique property of photonic crystals with subdif-
fractive effect39,40, periodic structure consisting of both positive and negative index materials41,42, and micro-
structure of cavity43–47. In local nonlinear media with quartic diffraction, Zhang et. al. have studied transverse 
instability48 and spatiotemporal instability49 with linear-stability analysis. Recently, MI is also investigated in 
nonlocal nonlinear media with competing cubic and quintic nonlocal nonlinearities and quartic diffraction50. 
In the regime of weak nonlocality, MI has been studied with quartic dispersion51,52. However, previous works50–52 
have not considered nonlocal media with sine-oscillatory nonlocal response function when quartic dispersion/
diffraction is taken into account.

In this paper, we study analytically and numerically MI of one-dimensional plane wave in nonlinear Kerr 
media with sine-oscillatory nonlocal response function and pure quartic diffraction. Using linear-stability analy-
sis, the growth rate of MI is obtained which shows that the degree of nonlocality, coefficient of quartic diffraction, 
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type of the nonlinearity and the power of plane wave have deep impacts on maximum and bandwidth of MI spec-
tra. The maximum of the growth rate occurs always at a particular wave number. We also demonstrate properties 
of MI with split-step Fourier transform. Nonlocality and quartic diffraction can suppress or promote MI flexibly.

Method
Model and basic equations
Considering an one-dimensional optical beam propagating in a nonlocal nonlinear media with pure quar-
tic diffraction, the dynamics of such beam can be described by the following normalized nonlocal nonlinear 
Schrödinger equation50

where the variables x and z are dimensionless spatial coordinates. The parameter β4 corresponds to quartic dif-
fraction coefficient of the beam ( β4 > 0 and β4 < 0 represent anomalous and normal diffractions53,54, respec-
tively), and s = 1 ( s = −1 ) represents a focusing (defocusing) nonlocal nonlinearity. R(x) is nonlocal response 
function which has several different representations, such as the Gaussian function55, rectangular function2–4. 
In this paper, we assume the response function is in the following sine-oscillation form22,23

with the Fourier transform of the nonlocal response function R̃(x) is represented as

The sine-oscillatory nonlocal response function and its Fourier transform are shown in Fig. 1a,b, respectively.

Linear‑stability analysis
In general, the plane wave solution of Eq. (1) can be written as17–19

here P0 is optical intensity of uniform plane wave.
Then, we introduce a random perturbation a(x, z) to the plane wave solution

with |a|2 ≪ P0 . Substituting Eq. (5) into Eq. (1) and linearizing around the unperturbed solution, we can obtain

Decomposition the perturbation into the complex form of a = u+ iv with u and v are real and the imaginary 
parts, respectively, then we can obtain the following two coupled equations

(1)i
∂ψ

∂z
+ β4

∂4ψ

∂x4
+ sψ

∫

R(x − x′)|ψ(x′, z)|2d2x′ = 0,

(2)R(x) =
1

2σ
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( |x|
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)
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(3)R̃(k) =
1
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∫

R(x) exp (−ikx)dx =
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Figure 1.   The sine-oscillatory nonlocal response function (a) and its Fourier transform (b). The degree of 
nonlocality is σ = 1.
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Equations (7) and (8)

here

are Fourier transform of u(x, z) and v(x, z), respectively.
Considering the derivatives of Eqs. (9) and (10) with respective to coordinate z, we can obtain the following 

ordinary differential equations in the k space

By solving Eqs. (13) and (14), the solution of random perturbation

is obtained with c1 and c2 are arbitrary constants, and the eigenvalue � is given by

It is obvious that no MI exists when �2 < 0 and the plane wave is stable. On the contrary, for �2 > 0 , the per-
turbation grows exponentially during propagation. The growth rate defined by g(k) = |Re{�}| is represented as

which indicates that MI exists only when 2sP0/(1− σ 2k2)+ β4k
4 < 0 . In the limit of local nonlinearity, i.e., 

R(x) = δ(x) and σ = 0 , the growth rate is

Results
MI when s = 1
Firstly, we focus on MI in self-focusing nonlocal Kerr media with s = 1 . We display in Fig. 2 the MI gain spec-
tra versus the wave number k and quartic diffraction coefficient β4 . In the limit of local nonlinearity ( σ = 0 ), 
as shown in Fig. 2a, there are two symmetric sidebands when β4 < 0 and the bandwidth decreases when β4 
decreases. However, MI disappears when β4 > 0 . When the degree of nonlocality is weak σ = 1 , as shown in 
Fig. 2b, the sidebands appear regardless of the quartic diffraction is normal or anomalous. When β4 < 0 , the 
maximum of growth rate increases with the decrease of β4 while the bandwidth remains constant. On the con-
trary with β4 > 0 , when β4 increases, the bandwidth will decrease, while the maximum of the growth rate will 
increase. Thus MI can be suppressed with smaller |β4| . As shown in Fig. 2c, when the degree of nonlocality is 
σ = 4 , we can find that both the maximum and the bandwidth of the growth rate decrease, which indicates that 
MI can be effectively suppressed with strong nonlocality.

Figure 3 illustrates the influences of P0 on MI. In the case of β4 > 0 , bandwidth and maximum of growth 
rate increase with the increase of P0 , as shown in Fig. 3a. However, in the case of β4 < 0 , as shown in Fig. 3b, 
the maximum of the growth rate increases while the bandwidth remains constant when P0 increases. Thus, 
the increase of optical intensity P0 promotes MI regardless the quartic diffraction is normal or anomalous. 
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Furthermore, different from other nonlocal response functions50, we also find that the maximum of the growth 
rate occurs always at the particular wave number |k| = 1/σ , as shown in Figs. 2 and 3.

To demonstrate the MI obtained by linear-stability analysis in self-focusing Kerr media with a sine-oscillatory 
nonlocal response function, we perform numerical simulations of Eq. (1) by using split-step Fourier method. A 
plane wave with a small period perturbation is used as the initial input

with amplitude ε = 10−4 and the wave number k (corresponds to the maximum of the growth rate) of the 
perturbation.

When β4 > 0 , we show in Fig. 4 the propagation dynamics of the perturbed plane wave in nonlocal self-
focusing media with different parameters. We can see that the perturbation grows obviously at propagation dis-
tance z = 3 with β4 = 0.01 , P0 = 1 and σ = 1 , as displayed in Fig. 4a. When the degree of nonlocality increases 
( σ = 2 ), as shown in Fig. 4b, MI is suppressed significantly. Almost no MI exist at z = 3 , and perturbation grows 
visibly at z = 10 . This result conforms to the conclusion of Fig. 2 that MI can be effectively suppressed with strong 
nonlocality. Figure 4c,d also confirm the conclusions that MI can be promoted by increasing β4 and P0 , which 
have been illustrated in Figs. 2 and 3.

Numerical simulations of the propagation of perturbed plane waves are displayed in Fig. 5 in the case of 
β4 < 0 . Compare Fig. 5a with Fig. 5b, similar with β4 > 0 , strong nonlocality also suppress MI. It is also demon-
strated that MI is enhanced with the decrease of β4 and weakened when P0 decrease, as shown in Fig. 5c,d. These 
numerical simulations are in completely agreement with the analytical results obtained by linear-stability analysis.

MI when
s = −1

Subsequently, we study the MI in nonlocal Kerr media with self-defocusing nonlinearity ( s = −1 ). It is well 
known that MI in nonlocal self-defocusing media with second-order diffraction sensitively depends on the type 
of nonlocal response function3, whereas the introduction of fourth-order diffraction makes it possible for MI to 
occur in nonlinear media with arbitrary form of nonlocal response functions. Also standard diffraction is always 
positive (normal)18, on the contrary, quartic diffraction can be either positive or negative. Similarly, we display 

(19)ψ(x, z = 0) =
√
P0 + ε cos(kx),

Figure 2.   The MI gain spectra versus the wave number k and quartic diffraction parameter β4 , for s = 1 and 
P0 = 1 . The other parameter are: (a) σ = 0 , (b) σ = 1 and (c) σ = 4.

Figure 3.   The MI gain spectra versus the wave number k and optical intensity P0 , for s = 1 and σ = 1 . The 
other parameter are: (a) β4 = 0.01 and (b) β4 = −0.01.
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the gain spectra of MI with different parameters in Fig. 6. In contrast to the case of self-focusing nonlinearity, 
in the limit of local nonlinearity ( σ = 0 ), as shown in Fig. 6a, the sidebands of MI appear in the region β4 > 0 
and disappear in the region β4 < 0 . In nonlocal case, as shown in Fig. 6b,c, the sidebands appear for arbitrary 
quartic diffraction coefficients, and the maximum of growth rate increases when the absolute value of the quartic 
diffraction coefficients increases. The bandwidths keep invariant for anomalous diffraction ( β4 > 0 ) and decrease 
when β4 decrease for normal diffraction ( β4 < 0 ). Moreover, when the degree of nonlocality increases, both the 
maximum of the growth rate and the bandwidth of MI spectra decrease. This suggests that the conclusion MI is 
eliminated by strong nonlocality can also be easily obtained.

Similarly, the impact of power P0 on the spectra of MI in a self-defocusing media are displayed in Fig. 7. The 
maximum of growth rate always increase with the increase of P0 for both normal and anomalous quartic diffrac-
tion. The bandwidth remains constant for β4 > 0 (Fig. 7a), whereas, as shown in Fig. 7b, in the region β4 < 0 , 
the bandwidth increases when P0 increases. These results are opposite to the case of s = 1 . We also find that the 
wave number |k| = 1/σ has the maximum of the growth rate.

Numerical simulations of the propagation of perturbed plane wave (Eq. 19) are demonstrated in Figs. 8 and 
9. Obviously, as shown in Figs. 8a,b and 9a,b, in the region β4 > 0 and β4 < 0 , strong nonlocality still suppresses 
MI effectively. Moreover, for β4 > 0 , MI is weakened with the increase of β4 and the decrease of P0 , as shown 
in Fig. 8c,d. However, for β4 < 0 , MI is weakened with the decrease of β4 and P0 , as shown in Fig. 9c,d. These 
numerical results are also consistent with the analytical results obtained by linear-stability analysis (Figs. 6 and 7).

Conclusions
In conclusion, we have investigated MI of one-dimensional plane wave in nonlinear Kerr media with sine-
oscillatory nonlocal response functions and pure quartic diffraction. The growth rate of MI was analytically 
obtained with linear-stability analysis and confirmed numerically with split-step Fourier transform. MI are sensi-
tive to the degree of nonlocality, coefficient of quartic diffraction, type of the nonlinearity as well as the power 
of plane wave. The maximum of the growth rate occurs always at particular wave number |k| = 1/σ . Analytical 
and numerical results indicate that MI can be suppressed with the help of nonlocality and quartic diffraction.

Figure 4.   The propagation of perturbed plane wave in kerr media with focusing nonlinearity(s = 1 ). The 
parameter are: (a) σ = 1 , β4 = 0.01 , P0 = 1 ; (b) σ = 2 , β4 = 0.01 , P0 = 1 ; (c) σ = 1 , β4 = 0.05 , P0 = 1 and (d) 
σ = 1 , β4 = 0.01 , P0 = 2.
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Figure 5.   The propagation of perturbed plane wave in kerr media with focusing nonlinearity(s = 1 ). The 
parameter are: (a) σ = 1 , β4 = −0.05 , P0 = 1 ; (b) σ = 2 , β4 = −0.05 , P0 = 1 ; (c) σ = 1 , β4 = −0.5 , P0 = 1 
and (d) σ = 1 , β4 = −0.05 , P0 = 0.5.

Figure 6.   The MI gain spectra versus the wave number k and quartic diffraction parameter β4 , for s = −1 and 
P0 = 1 . The other parameter are: (a) σ = 0 , (b) σ = 1 and (c) σ = 4.
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Figure 7.   The MI gain spectra versus the wave number k and optical intensity P0 , for s = −1 and σ = 1 . The 
other parameter are: (a) β4 = 0.05 and (b) β4 = −0.05.

Figure 8.   The propagation of perturbed plane wave in kerr media with defocusing nonlinearity(s = −1 ). The 
parameter are: (a) σ = 1 , β4 = 0.01 , P0 = 1 ; (b) σ = 2 , β4 = 0.01 , P0 = 1 ; (c) σ = 1 , β4 = 0.05 , P0 = 1 and (d) 
σ = 1 , β4 = 0.01 , P0 = 2.
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