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Accelerated MRI reconstructions 
via variational network and feature 
domain learning
Ilias I. Giannakopoulos 1*, Matthew J. Muckley 2, Jesi Kim 1, Matthew Breen 1, 
Patricia M. Johnson 1,3,4, Yvonne W. Lui 1,3,4 & Riccardo Lattanzi 1,3,4

We introduce three architecture modifications to enhance the performance of the end-to-end (E2E) 
variational network (VarNet) for undersampled MRI reconstructions. We first implemented the Feature 
VarNet, which propagates information throughout the cascades of the network in an N-channel 
feature-space instead of a 2-channel feature-space. Then, we add an attention layer that utilizes 
the spatial locations of Cartesian undersampling artifacts to further improve performance. Lastly, 
we combined the Feature and E2E VarNets into the Feature-Image (FI) VarNet, to facilitate cross-
domain learning and boost accuracy. Reconstructions were evaluated on the fastMRI dataset using 
standard metrics and clinical scoring by three neuroradiologists. Feature and FI VarNets outperformed 
the E2E VarNet for 4 × , 5 × and 8 × Cartesian undersampling in all studied metrics. FI VarNet secured 
second place in the public fastMRI leaderboard for 4 × Cartesian undersampling, outperforming all 
open-source models in the leaderboard. Radiologists rated FI VarNet brain reconstructions with 
higher quality and sharpness than the E2E VarNet reconstructions. FI VarNet excelled in preserving 
anatomical details, including blood vessels, whereas E2E VarNet discarded or blurred them in some 
cases. The proposed FI VarNet enhances the reconstruction quality of undersampled MRI and could 
enable clinically acceptable reconstructions at higher acceleration factors than currently possible.
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Rapid magnetic resonance (MR) imaging (MRI) techniques, such as parallel imaging (PI)1–3 and compressed 
sensing (CS)4, have significantly enhanced the cost-efficiency and expanded the range of applications for MRI. 
In subsequent advancements, researchers have formulated PI as a nonlinear inversion process rooted in CS 
principles5–12. These approaches leverage regularization techniques to cohesively optimize both the anatomical 
image and the coil sensitivity profiles. More recently, supervised deep learning (DL) has been used with PI to 
facilitate MRI reconstructions from highly accelerated acquisitions13,14. One of the first supervised DL-based 
MRI reconstruction methods was based on a variational network (VarNet)13, in which all the free regularization 
parameters in the CS iterative gradient descent scheme were learned from data instead of being set empirically. 
In particular, the regularizer used in the VarNet was the fields of experts (FoE) model15 and the gradient descent 
was unrolled yielding a deep neural network. In the more recent end-to-end VarNet (E2E VarNet)16, the gra-
dient of the FoE was replaced with a UNET17 in each iteration of the gradient descent, resulting in improved 
performance18–20. Moreover, the E2E VarNet incorporated an additional UNET to estimate the coil sensitivity 
maps needed for PI from the auto calibration signal (ACS) k-space lines.

Several other approaches21–23 have integrated supervised DL into the image reconstruction pipeline. Among 
these, the Model-Based Deep Learning (MoDL) network used a convolutional neural network-based regulariza-
tion prior while enforcing data-consistency through numerical optimization conjugate gradient blocks. As in 
the E2E VarNet, MoDL unrolls the iteration steps to yield a deep network. The densely interconnected network 
(DIRCN)24 adapted the E2E VarNet using input level dense connections to improve gradient and information 
flow as in25,26. DIRCN also used long range skip-connections to directly connect the UNETs in each gradient 
descent step. Recurrent VarNet27 is another adaptation of the E2E VarNet, which replaces the traditionally used 
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UNET with a recurrent unit. In this approach a hidden state is provided as an additional input to each gradient 
descent step, that stores the sequence of information from the previous steps. However, the use of recurrent 
networks increases the memory demand of the network due to the need of accumulating more gradients in the 
memory. Methods like the Deep J-SENSE28 and Joint-ICNet29 also follow the unrolled optimization scheme of 
VarNet but refine both the image and the coil sensitivity maps through an alternating optimization model, which 
enables the use of a small number of ACS lines to estimate accurate coil sensitivity maps. Learned DC30 learns the 
data likelihood model in a dynamic MRI setting to better approximate the noise distribution in k-space. CTFNet31 
can exploit spatiotemporal correlations simultaneously from both the frequency and the time domain. Addition-
ally, studies on dynamic MR imaging such as CINENet32 and L+S-Net33 are able to operate with complex-valued 
data directly, avoiding potential information loss associated with treating real and imaginary components in sepa-
rate channels. Although networks using complex-valued data can reduce the number of parameters and accelerate 
convergence, they require complex arithmetic, which can lead to greater computational and memory demands, 
making such models more challenging to develop and optimize. More recently, score-based approaches and 
self-supervised or unsupervised DL methods34–37 have been introduced. For example, SURE-Score38 combines 
a denoiser and a score function using only noisy training data, offering a cost-effective alternative to supervised 
DL-based methods. Self-Score39 introduced a fully-sampled-data-free score-based diffusion model that learns 
the MR image prior in a self-supervised manner using Bayesian deep learning.

Cross-domain learning methods, such as the KIKI-net40, incorporate learning in both the image-space and 
k-space to improved MR image reconstruction. Another example of cross-domain learning is provide by41, 
where dynamic image reconstruction is performed by iterating across the frequency-time domain and the image 
domain. However, such framework does not utilize an unrolled gradient descent scheme, so it does not directly 
preserve the physics of parallel imaging. DCT-net42 and the method presented in43 also perform cross-domain 
learning. In particular, DCT-net reconstructs both the image and the undersampled k-space with two networks 
running in parallel joined with transformer blocks. To our knowledge, both DCT-net and the method in in43 
have not been applied yet to multi-coil parallel imaging reconstructions. DIIK-Net44 interleaves the image and 
the k-space into a cross-domain interaction block in each refinement module, thus performing cross-domain 
learning in each gradient descent step. DIIK-Net reports a slightly lower PSNR score than the XPDNet model45, 
which ranked below the E2E VarNet in the fastMRI public leaderboard19. Finally, IKWI-net46 performs learning 
using image, k-space, and a wavelet domain. However, this approach relies on magnitude DICOM images to 
simulate fully-sampled raw data, which leads to unrealistic results47,48.

DL-approaches for image reconstruction are nowadays incorporated in most commercial products. At the 
time of writing, self-supervised methods achieve competitive reconstruction performance compared to super-
vised methods, although the latter still maintain an edge. Notably, the E2E VarNet model and its extension, the 
DIRCN model, have secured the third and second positions, respectively, on the fastMRI leaderboard for 4 × 
accelerated reconstructions (Supporting Fig. S1). In the case of 8 × accelerations, the E2E VarNet dropped to 
the fourth position, whereas the Iterative Refinement with Fourier-Based Restormer reached third place49, and 
DIRCN maintained second place (Supporting Fig. S2). The reported results show that there is room for improve-
ment to improve image reconstruction for large undersampling factors.

The aim of this work was to improve the original E2E VarNet by implementing and evaluating three modifica-
tions. First, we adapted the network’s architecture to perform training in a feature-space instead of image-space, 
which preserved high-level features between the iterations of gradient descent. In our approach, the feature-
space data-consistency term decodes the feature space to k-space, performs data consistency, and finally encodes 
back to feature space. Second, we leveraged the feature-space representation of the MR image and employed a 
transformer50,51. In particular our attention mechanism in the transformer utilizes the knowledge of what alias-
ing artifacts look like in the case of Cartesian undersampling and attenuates them in the reconstructed images. 
Finally, we combined our proposed feature-space approach with the image-space representation of the E2E Var-
Net to build a Feature-Image (FI) VarNet, in an attempt to boost performance, by merging a comprehensive CNN 
model (E2E VarNet) and a CNN model augmented with attention mechanisms (Feature VarNet). The models 
were compared and the best one was evaluated by three neuroradiologists. A preliminary version of this work 
was presented at the 2023 Annual Meeting of the International Society for Magnetic Resonance in Medicine52,53.

Methods
MR image reconstruction
The MR signal ki received by the i-th coil is related to the MR image x by the forward problem:

Here, N is the number of receive coils, ci are the receive coil sensitivity profiles, F is the discretized Fourier trans-
form operating on a vector with multichannel images concatenated, and m is the predefined undersampling mask.

One can solve for x by precomputing c and inverting (1) through a regularized optimization routine based 
on CS4,54. In particular, we can express the optimization problem as:

(1)ki = m⊙ F(ci ⊙ x), i = 1, . . . ,N .
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where Q is the regularizer, � is its weighting factor, and k̃i = m⊙ ki is the undersampled measured k-space 
(signal) data. The solution of (2) for a fully sampled k-space and � = 0 is the inverse Fourier transform. If Q is 
differentiable, the inverse problem can be solved with a few gradient descent iteration steps as: 

 Here, F , is the discretized Fourier transform operating on a vector with single channel images and k is the vector 
containing the k-space from all individual coils. E is the expand operator, which performs the multiplication of 
the individual coil images with ci . R is the reduce operator, which multiplies element-wise the conjugate of ci with 
the coil images and sums over the number of the coil channels. ηj is the learning rate of the gradient descent and 
j is the iteration number. Finally, the individual coil images are given from xi = |F−1

ki| and the coil combined 
image is the root-sum of squares of the individual coil images.

Variational network
The above described inverse problem remains inherently ill-posed for high undersampling rates6. This happens 
because the regularization techniques normally employed in CS rely on hand-crafted parameters that may not 
be suitable to reconstruct the complex details of the image55. In addition, a poor choice of these priors might 
result in excessively smooth images, or under-regularized noisy images. Motivated by these limitations, the 
VarNet13 embedded CS into a deep learning framework, where the gradient of the regularizer of (2) is learned 
from data, resulting in a physics-based reconstruction network. In particular, in the VarNet, Qj is a FoE model 
for the j-th gradient descent iteration15 (a generalization of total variation) where all its parameters, including � 
are learned from data. The network is trained using an unrolled gradient descent scheme26,56–58 where the neural 
network weights in Qj are updated at each step. In the original VarNet, the coil sensitivities c are computed with 
the ESPIRiT method9 and passed as an additional input to the network along with the undersampled k-space.

The E2E VarNet16 addressed the limited expressive power of the FoE by substituting the gradients of Qj with 
a UNET17, due to the UNET’s capacity to learn complex representations and their capability to model objects 
at different scales. In addition, c is also learned in parallel with the gradient of Qj during the training process 
of the E2E VarNet. This is done with an additional UNET that takes the low-resolution image generated using 
the ACS lines of k-space as an input and outputs the sensitivity maps. Each of the Jima unrolled gradient descent 
steps (cascade25) of E2E VarNet is

where k̃ is the undersampled measured k-space signal concatenated as a vector for all coil channels, N j is a con-
volutional neural network and j = 1, . . . , Jima with Jima being the number of the gradient descent steps. Individual 
coil images are reconstructed using the inverse Fourier transform from the fully-sampled k-space obtained at the 
last gradient descend step and combined using the root sum of squares to obtain the final image. The parameters 
of all N j , the learning rate of the gradient descent ηj and the sensitivities c are learned by minimizing a cost-
function between the combined image and the ground-truth image x̂ . The metric used in the cost-function can 
be any metric of choice, such as the mean and normalized mean squared error (MSE, NMSE), the peak signal-
to-noise ratio (PSNR)59, or the structural similarity index measure (SSIM)60, among others.

VarNet architecture modifications
Feature‑space encoding
In the E2E VarNet architecture and other unrolled optimization-based models61, most of the high-level features 
are discarded in the last convolutional layers of each cascade to obtain the update of the image or k-space in order 
to perform data consistency (4). In particular, the number of N j output channels decreases from a high number 
(usually set to 32) to 2 (to represent the real and imaginary part of the image-space update). Nevertheless, the 
remaining features (30) could contain useful information for the reconstruction. Here, we propose a different 
approach, dubbed Feature VarNet, where we use the unrolled gradient descent algorithm as in the E2E VarNet 
(4), but we perform the updates of the gradient descent in a feature-space ( f  ), instead of the k-space ( k ), or image-
space. This approach allows us to maintain a high number of feature channels across the network’s cascades. In 
particular, we introduce an encoder ( A ) neural network that maps k to f  , and a decoder ( B ) neural network 
that maps f  to k . By substituting f = A(k) and k = B(f) , the gradient descent step of (4) can be updated as:

(2)x̃ = argmin
x
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Figure 1.   Neural network architectures. In Feature VarNet (a), the coil sensitivities are estimated as in the E2E VarNet 
with a UNET and are passed to the Feature Cascades (b). The k-space is encoded in feature-space, and the resulting 
feature maps are processed using the update rule of (5) in each cascade ( j = 1, . . . Jfea ). The attention module (red 
square block) precedes the neural network in the Feature VarNet cascades. The attention module is incorporated 
by first reshaping the feature maps (tensors) to blocks, then applying attention, and finally reshaping the output 
feature maps back to their original dimensions, before they are processed by the neural network in the cascade. 
A representative example of our reshaping approach is shown in (c) for a feature tensor with 1 channel and width 
and height equal to 12. The acceleration factor is equal to 4. Due to Cartesian undersampling, the aliasing artifacts 
appear at regular intervals of N = W/R = 3 pixels. In the Feature VarNet, the output feature map of the last cascade 
is decoded into k-space, which is then inverse Fourier transformed to obtain the individual coil images. In the FI 
VarNet architecture (d), the feature map of the last cascade is decoded into k-space, which is further processed by the 
update rule of (4) in the j = 1, . . . Jima image cascades. The output k-space of the last image cascade is inverse Fourier 
transformed to obtain the individual coil images. For both networks, the final reconstructed image is obtained as the 
root sum of squares combination of the individual coils images. Both Feature and FI VarNets are trained end-to-end.
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where j = 1, . . . , Jfea with Jfea being the number of the gradient descent steps (Fig. 1 top). In this feature-space 
representation, each N j network produces directly a feature tensor with a high number of channels (32), B 
decodes it to k-space, and data consistency is performed. The updated k-space in encoded to a feature tensor (32 
channels) with A and is passed to N j+1 . As a result, the tensor maintains its high number of channels throughout 
all N  , avoiding the information bottleneck that happens when the channels are reduced to 2.

We can either enforce consistency by using the same encoder and decoder to and from feature-space through-
out all cascades or use independent encoder and decoder in the network. For the most part of this work we used 
consistent encoder and decoders, except in (Model Ablations) where we experimented with different encoder 
and decoders. We used single convolutional layers with kernel size of 5 and padding equal to 2 to represent 
the encoder and the decoder. Specifically, the encoder mapped the 2 input channels, corresponding to the real 
and imaginary part of the image, to a predefined number of feature channels q = 32 , and the decoder mapped 
back from q = 32 to 2 channels. Both the encoder and decoder were used without an activation function. The 
parameters of all N j , the encoder, and the decoder were learned from the training data.

Block‑wise attention
In the proposed Feature VarNet, all N j can be UNETs as in the E2E VarNet. In this work we propose to precede 
each UNET with a self-attention layer51. First, we added a positional encoding to the input features to provide 
spatial information to the attention mechanism. Next, we modified the input using dilated convolutions to 
compute the query, key, and value embeddings in order to calculate the attention weights. The attention weights 
are then used to attend to the value embeddings and produce the output features. Finally, the output features are 
projected back onto the same shape as the original input features using a convolution with a 1× 1 kernel, and 
the two are added together to produce the final output.

The matrix multiplications in the attention mechanism were performed in blocks to reduce computational 
complexity. In particular, we reshaped the feature tensor into a block-based representation to help the model 
identify the spatial location of the aliasing artifacts caused by the Cartesian undersampling. For example, consider 
a feature tensor of dimensions C ×H ×W (channels, height, width), and acceleration rate R. First, we collect 
the elements of the tensor that are N = W/R elements apart in the width into tall matrices of size C × (H · N) , 
since the aliasing artifacts appear at regular intervals of N voxels along the phase-encoding direction. In case the 
width is not divisible with the acceleration, the tensor can be padded before the reshape. After this, the resulting 
tall matrices are concatenated and form a feature tensor of dimensions (H · N)× C × R , and a batch matrix 
multiplication follows51. This block representation helps the model identify the spatial location of the aliasing 
artifacts. Note that N and R adapt depending the acceleration factor. The reshaping process is depicted in Fig. 1 
(bottom) for a toy example with C ×H ×W = 1× 12× 12 and R = 4.

Feature‑image variational network
Given the superior performance demonstrated by cross-domain convolutional neural networks62, such as the 
KIKI-net40, we combined the Feature VarNet (with attention) and the E2E VarNet into a single network. The 
new network, dubbed FI VarNet, combines feature-space and image-space based reconstructions to improve 
performance.

Figure 1 (middle) presents the FI VarNet architecture. First, the coil sensitivity maps are estimated as in the 
E2E and Feature VarNet approaches, and the Jfea gradient descent steps of equation (5) are performed (feature 
cascades). The resulting feature-space representation f Jfea is then decoded into a k-space representation, which 
is passed as the initial value k1 to (4). Equation (4) is solved for Jima gradient descent steps (image cascades) and 
the final image is reconstructed. We dubbed the E2E VarNet’s cascades as image cascades for simplicity, as they 
refer to operations that bridge both k-space and image-space.

Model training
Datasets
The datasets used in the current study were obtained from the fastMRI public database (fastmri.med.nyu.edu)18,63. 
The fastMRI dataset includes both the raw k-space data and ground-truth MRI images presented in this work. 
We combined the training (4469 volumes) and validation (1378 volumes) brain fastMRI datasets for training. We 
used the validation brain fastMRI dataset for validation. For the performance assessment (Performance Assess-
ment), all models were tested on the entire brain fastMRI test dataset, which consisted from 558 volumes. 49 of 
these volumes were scanned with fluid attenuated inversion recovery (FLAIR), 187 were T1 and T1 post contrast, 
and 322 were T2-weighted. These ratios reflect the contrast distribution of the validation and train datasets. For 
the comparative study with the public fastMRI leaderboard (Leaderboard Comparison), a subset of the brain 
fastMRI test dataset (standard leaderboard test dataset) was used (281 volumes to evaluate 4 × acceleration and 
277 volumes to evaluate 8 × acceleration). The clinical study (Clinical Evaluation) was implemented using a sub-
set of the leaderboard test dataset as in64, consisting of 20 cases (4 FLAIR, 5 T1-weighted, and 11 T2-weighted 
volumes) with abnormalities (clinical dataset). The abnormalities included postsurgical complications, vascular-
related conditions, masses and tumors, and fluid-related conditions. We also used the knee fastMRI dataset to 
determine the generalizability of our models. Since the ground-truth images for the knee fastMRI testing dataset 
are not publicly available, we used the knee fastMRI validation dataset (199 volumes) for testing. We used the 
knee fastMRI training dataset (973 volumes) for training. We skipped the validation process for the knee and 
applied the same hyperparameters for training that were previously used for the brain (see “Optimization and 
network configurations”).
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Undersampling
We used Cartesian undersampling. We used either 8% , 7% , or 4% of the central k-space as ACS lines and uni-
formly sampled the rest of k-space to achieve an acceleration factor (R) of 4, 5, or 8, respectively. All models were 
trained and tested using the same undersampling mask.

Optimization and network configurations
The optimization model used to train the neural networks in this study was based on a combination of the 
AdamW optimizer with a learning rate of 0.000365 and a learning rate scheduler, to adjust the learning rate dur-
ing training. We trained the networks using 210k iteration steps and used a custom step function for the learn-
ing rate scheduler. In particular, the step function gradually increased the learning rate from 0 to 0.0003 over 
a period of 7.5k steps, after which the learning rate remained constant for 140k steps. For the remaining steps, 
the learning rate switched to a cosine annealing schedule. The cosine annealing schedule was used to gradually 
decrease the learning rate from its maximum value down to a small value of 10−8 , ensuring good convergence 
without oscillations.

The UNETs, serving as the backbone for both the E2E VarNet and the proposed VarNet models, shared a 
similar architecture. Specifically, we employed four layers of average pooling and transpose convolutions, each 
with a kernel size, stride, and padding of 2, 2, and 0, respectively. The convolution layers used a kernel size of 3 
with both padding and stride set to 1. Leaky ReLU activation functions were used with a negative slope of 0.2. 
The complex-valued k-space data were split into a two-channel real-valued representation. The input tensors to 
the U-Nets, whether representing k-space data or features, were normalized to ensure that each channel had a 
mean of 0 and a standard deviation of 1. Finally, all networks were trained with a batch size of 1.

Model size
In this study, we compared the original E2E VarNet against the three proposed variations: Feature VarNet, Feature 
VarNet with attention, and FI VarNet. Despite differences in their architectures, for a fair comparison, all models 
were designed to have a similar number of parameters. In particular, we used 12 cascades and 32 feature chan-
nels in the UNETs for the E2E and Feature VarNets for all studied cases. In this setting the E2E VarNet required 
93.6 million parameters, while Feature VarNet required an additional 0.3 million parameters for its encoder, 
decoder, and convolutions in the attention layer. Finally, FI VarNet required 93.8 million parameters for a 6 
feature-6 image cascade architecture and 187 million parameters for a 12 feature-12 image cascade architecture.

Evaluation strategy
Quantitative evaluation
To assess the performance of all VarNet models, we conducted a quantitative evaluation using three metrics: 
SSIM, PSNR, and NMSE. All models were trained on 2D input-output pairs representing individual slices of 
the training set’s volumes. The metrics were measured by comparing the entire 3D reconstructed volume of the 
sample with the corresponding ground truth and computing the volume average over the entire dataset. During 
training, 1-SSIM was used as the loss function to optimize the network parameters, ranging between 0 and 1, 
with lower values indicating better similarity. SSIM was also used as the primary evaluation metric due to its 
ability to capture both structural and perceptual similarities between the predicted and ground truth volumes66. 
PSNR and NMSE were also computed to provide additional quantitative measures of performance.

Clinical evaluation
Three neuroradiologists with 23 (Reader C), 4 (Reader B), and 2 (Reader A) years of clinical experience assessed 
the image quality of FI VarNet, which was found to be the best model in the quantitative evaluation among the 
three proposed approaches (see “Leaderboard comparison”). Each radiologist was assigned the ground-truth 
fully-sampled image and two undersampled reconstructions: one with the FI VarNet (12 feature-12 image cas-
cades) and one with the pretrained E2E VarNet model16. All radiologists had knowledge of the ground-truth, 
but were blinded to the particular reconstruction model and performed their reviews independently. The read-
ers were tasked to label the images as “FI VarNet”, “E2E VarNet”, or “cannot tell”, based on their overall quality. 
Additionally, three Likert-like grading scales were used to assess artifacts, sharpness, and contrast-to-noise ratio 
(CNR), in comparison to the ground-truth, similar to what was done in a previous study67. For the artifacts scale, 
a score of 1 indicated no artifacts present, while 2 indicated minimum artifacts that do not affect diagnostic 
quality. In the sharpness scale, a score of 1 indicated that the sharpness for structures and findings matched the 
ground-truth, while 2 indicated differences. Lastly, in the CNR scale, a score of 1 indicated equal conspicuity for 
structures and findings as the ground-truth, while 2 indicated differences.

Results
All models were trained on a high-performance cluster using four NVIDIA A100 Tensor Core GPUs, each 
equipped with 80 GB of memory.

Performance assessment
Table 1 (top) compares the average SSIM, PSNR, and NMSE between the E2E VarNet, Feature VarNet with 
and without attention, and FI VarNet. FI VarNet used 6 feature and 6 image cascades to ensure that differences 
in performance with respect to the Feature VarNet (12 cascades) and the E2E VarNet (12 cascades) were due 
to their architectural variations rather than their sizes. Feature VarNet outperformed the E2E VarNet in SSIM 
by 0.0002 and 0.0007 for 4× and 5× acceleration, respectively, due to the preservation of high-level features in 



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10991  | https://doi.org/10.1038/s41598-024-59705-0

www.nature.com/scientificreports/

each cascade. When the block-wise attention was incorporated the SSIM improvement increased to 0.0004 and 
0.0009 for four and five-fold acceleration, respectively. The FI VarNet also outperformed the E2E VarNet in SSIM 
by 0.0009 and 0.0011 for four and five-fold acceleration, respectively, showing the superiority of cross-domain 
convolutional neural networks. Finally, the results are statistically significant as indicated by a paired t-test68 at 
a 5% significant level.

Figure 2 (left) presents the convergence of the validation error for PSNR and SSIM for both 4× and 5× accel-
eration factors. The large gain towards the end of the training is due to the cosine annealing in the optimization 
process. FI VarNet always maintains smaller errors than all other models in both accelerations for the SSIM. In 
the case of PSNR, FI is similar to Feature VarNet (with and without attention) during training and marginally 
outperforms them towards the end of the training, except in the case of PSNR and 5× acceleration. The Feature-
based models outperform E2E VarNet in all cases during training.

Figure 2 (middle four-fold acceleration, bottom five-fold acceleration) compares the SSIM and PSNR score 
differences of the FI VarNet and Feature VarNet (with attention) with respect to the E2E VarNet for the entire 
testing dataset. Both the Feature VarNet and the FI VarNet obtained larger PSNR values than the E2E VarNet for 
all testing cases (except a few outliers). The FI VarNet had higher SSIM values than the E2E VarNet for almost 
the entire testing dataset, while the Feature VarNet had lower SSIM scores than E2E VarNet for a few cases. The 
latter can be attributed to their training on the SSIM metric, as both models were explicitly optimized to excel 

Figure 2.   (top) Error during validation for the SSIM (left) and PSNR (right) for the FI, Feature (with and 
without attention) and E2E VarNets with respect to the ground-truth. The error is averaged for all brain volumes 
in the validation dataset. (middle and bottom) Histograms of differences in SSIM (left) and PSNR (right) for the 
FI VarNet and the Feature (with attention) VarNet with respect to the E2E VarNet for all brain volumes in the 
test dataset.
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in SSIM performance. The E2E VarNet’s slightly higher SSIM scores than the Feature VarNet’s in a few cases may 
be due to potential overfitting to specific patterns in the training data, leading to improved SSIM performance 
on some examples but reduced PSNR performance.

Figure 3 compares the performance of the E2E VarNet, Feature VarNet (with and without attention), and FI 
VarNet for the three difference image contrasts in the fastMRI test dataset and for both four-fold and five-fold 
accelerated reconstructions. The large average SSIM and PSNR performance for both the T1-weighted and 
T2-weighted image datasets was expected as the network was trained mostly on these types of contrasts. The 
results for the individual contrasts are in a good agreement with the average results from all contrast-weighted 
images, except for FLAIR images with 4x acceleration, where the E2E VarNet outperformed the Feature VarNet 
(w and w/o attention) in terms of SSIM. This can explain the higher SSIM scores of E2E VarNet over Feature 
VarNet that were observed for a few cases in the top-left histogram of Fig. 2.

Figure 4 shows a representative reconstruction, in which the E2E VarNet resulted in an artifact in the zoomed 
area (yellow arrow), which varied with the two different acceleration factors. In contrast, the Feature (with 
attention) VarNet and FI VarNet reconstructions did not exhibit this artifact. Additionally, at 4× acceleration, 
the E2E VarNet caused blurring of the blood vessel visible on the left side of the panel, while the blood vessel 
remained visible in both the Feature VarNet and the FI VarNet reconstructions (red arrows). At 5× acceleration, 
all models resulted in a similar smoothing on the vessel. These results suggest that both the the Feature VarNet 
and FI VarNet architectures could be more robust to acceleration artifacts than the the E2E VarNet architecture. 
Figure 5 presents 4× and 5× accelerated reconstructions for another representative case. The E2E VarNet blurs a 
blood vessel next to the lesion in the zoomed area (yellow arrow) at 4× acceleration and misses it at 5× . The vessel 
is visible with the Feature VarNet w/o attention at 4× acceleration, but it is missed at 5× . The Feature VarNet w/ 
attention reconstruction is able to preserve the vessel at 4× acceleration and blurs it at 5×.

Model ablations
We trained a Feature VarNet model without attention (12 cascades) and with distinct encoders and decoders at 
each cascade. We again used single convolutional layers to represent them, but this time their weights were not 
shared between different cascades. The network was tested on the fastMRI brain test dataset and yielded a slight 
enhancement in both SSIM and PSNR (0.9591 and 41.41) compared to using consistent encoders and decoders 
(0.9589 and 41.39). This ablation in the Feature VarNet introduced 12 (as many as the gradient descent iterations) 
unique feature spaces, which provided increased flexibility during the training.

We also explored the performance of an image-feature (IF) VarNet with 6+6 cascades and four-fold acceler-
ated brain MRI reconstructions. This model achieved SSIM and PSNR scores of 0.9596 and 41.35, respectively, 
on the fastMRI test dataset. The SSIM was equal to the one obtained with the FI VarNet of the same size, while 
the PSNR was lower by 0.1.

Leaderboard comparison
We evaluated our FI VarNet model, which yielded the highest performance in this study, against the leading 
models on the fastMRI public leaderboard18,67, including the pretrained E2E VarNet model16. To ensure a fair 
comparison, we tested our model on the same leaderboard test dataset used by the other models (Datasets). To 
enhance our model’s performance, we increased the number of cascades from 6 to 12 in both its feature and 
image sub-network components. This does not compromise the fairness of the comparison, since the memory 
and operations complexity vary across all networks submitted in the public leaderboard67. Table 2 includes the 
comparison results for four-fold and eight-fold accelerations. For four-fold accelerations our FI VarNet model 
outperformed the DIRCN model (which is based on densely interconnected networks and the E2E VarNet archi-
tecture) by 0.0006 and 0.2 in terms of SSIM and PSNR, respectively. For eight-fold accelerations, FI VarNet was 
marginally outperformed by DIRCN in SSIM by 0.0002, but its PSNR was larger by 0.02. These results position 
our model in second place and third place on the leaderboard, just below the AIRS-Net, which is a closed-source 
model from AIRS Medical (Seoul, South Korea). Two screenshots of the public leaderboard are provided in the 
supplementary information for reference.

Clinical evaluation
Table 3 includes the preference for each reader in terms of quality of the reconstructed images. On average, the 
readers preferred the FI VarNet in ∼ 62% of the 20 cases. For 7% of the cases (2 cases for Reader A and 2 cases 
Reader B), the readers rated no major differences in the overall quality. Overall, the differences between the 
readers was non-significant based on the Wilcoxon signed-rank test69. The p-values were 0.1, 0.16, and 0.39, for 
the findings of reader A vs. C, reader B vs. C, and reader A vs. B, respectively.

Table 3 also reports the comparison among the three readers in terms of reconstruction artifacts, image sharp-
ness and CNR. Reader A gave similar scores to the FI VarNet and E2E VarNet in terms of reconstruction artifacts 
and CNR, while scored the FI VarNet higher than the E2E model in terms of image sharpness. Reader B returned 
the same scores for artifacts for both models, and higher sharpness and CNR scores for the FI VarNet. Reader C 
returned the same scores for artifacts and sharpness for both networks and a higher CNR score for the FI VarNet.

Figure 6 compares a representative T2-weighted brain image from the clinical dataset at four-fold accelera-
tion, reconstructed using the FI VarNet and the E2E VarNet. Zoomed regions of interest (ROI) are shown to 
qualitatively compare the performance of the two models in capturing intricate details. In ROI 1, the E2E VarNet 
reconstruction exhibits a blurred representation of the thalamus and an artifact in the choroid plexus, which is 
highlighted by two yellow arrows. On the other hand, the FI VarNet model successfully preserves the anatomi-
cal features present in the ground truth. In ROI 2, the E2E VarNet reconstruction fails to capture a blood vessel 
indicated by the yellow arrow. The FI VarNet instead accurately retains the blood vessel.
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Performance on the knee
We trained and evaluated our best FI VarNet model (12 feature and 12 image cascades) on the knee fastMRI 
dataset18,67, and compared the reconstructions against the E2E VarNet model16. Table 1 (bottom) shows a com-
parison of the average SSIM, PSNR, and NMSE between the FI VarNet and E2E VarNet for the knee test data-
set. The FI VarNet model outperformed the E2E model by 0.0049, 0.15, and 0.00013 in terms of SSIM, PSNR, 
and NMSE, respectively. These results show good generalizability of FI VarNet to other body regions. Figure 7 
qualitatively shows that the FI VarNet can reduce noise compared to the E2E VarNet for the case of a four-fold 
under-sampled knee image reconstruction obtained with a fat-saturation sequence.

Discussion
The E2E VarNet has established itself as a formidable tool in image reconstruction, standing out as one of the 
top open-source models in the fastMRI leaderboard19,20. Therefore, our aim in this work was not to replace the 
model but to refine it, introducing subtle architectural modifications that neither escalate its memory demands 
nor prolong training time and inference time. Our proposed Feature VarNet and FI VarNet architectures out-
performed the E2E VarNet architecture in terms of image quality metrics such as SSIM, PSNR, and NMSE for 
four-, five-, and eight-fold undersampling rates. Unlike other feature-representation based networks21,70 our 
Feature VarNet’s feature space, defined by a single convolution layer, facilitates the incorporation of the block-wise 
attention transformer at a pixel resolution-level feature-space representation of the image. We note that a direct 

Table 1.   Average SSIM, PSNR, and NMSE comparison on all test data for brain scans using the E2E, Feature, 
and FI VarNet architectures and four and five fold accelerations. Average errors are also shown for knee scans 
at four fold acceleration and the E2E and FI VarNets. Bold values indicate the best performing model.

Anatomy Network Attention Space Cascades

SSIM PSNR NMSE ( 10−3)

R = 4 R = 5 R = 4 R = 5 R = 4 R = 5

Brain

FI VarNet Yes Feature and Image 6+6 0.9596 0.9552 41.45 40.46 3.52 4.32

Feature VarNet Yes Feature 12 0.9591 0.9550 41.42 40.48 3.55 4.30

Feature VarNet No Feature 12 0.9589 0.9548 41.39 40.45 3.56 4.33

E2E VarNet No Image 12 0.9587 0.9541 41.17 40.18 3.71 4.57

Knee
FI VarNet Yes Feature and Image 12+12 0.9236 – 40.08 – 5.17 –

E2E VarNet No Image 12 0.9187 – 39.93 – 5.30 –

Figure 3.   Performance of the E2E, Feature (with and without attention), and FI VarNet (x axis) for the three 
different contrasts (FLAIR, T1-weighted, and T2-weighted) in the brain fastMRI test dataset. The average SSIM 
(y axis, left) and average PSNR (y axis, right) are presented for four-fold and five-fold accelerations.
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application of attention to raw image pixels would be suboptimal50. This single-layer convolutional encoding 
provides a direct representation of the image in feature space, with aliasing artifacts approximately mirroring 
their locations in the image domain (Supplementary Fig. S3). As a result, attention allows the network to attend 
directly to the aliasing artifacts in the phase-encoding direction due to the Cartesian undersampling (a key fac-
tor for its improved performance) and performs better denoising of the reconstruction through the network’s 
training Fig. 2). Finally, the marginal improvement observed in the ablated Feature VarNet, where encoders and 
decoders with non-shared weights are used, suggests that different architectures (other CNNs or transformers71) 
could be employed for the encoders and decoders to potentially enhance performance further.

Similar to KIKI-Net-based models40, the cross-domain architecture of the FI VarNet brings together the 
advantages of image (a purely comprehensive CNN model) and feature space (a CNN model augmented with 
attention mechanisms) networks, improving the overall reconstruction performance. FI VarNet outperformed 
other cross-domain learning-based networks that do not rely on unrolled optimization schemes. For example, 
CDF-Net72 had reported 0.9003 SSIM and 36.77 PSNR scores for 4 × accelerated knee image reconstructions, 
whereas FI VarNet achieved 0.9236 SSIM and 40.08 PSNR when trained on the same dataset (We note that FI 

Figure 4.   Comparison of representative image reconstructions at four-(top) and five-(bottom) fold 
accelerations using different VarNet architectures with matching train-test conditions. The fully-sampled 
ground truth reconstructions are shown on the left column. A zoomed section of interest, indicated by the white 
bounding box, is shown at even rows. The E2E VarNet exhibits an artifact in the zoomed area (yellow arrow), 
which varies with the two different acceleration factors. The artifact is absent in the Feature VarNet and the FI 
VarNet reconstructions. In addition, at four-fold acceleration, E2E VarNet causes blurring of the blood vessel 
(clearly visible on the ground-truth image), while neither the Feature VarNet nor the FI VarNet reconstructions 
suffer from the same artifact (red arrow). At five-fold acceleration, all networks cause a similar smoothing of the 
blood vessel.
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VarNet was tested on the entire fastMRI knee validation dataset, while CDF-Net was tested on only half of such 
dataset). The histogram in Fig. 2 (middle, right) and the average values per contrast in Fig. 3 shows high consist-
ency of these results across SSIM and PSNR. Although the average performance improvements are not large, 
the representative example in Fig. 4 and 5 demonstrates that both the Feature (with attention) and FI VarNet 
architectures are more robust to acceleration artifacts than the E2E VarNet architecture.

Our FI VarNet model reached the second place (4× ) and third place (8× ) on the fastMRI public leaderboard, 
behind the closed-source AIRS-Net, which performs additional data standardization methods and a multi-slice 
training process73. Such data standardization methods appear to be key to achieve clinically good reconstructions 
for the entirety of the fastMRI dataset at higher acceleration factors and are left for future work64. Our comparison 
with the leaderboard models demonstrates the effectiveness of FI VarNet in MRI image reconstruction tasks and 
its potential for further development. While the increase in SSIM and PSNR achieved by our models was quan-
titatively small (Table 2), it nevertheless resulted in improved image quality and clinical scores (Table 3). This is 
due to the fact that these metrics can correlate poorly with the radiologist’s evaluations. In fact, the appearance 
of subtle pathologies could be substantially altered in the MR images without a major change in SSIM, therefore 
small changes in SSIM could be significant for pathology detection if associated with localized improvements 
in image quality19,67,74,75.

Our best model, the FI VarNet with 12+ 12 cascades, outperformed the pretrained E2E VarNet16 according to 
three expert neuroradiologists. The results of the clinical evaluation were not statistically significant, which was 
expected due to the small number of cases (20). Minor differences in scoring were anticipated due to the binary 

Figure 5.   Comparison of representative image reconstructions at four-(top) and five-(bottom) fold 
accelerations using different VarNet architectures with matching train-test conditions. The fully-sampled 
ground truth reconstructions are shown on the left column. A zoomed section of interest, indicated by the white 
bounding box, is shown at even rows. The E2E VarNet blurs or misses the blood vessel next to the lesion in the 
zoomed area (yellow arrow) at 4× and 5× acceleration factors, respectively. The vessel is visible with the Feature 
VarNet w/o attention at 4× acceleration, but it is missed at 5× . The Feature VarNet w/ attention reconstruction is 
able to preserve the vessel at 4× acceleration and blur it at 5×.
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structure of the employed Likert scales, the different years of experience among the readers, and the fact that the 
reconstruction quality of both networks was clinically acceptable for a four-fold acceleration factor. The FI VarNet 
excelled in preserving anatomical details, including small blood vessels, whereas the E2E VarNet discarded or 
blurred them in a few cases (Fig. 6). These findings suggest that the FI VarNet could enable reconstructions with 
diagnostic quality at five-fold or six-fold accelerations in cases where the E2E VarNet falls short64.

Our FI VarNet model also outperformed the E2E VarNet model in four-fold accelerated knee reconstructions. 
The achieved 0.0049 SSIM improvement shows that FI VarNet can effectively handle different anatomies using 
a small training dataset, which underscore its potential to learn accelerated image reconstruction using datasets 
with limited number of cases76.

The Feature and FI VarNet architectures are capable of accommodating Cartesian sampling patterns. In 
random or learned77 undersampling patterns, special care must be taken into account for the attention layers, 
as we designed them to identify the location of the aliasing artifacts due only to Cartesian undersampling. For 
non-Cartesian sampling, our method, as most of the unrolled optimization networks, would be slow, since the 
FFT through the network must be replaced with the slower non-uniform FFT78.

We also explored several alternative approaches that yielded either comparable or suboptimal results com-
pared to the final models reported in this manuscript. For example, in the Feature VarNet, we attempted to 
improve the attention mechanism by incorporating two or three sequential attention layers. However, this was 
challenging during training due to the instability of the attention gradients. For this reason, future work will focus 
on alternative attention frameworks79 to improve stability during training. For the FI VarNet, we experimented 
with an image-feature representation with six cascades for each space, a feature-image-feature-image represen-
tation with four cascades for each space, and a feature-image-k-space representation with six cascades for each 
space. However, we observed that these representations led to degraded or similar reconstructions compared to 
the feature-image model with six or twelve cascades per space. Although these alternative approaches did not 
yield the desired improvements, they provided valuable insights into the behavior of the VarNet models and 

Table 2.   Average SSIM and PSNR on the leaderboard test dataset for the top six models in the fastMRI public 
leaderboard. The FI VarNet surpassed DIRCN at 4 × (top) accelerated reconstructions and ranked second. For 
8 × (bottom) accelerated reconstructions FI VarNet was marginally outperformed by DIRCN and ranked third.

Ranking Model SSIM PSNR

4× acceleration

 1st AIRS-Net 0.9632 42.1

 2nd FI VarNet 0.9607 41.5

 3rd DIRCN 0.9601 41.3

 4th E2E VarNet 0.9591 41.1

 5th dd 0.9591 41.1

 6th IR_FRestormerF11 0.9587 41.0

8× acceleration

 1st AIRS-Net 0.9511 39.7

 2nd DIRCN 0.9455 38.6

 3rd FI VarNet 0.9453 38.6

 4th IR_FRestormerF72 0.9427 38.0

 5th E2E VarNet 0.9426 38.0

 6th dd 0.9426 38.0

Table 3.   Comparison of the three readers’ scores in terms of image quality preference (as number of cases), 
artifacts, sharpness and contrast-to-noise ratio (CNR) for four-fold accelerated reconstructions with the 
FI VarNet and E2E VarNet models for four-fold accelerated reconstructions. Bold values indicate the best 
performing model.

Network Attribute Reader A Reader B Reader C

FI VarNet

Preference 13/20 12/20 12/20

Artifacts 1.85± 0.36 1.05± 0.22 1.75± 0.44

Sharpness 1.45± 0.51 1.30± 0.47 2.00± 0.00

CNR 1.20± 0.41 1.15± 0.36 1.05± 0.22

E2E VarNet

Preference 5/20 6/20 8/20

Artifacts 1.80± 0.41 1.05± 0.22 1.75± 0.44

Sharpness 1.75± 0.44 1.40± 0.50 2.00± 0.00

CNR 1.15± 0.36 1.35± 0.48 1.20± 0.41
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Figure 6.   Comparison against the fully-sampled ground-truth of image reconstructions obtained using the FI 
VarNet and E2E VarNet models for four-fold undersampling. The data are from a representative T2-weighted 
brain MRI from the clinical dataset. The inset panels in the first and third row correspond to two zoomed ROIs 
indicated by the white bounding boxes in the images. The ground truth image was obtained as the root sum of 
squares of the individual coil images, using the fully sampled k-space. In ROI 1 the choroid plexus exhibits an 
artifact and the detail in the thalamus is blurred with the E2E VarNet reconstruction, as indicated by the two 
yellow arrows. The FI VarNet preserves the anatomy of the ground-truth. In ROI 2, the E2E VarNet misses the 
blood vessel pointed by the yellow arrow in the back of the brain, which instead remains visible in the FI VarNet 
reconstruction.

Figure 7.   Comparison of representative knee image reconstructions at four-fold accelerations using the E2E 
VarNet (12 cascades) and the FI VarNet (12+12 cascades). The fully-sampled ground truth reconstruction is 
shown on the left column. The E2E VarNet exhibits higher levels of noise in the reconstruction. The noise is 
reduced in the FI VarNet reconstructions.
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highlight the potential for further optimization, for example, by changing the network layers used for feature 
encoding and decoding to more complex architectures.

Conclusion
We introduced three architectural modifications to the E2E VarNet model, namely feature-space training, block-
wise attention layers based on the spatial position of the aliasing artifacts, and cross-domain learning between a 
CNN and a CNN augmented with attention. We have demonstrated the advantages of integrating these changes 
into the E2E VarNet model, showing improved reconstruction performance both quantitatively and qualitatively. 
The proposed approaches could enable clinically acceptable reconstructions at higher acceleration factors than 
currently possible.

Data availibility
The datasets used in the current study were obtained from the fastMRI public database fastmri.med.nyu.edu. The 
reconstructed MR images with the proposed neural networks used in the current study are available from https://​
rb.​gy/​vlfa4b. The PyTorch code for our models is available at https://​github.​com/​faceb​ookre​search/​fastM​RI.
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