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Randomized feature selection 
based semi‑supervised latent 
Dirichlet allocation for microbiome 
analysis
Namitha Pais 1*, Nalini Ravishanker 1,4, Sanguthevar Rajasekaran 2,4, George Weinstock 3,4 & 
Dong‑Binh Tran 3,4

Health and disease are fundamentally influenced by microbial communities and their genes (the 
microbiome). An in‑depth analysis of microbiome structure that enables the classification of 
individuals based on their health can be crucial in enhancing diagnostics and treatment strategies 
to improve the overall well‑being of an individual. In this paper, we present a novel semi‑supervised 
methodology known as Randomized Feature Selection based Latent Dirichlet Allocation (RFSLDA) 
to study the impact of the gut microbiome on a subject’s health status. Since the data in our study 
consists of fuzzy health labels, which are self‑reported, traditional supervised learning approaches 
may not be suitable. As a first step, based on the similarity between documents in text analysis and 
gut‑microbiome data, we employ Latent Dirichlet Allocation (LDA), a topic modeling approach which 
uses microbiome counts as features to group subjects into relatively homogeneous clusters, without 
invoking any knowledge of observed health status (labels) of subjects. We then leverage information 
from the observed health status of subjects to associate these clusters with the most similar health 
status making it a semi‑supervised approach. Finally, a feature selection technique is incorporated into 
the model to improve the overall classification performance. The proposed method provides a semi‑
supervised topic modelling approach that can help handle the high dimensionality of the microbiome 
data in association studies. Our experiments reveal that our semi‑supervised classification algorithm is 
effective and efficient in terms of high classification accuracy compared to popular supervised learning 
approaches like SVM and multinomial logistic model. The RFSLDA framework is attractive because 
it (i) enhances clustering accuracy by identifying key bacteria types as indicators of health status, (ii) 
identifies key bacteria types within each group based on estimates of the proportion of bacteria types 
within the groups, and (iii) computes a measure of within‑group similarity to identify highly similar 
subjects in terms of their health status.

Humans coexist with trillions of single-cell organisms living within their bodies, labeled as human microbiota 
or microbiome. Most of these organisms reside in the human gut, where most are bacteria, although viruses 
and fungi are also part of the microbiome. These microbes can be symbiotic or pathogenic and coexist without 
conflict in a healthy body. However, changes in diet, antibiotics, etc., can disturb this balance, making the body 
more susceptible to diseases. Recent advances in human microbiome research show evidence of the impact of 
microbiomes on the host’s well-being1,2. The objectives of the research are to characterize the composition of a 
normal microbiome in healthy individuals, and to investigate similarities and differences between individuals 
by characterizing microbiomes based on their core functions, ecological characteristics, or temporal dynamics.

With recent developments in machine learning techniques, researchers have adopted several computational 
approaches to diagnose and understand the microbiome data and its implications on human health. Topçuoğlu 
et al.3 discussed modeling techniques for microbiome profiling to obtain a biologically-interpretable mathemati-
cal formula for predicting the likelihood of disease. Marcos-Zambrano and Gupta et al.4,5 discussed and compared 
standard machine learning approaches in terms of predictive accuracy and interpretability. Significant advances 
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in microbiome research are being made in order to address characteristics of the human microbiome structure 
such as high diversity and presence of rare bacteria types, as well as to handle insufficient samples of individu-
als at risk of several  diseases6,7. Several applications of machine learning techniques in microbiome studies also 
incorporate feature selection algorithms to identify bacteria types associated with various diverse health condi-
tions. For instance, Lee et al.8explores a machine learning-based recursive feature elimination (RFE) approach to 
identify strong biomarkers for inflammatory bowel disease (IBD). Similarly, Chen et al.9 discusses a novel feature 
selection method in combination with machine learning methods to detect patterns and predict conditions 
related to oral microbiota in periodontal disease. Leske et al.10 presents a bi-objective genetic algorithm known 
as BiGAMi designed for feature selection in microbial datasets, that trains high-performing phenotype classifiers. 
In addition to the machine learning techniques, mixed membership models such as Latent Dirichlet Allocation 
(LDA) have also been applied to the microbiome studies to identify latent subcommunities of microbial spe-
cies. In particular, Deek et al.11 discusses a zero-inflated Latent Dirichlet Allocation Model (zinLDA) applied to 
American Gut Project data to identify microbial communities characterized by different bacterial genera. The 
logistic-tree normal (LTN) model incorporated into LDA in LeBlanc and  Ma12 discusses an extension of LDA 
to identify microbial subcommunities by incorporating cross-sample heterogeneity or random effects in the 
model. While these methods aim to identify the sub-communities, the association of these sub-communities 
with health status has not been extensively studied. To address this, we develop a feature selection-based topic 
modeling approach (semi-supervised) that is in the nature of feature selection-based machine learning methods 
(which are supervised).

Our paper discusses a novel semi-supervised topic modeling approach that analyzes patterns in the microbi-
ome data to identify relatively homogeneous groups and compares their association with observed health status 
(fuzzy labels), to classify subjects based on health status. We begin by exploring an unsupervised topic modeling 
approach that provides a powerful tool for discovering and exploiting the hidden structure in the microbiome 
data. Given the microbiome counts in the subject’s gut, we are interested in checking whether these counts can 
be used as features to group (cluster) subjects without any information about their health status. Subsequently, 
we can classify the subjects into different health status levels by assessing the similarity between the observed 
health status and the clusters. We develop a methodology called “Randomized Feature Selection based Latent 
Dirichlet Allocation” (RFSLDA) that identifies important bacteria types to distinguish between different levels 
of health status and classify subjects based on their counts. Our method (i) provides a semi-supervised topic 
modeling approach to classify subjects into different health status based on their gut-microbiome composition 
and, (ii) provides a feature selection technique to identify important bacteria types from the high dimensional 
microbiome data to improve model performance substantially. Experimental results indicate that our algorithm 
performs well.

Data description
We analyze data provided by the Jackson Laboratory in Farmington, CT to examine how microbiomes affect 
human health. Medical professionals collected blood from M = 89 subjects containing healthy individuals and 
individuals with prediabetes for host molecular omics profiling. They also collected two types of samples (stool 
and nasal swabs). Microbiome profiling then recorded counts on each B = 109 bacteria profiled using 16S 
gene sequencing. The detailed description of the raw data is provided  in13. Suppose Yi,ℓ for i = 1, 2, . . . ,M , and 
ℓ = 1, 2, . . . ,B represents a count of the ℓ th type of bacterium of the ith subject. Initial exploration shows that 
the observed read counts Yi,ℓ exhibit a wide range of values. Following expert opinion that it may be counter-
productive to include all bacterial types into the data analysis, we identify top bacterial types based on two 
measures, i.e., abundance and prevalence. While abundance captures the composition of bacteria types in the 
microbiome, prevalence captures the presence/absence of bacteria types above a given detection threshold.

Let P = {pi,ℓ} be an M × B matrix of proportions of the ℓth bacterium in subject i, where,

For bacterial type ℓ = 1, 2, . . . ,B , abundance and prevalence are defined by

Supplementary Figs. S1 and S2 shows the abundance and prevalence for the B = 109 bacteria types respectively. 
We see that some types are highly abundant, while some (possibly other) types are highly prevalent.

We use the tau-path  method14,15 for identifying the top K = 50 bacteria types determined by the high con-
cordance between their abundance and prevalence measures (details are shown in the Appendix). Discussion 
with medical experts confirmed that no significant biological features were filtered out using the tau-path method. 
We aggregate the remaining bacteria types into a single category labeled “Others”. Let B0 = K + 1 = 51 . Let Zi,l , 
i = 1, 2, . . . ,M and ℓ = 1, 2, . . . ,B0 denote counts on the top bacteria types on M subjects. The left plot in Fig. 1 
displays the distribution of all bacteria based on the average read counts across all subjects, while the right plot 
shows that the the top bacteria types have reasonably sufficient read counts.

(1)pi,ℓ =
Yiℓ∑B
ℓ=1 Yiℓ

.

(2)Aℓ =

M∑

i=1

pi,ℓ, and

(3)Pℓ =

M∑

i=1

Iiℓ, where Ii,ℓ = 1[pi,ℓ ≥ ω].
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Alternatively, another way to pre-process the data involves independently applying the tau-path method to 
each class-specific data set based on health status and selecting the top K = 50 features for each subset. These 
features can then be combined and used for further analysis. The remainder of the paper focuses on the results 
obtained from the tau-path pre-processing step, which identifies top-K features that are globally prevalent and 
abundant. The results of the alternative pre-processing method are available from https:// github. com/ Namit 
haVio naPais/ RFSLDA.

In the following sections, we provide details on our RFSLDA algorithm which uses microbiome read counts 
on B0 = 51 types to group subjects based on their health status. For convenience, Supplementary Table S1 pre-
sents the notations used in the rest of the article.

Randomized feature selection based latent Dirichlet allocation
This section describes our algorithm for classifying subjects into different groups which characterize the rela-
tionship between their gut micriobiome and health status. First, we build a latent Dirichlet allocation (LDA) 
model which uses only the microbiome counts as features to determine relatively homogeneous clusters in an 
unsupervised way, yielding latent topic labels for the subjects (Sect. 3.1.) Second, we do semi-supervised LDA 
to match information on observed health-status labels of subjects with their latent topic labels from Sect. 3.1 
in order to classify them into different levels (see Sect. 3.2). A final feature selection step in Sect. 3.3 helps us to 
identify bacteria types which optimally drive the classification of subjects into suitable health status groups. We 
conduct the analysis in R and the code can be accessed from https:// github. com/ Namit haVio naPais/ RFSLDA.

Unsupervised latent Dirichlet allocation
Latent Dirichlet Allocation (LDA)16 is an unsupervised, mixed-membership model mainly used in document 
analysis. LDA assumes T unobserved topics (clusters) associated with a collection of subjects where each subject 
exhibits these topics in different proportions. This model uses the observed microbiome counts as features to 
infer the hidden topic structure of each subject. Suppose we have a corpus C consisting of M subjects where the 
observed microbiome counts on each of the subjects are represented as D = (b1, b2, . . . , bB0) . If N =

∑B0
l=1

bl 
is the total microbiome count, then one can also represent D as D = (w1,w2, . . . ,wN ) where wn corresponds 
to the nth bacterium present in the subject’s gut represented by a B0 × 1 vector corresponding to the vth bacteria 
type such that wv = 1 and wu = 0 for u  = v . LDA assumes the following generative process for each subject Dd 
with total microbiome count Nd , for d ∈ {1, 2, . . .M} present in the corpus C : 

1. Choose Nd ∼ Pois(�)
2. Choose θd | α ∼ Dir(α) where, θd = (θ1, θ2, . . . , θJ ) and Dir(.) is a symmetric Dirichlet distribution.
3. For each of the Nd bacterium, wd,n

(a) Choose a topic Zd,n | θd ∼ Mult(1, θd)
(b) Choose a bacterium wd,n | {Zd,n,β} ∼ Mult(1,βZd,n

) , a multinomial probability distribution condi-
tioned on the topic Zd,n.

We use the LDA model to obtain T = 3 hidden topics (clusters) using the read counts from the B0 = 51 bacteria 
types on M = 89 subjects. We choose T = 3 clusters in order to associate them with the observed health status 
with C = 3 levels. One can explore different values of T by re-running the model with different numbers of topics 
ranging from, say, 2 to 20, and then choose the optimal number of topics T that yields the best fit for the data 
based on criteria called perplexity defined  in16. Once the structure of the model is defined, the goal is to estimate 
the model parameters and compute the posterior distribution for inference. The LDA model estimation is done 
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Figure 1.  Pie charts represent total percentages of average read counts taken over all the subjects for (i) all the 
109 bacteria types and (ii) the top 50 bacteria types obtained using the Tau Path Method.

https://github.com/NamithaVionaPais/RFSLDA
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https://github.com/NamithaVionaPais/RFSLDA
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using the R package topicmodels17, which uses variational expectation maximization (VEM) algorithm to esti-
mate the model parameters and variational inference (VI) algorithm to approximate the posterior distribution. 
Details are shown in the Appendix.

The latent topical structure is represented by the estimated topic proportions π ′

t,i on each subject, for 
i = 1, 2, . . . ,M and t = 1, 2, . . .T . Estimating the per-subject topic proportion using LDA allows us to associate 
subjects with multiple topics, unlike many clustering algorithms that assign one topic per subject. In addition, 
the topic with the highest proportion is assigned as the topic label πi = argmax{π

′

t,i} for a given subject. While 
πi enables us to group the subjects into T topics (clusters), π ′

t,i helps us compare the degree of similarity of sub-
jects within clusters.

Using the LDA model, we group 57 subjects into cluster 1, 15 subjects into cluster 2 and 17 subjects into cluster 
3 (These clusters via their compositional proportions π ′

t,i are shown in Supplementary Fig. S3).

Semi‑supervised latent Dirichlet allocation
In addition to the bacteria counts, we obtain information on observed health status Ci for each subject. These were 
obtained by the medical professional through a battery of molecular and clinical laboratory tests, complemented 
by self-reported online surveys which documented changes in medication, physical activity, diet preference, and 
perceived stress level. Being self-reported, the health status levels can be considered fuzzy labels that provide only 
ballpark information about an subjects’s health. We have retained the health status levels Healthy and Infection, 
but grouped a few levels with insufficient data that indicated medical stress (immunization, antibiotics, travel, 
fiber, colonoscopy, surgery, weight gain, weight loss, stress, and allergies) into a single level, Stress. Despite the 
rare occurrence of the level infection, (Supplementary Fig. S4) it is an extremely important level to identify.

We bring in the information from the observed health labels to provide a qualitative interpretation of the 
clusters learned from the topic model approach. We predict the health status levels of subjects by associating 
the topic labels πi to the observed health status Ci , for i = 1, 2, . . . ,M . This is achieved by considering all the T! 
matches between the topic labels and the observed health status (Supplementary Fig. S5 shows three possible 
matches).The choice to consider all possible T! matches is made to prevent any bias resulting as we do not have 
any prior information on associating topic to health status. However, in the event we have any a priori knowledge, 
such as knowing that the sub-communities of bacteria types in topic 1 can only be present in subjects with health 
status with infection/stress, we can incorporate this information to reduce the number of possible matches from 
T! = 6 to just four possible combinations.

For each of the T! scenarios we calculate a classification metric defined as,

where w1,w2,w3 are weights such that 
∑T

i=1 wt = 1 , and TPRt corresponds to the true positive rate (TPR) indicat-
ing the proportion of correct predictions for class t where, t = 1, 2, . . . ,T . Since we have unbalanced classes (see 
Supplementary Fig. S4), we use weighted accuracy Aw as a metric. The subjects are then classified into different 
health status levels based on the optimal match identified by the metric. As a result, our framework becomes 
semi-supervised.

We conduct a grid search (Supplementary Table S2) and set w1 = 0.6,w2 = 0.15 and w3 = 0.25. Consider-
ing the subject-specific microbiome data with B0 = 51 bacterial types, we are able to only achieve a weighted 
accuracy of 46.67% with just one infected subject correctly classified. The corresponding confusion matrix is 
shown in Table 1a.

RFSLDA algorithm
We incorporate a feature selection  technique18 into the semi-supervised LDA model in Sect. 3.2 in order to 
identify an optimal subset of bacteria types and improve model performance. That is, we identify a subset of the 
B0 bacteria types that are most important in improving the LDA based classification for determining a subject’s 
health status, by eliminating bacteria types which reduce the predictive power of the classifier. We develop a 
Randomized Feature Selection based Latent Dirichlet Allocation(RFSLDA) algorithm; see Algorithm 1.

(4)Aw =

T∑

t=1

wt × TPRt ,

Table 1.  Confusion matrices obtained using data from M = 89 subjects.

H I S

(a) Semi-supervised 
LDA

 H 44 4 9

 I 10 1 4

 S 12 1 4

(b) RFSLDA

 H 50 1 5

 I 8 4 3

 S 8 1 9
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Algorithm 1.  Randomized Feature Selection based Latent Dirichlet Allocation.
We set n = B0 and use grid search to set c = 1 , p =

n

2
 and t0 = 0.0001 (Supplementary Table S3) to run the 

RFSLDA algorithm. We repeat Algorithm 1 R = 50 times to ensure that the optimal subset of bacteria types 
chosen is not sensitive to the choice of the initial subset. At each iteration, we record optimal set of bacteria types 
and the corresponding accuracy. We identify the iteration with the highest weighted accuracy and select the 
corresponding subset of bacteria types as the optimal subset. This step improves the overall weighted accuracy 
of grouping to 72.12% , which is significantly higher than the weighted accuracy of 46.67% (shown in Sect. 3.2) 
we obtained before feature selection. The corresponding confusion matrix is shown in Table 1b.

In the RFSLDA algorithm we start with a random subset F ′ of the features from the feature space and calcu-
late the weighted accuracy A from the semi-supervised LDA model corresponding to this subset. Next, we sample 
a value randomly from the set {1, 2, 3} , with each number having an equal probability of being chosen. This can 
be considered as flipping an unbiased three sided coin with sides 1, 2, and 3. If the outcome of the coin flip is 1, 
we choose the random subset F ′′ by removing one feature F from and adding a new feature from F −F

′ . 
After choosing F ′′ , we compute its weighted accuracy A′ from the semi-supervised LDA model. If A′

> A , we 
move to the random subset F ′′ and proceed with the search from F ′′ . On the other hand, if A′

≤ A , then we 
stay with the random subset F ′ (with some probability u) or move to the random subset F ′′ with probability 
(1− u) . This step is done to ensure that we do not get stuck in a local maximum. If the outcome of the coin flip 
is 2, we choose a random subset F ′′ by removing one feature from random subset F ′ and compute its accuracy 
its weighted accuracy A′ . In the case where the outcome of the coin flip is 3, we choose a random subset F ′′ by 
adding one feature to F ′ and computing its weighted accuracy A′ . The next steps for case 2 and 3 are the same 
as stated in the case of 1. This process of searching the space is continued until no significant improvement in 
the accuracy can be obtained. The RFSLDA algorithm correctly classifies four out of six infected subjects (which 
is a crucial in medical practice) and improves the overall model performance. It may be less problematic that a 
few healthy subjects are misclassified as infected or stressed.

Interpreting results from the RFSLDA algorithm
We present the interpretation of results from our RFSLDA algorithm.

Optimal bacteria types by health status levels
The feature selection step of the RFSLDA algorithm enables us to select a subset of the bacteria types that are the 
most important in determining the health status. These are: Clostridium.XlVa, unclassified_Bacteroidales, Para-
prevotella, Dialister, Coprococcus, Enterobacter, unclassified_Fusobacteriaceae, Gemella, unclassified_Proteobacteria 
and, Comamonas. The composition of these bacteria types on each of the subjects are shown in Fig. 2. This figure 
shows the relative abundance of optimal bacterial types across all subjects. We compare the optimal Bacteria types 
obtained from RFSLDA with the important bacteria types identified by a conventional method, such as Boruta 
using the R package Boruta19. Among the three important features identified by the Boruta method (Eggerthella, 
Paraprevotella, and unclassified_Proteobacteria) two of them are present in the optimal set identified by RFSLDA.
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From the RFSLDA algorithm, we obtain estimates on the distribution of the different bacteria types by health 
status levels. Figure 3 shows the selected bacteria types across each health status level, along with their estimated 
proportions. We see that unclassified_Proteobacteria is most commonly found in subjects classified under infec-
tion, with an estimated proportion of 0.9, while Paraprevotella is more commonly found in subjects classified as 
stress, with an estimated proportion of 0.67. Among healthy subjects, the bacteria types Clostridium.XlVa and 
Coprococcus are predominant, with estimated proportions 0.35 and 0.33, respectively.

The results from Section 4.1 as an exploratory analysis to plan experiments which test and confirm if the 
selected bacteria types have a causal effect or a random correlation on health status. This analysis serves useful 
to narrow down the bacteria types to be investigated.

 Within group similarity of subjects by health status
We evaluate the within-class similarity using information from the estimated topic structure π ′

t,i . Let πi,[1] and 
πi,[2] denote the highest and second highest topic proportions for each subject and let � = 0.7 denote a user-
specified threshold.

Suppose we consider the subjects classified as healthy. 

1. Subjects with maximum estimated topic proportion πi,[1] ≥ � are grouped as similar, and called Predomi-
nantly Healthy.

2. Subjects with πi,[1] < � , and πi,[2] associated to health status level infection (or,stress) are grouped similar and 
called Healthy-Infection (or, Healthy-Stress).
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Figure 2.  Relative abundance of optimal bacteria types across subjects.
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As an example, suppose we have four subjects with estimated topic proportions associated to stress, healthy, 
and infection as S1 = (0.2, 0.75, 0.05) , S2 = (0.15, 0.5, 0.35) , S3 = (0.001, 0.9, 0.09) , and S4 = (0.2, 0.4, 0.4) . Each 
subject is classified as healthy according to the maximum estimated topic proportion. However, within the 
healthy group, we are able to identify that Subjects 1 and 3 are more similar to each other, and Subjects 2 and 4 
are more similar to each other.

To visualize three-dimensional topic proportions, we employ the t-distributed stochastic neighbor embed-
ding (t-SNE)  method20, to represent similar objects by nearby points and dissimilar objects by distant points. 
The t-SNE plot is shown in Fig. 4. We can use this plot to identify subjects within each health group that are 
more similar to each other.

Comparison to other supervised learning methods
The semi-supervised RFSLDA method outperforms popular supervised learning methods like the multinomial 
logistic  model21, support vector machines (SVM)22,  XGBoost23 and Neural Network (NN). To illustrate this, we 
run all three methods using an 80-20 train-test split of the data using the same set of features selected in the 
RFSLDA method. We conduct this analysis within a k-fold cross-validation framework using k=5 folds. It is to 
be noted that while implementing RFSLDA, the matching of the health status to the topics are done as a part of 
the training process. These matches are then used as associated topic class labels directly on the test data. We fit 
the five methods to the training data with M = 69 subjects, and evaluate the fits on the test data with M = 20 
subjects. The multinomial logit model is implemented using the R package nnet24. The SVM (with a linear kernel) 
is implemented using the R package e107125. The XGBoost is implemented using R package xgboost23. The NN 
(with three hidden layers) is implemented using R package neuralnet26.

Table 2 shows the average weighted accuracy, average weighted precision and average weighted recall values 
for the train and test data sets evaluated using k fold cross validation (with five folds). The SVM performs better 
than the other methods on the train data. However the usefulness of an approach and generalizability is best 
assessed by its performance on a test data. From Table 2 we observe that RFSLDA performs substantially better 
than the supervised methods on the test data.
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Figure 4.  Visualizing the within-group similarity across each health status level using the t-SNE method.

Table 2.  5−fold evaluation metrics comparing the multinomial logit, SVM, NN , XGboost and RFSLDA on 
the train and test framework. E.g. Significant values are in [bold]

Multinomial-logit SVM NN XGBoost RFSLDA

Weighted precision (train) 0.6663 0.7385 0.6701 0.4882 0.6559

Weighted precision (test) 0.5339 0.5463 0.4599 0.4386 0.6629

Weighted accuracy (train) 0.6573 0.7436 0.7078 0.6131 0.6577

Weighted accuracy (test) 0.5574 0.5994 0.5202 0.5815 0.6804

Weighted recall (train) 0.6556 0.7728 0.7032 0.6125 0.6547

Weighted recall (test) 0.5564 0.5977 0.5198 0.5815 0.6774
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Optimal bacteria types after data balancing
The gut-microbiome dataset used in this study is imbalanced in the response variable, health status, as shown 
in Fig. 2. Therefore, in order to identify optimal bacteria types under a balanced framework, we implement data 
balancing technique on the original dataset to obtain a data which is balanced across the levels of the health status. 
The original dataset contains M = 89 subjects with K = 51 microbiome counts. The data balancing technique 
results in a balanced dataset comprising M = 90 subjects and maintaining K = 51 microbiome counts, where 
the distribution across different health statuses is now even (30 observations in each level). The data balancing 
procedure is done using the Synthetic Minority Over-sampling Technique (SMOTE) and Cluster-based Under-
sampling (SCUT) hybrid sampling  technique27. The SCUT hybrid sampling technique oversamples minority 
classes by creating synthetic examples for the minority class. The synthetic data is generated by (i) calculating the 
difference between a minority sample and its nearest neighbor, and (ii) scaling the difference and adding to the 
minority sample to enlarge the decision region for the minority class. For under sampling the majority class, the 
SCUT hybrid sampling technique employs cluster analysis to identify sub-clusters, to ensure at least one instance 
is selected from each sub-cluster while undersampling. This ensures that the undersampling provides a better 
representation of the original data. We implement the SCUT technique using the R package scutr27. We run the 
RFSLDA algorithm (Algorithm 1) with accuracy as the metric of comparison to obtain the optimal bacteria types 
selected by the RFSLDA method on the balanced data. The optimal bacteria types selected by RFSLDA include 
Blautia, Coprococcus, unclassified_Acidaminococcaceae, Streptococcus, Dysgonomonas, Ruminococcus, Coma-
monas, Roseburia, Phascolarctobacterium, Clostridium.XlVa. Figure 5 shows the selected bacteria types across 
each health status level, along with their estimated proportions. We see that Ruminococcus is most commonly 
found in subjects classified as healthy, with an estimated proportion of 0.4, Streptococcus is more commonly 
found in subjects with infection with an estimated proportion of 0.3. Roseburia is commonly found in subjects 
with health status stress with an estimated proportion of 0.4.

We evaluate the performance of RFSLDA in comparison to other supervised learning methods, using an 80-20 
train-test split of the balanced data with the same set of features selected in the RFSLDA method in a k-fold cross 
validation framework. Table 3 shows the average accuracy, average precision and average recall values for the train 
and test data sets evaluated using k fold cross validation (with five folds). While the SVM performs better than 
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Figure 5.  Top bacteria across different health status with their estimated proportions for the balanced data.

Table 3.  5−fold evaluation metrics comparing the multinomial logit, SVM, NN , XGboost and RFSLDA on 
the train and test framework on the balanced data. E.g. Significant values are in [bold]

Logit SVM NN XGBoost RFSLDA

Precision (train) 0.8078 1.0000 0.5952 0.8639 0.6529

Precision (test) 0.7423 0.6573 0.4258 0.6288 0.6857

Accuracy(train) 0.8083 1.0000 0.4917 0.8528 0.6444

Accuracy(test) 0.7222 0.4222 0.4444 0.6111 0.6444

Recall (train) 0.8083 1.0000 0.4917 0.8528 0.6444

Recall (test) 0.7222 0.4222 0.4444 0.6111 0.6444
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the other methods on the train data and logit model performs better than all methods in the test data, RFSLDA 
performs reasonably well in the test data in comparison to NN, XGBosst and SVM.

Discussion and conclusions
The current study using subject-specific data reveals that gut microbes play a fundamental role in human health. 
As an initial data preprocessing, we determine the top bacteria levels from the zero-inflated microbiome data 
based on abundance and prevalence to filter out potentially uninformative bacteria types using the tau-path 
method. The RFSLDA method then uses a semi-supervised LDA model to classify subjects based on the health 
status. Through a feature selection incorporated in our framework, we identify significant bacteria types that can 
accurately distinguish between different health statuses and enhance the accuracy of classification. We identify 
the top bacteria types in each class. Unclassified_Proteobacteria, for instance, is predominant in subjects classi-
fied as infected, but rare in subjects classified as healthy and stress. Further, using the estimated topic structure 
we obtain a within group similarity of subjects by the health status levels. In addition, since the observed data is 
imbalanced in the levels of the response variable health status, we perform data balancing using SCUT hybrid 
sampling technique and perform RFSLDA on the balanced data to identify the top bacteria types across each 
level of the health status.

The results of a comparative study demonstrate that our RFSLDA method, despite being a semi-supervised 
approach, outperforms traditional supervised methods, such as SVM and Multinomial logit in identifying rare 
yet crucial health levels (infected, stress) in the test data. This is an important finding. In comparison to exten-
sions of LDA in microbiome studies discussed  in11,12 that identifies important microbial sub-communities, our 
method associates the latent microbial sub-communities obtained from LDA with the subject’s health status. Our 
results enable practitioners to identify the specific types of bacteria associated with each health status, providing 
valuable insight into the intricate connections between gut microbiome and human health. Under the balanced 
data, while the multinomial logit outperforms the RFSLDA in the test data, the RFSLDA performs reasonably 
well on the test data in comparison to neural network, XGBoost and SVM models.

The present study has some limitations. First, despite showing a significant relationship between gut micro-
biome profiles and health status, our model misclassifies 25% of healthy people as infected or stressed. Although 
we acknowledge this shortcoming, since the model is able to detect 4 out of 6 infected subjects correctly, we are 
willing to accommodate these false negatives. Moreover, since fuzzy labels are considered to represent the true 
observed health status of subjects, it could be possible for them to self-report themselves as healthy when they 
are not. Thus, it is imperative to investigate these misclassifications more closely in order to gain a deeper under-
standing of their health condition. Future research can also further investigate the causal relationship between 
the gut microbiome and human health using a supervised topic modeling approach. Our RFSLDA approach can 
also be extended to a longitudinal data setup, where subjects visit the facility at different times.

Data availability
Raw data included in this study were provided by the Jackson Laboratory in Farmington, CT. The original study 
is a part of the NIH Human Microbiome 2 project, see https:// portal. hmpda cc. org.

Received: 25 November 2023; Accepted: 13 April 2024

References
 1. Cho Ilseung, B. M. J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).
 2. Lloyd-Price Jason, H. C. & Galeb, Abu-Ali. The healthy human microbiome. Genome Med. 8, 1–11 (2016).
 3. Topçuoğlu, B. D. et al. A framework for effective application of machine learning to microbiome-based classification problems. 

MBio 11, 10–1128. https:// doi. org/ 10. 1128/ mBio. 00434- 20 (2020).
 4. Marcos-Zambrano, L. J. et al. Applications of machine learning in human microbiome studies: A review on feature selection, 

biomarker identification, disease prediction and treatment. Front. Microbiol.https:// doi. org/ 10. 3389/ fmicb. 2021. 634511 (2021).
 5. Gupta, V. K. et al. A predictive index for health status using species-level gut microbiome profiling. Nat. Commun. 11, 4635 (2020).
 6. Pflughoeft, K. J. & Versalovic, J. Human microbiome in health and disease. Annu. Rev. Pathol. 7, 99–122 (2012).
 7. Berg, G. et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 8, 1–22 (2020).
 8. Lee, Y., Cappellato, M. & Di Camillo, B. Machine learning-based feature selection to search stable microbial biomarkers: Applica-

tion to inflammatory bowel disease. GigaScience 12, giad083 (2023).
 9. Chen, W.-P. et al. Composition analysis and feature selection of the oral microbiota associated with periodontal disease. BioMed 

Res. Int.https:// doi. org/ 10. 1155/ 2018/ 31306 07 (2018).
 10. Leske, M., Bottacini, F., Afli, H. & Andrade, B. G. BiGAMi: Bi-objective genetic algorithm fitness function for feature selection on 

microbiome datasets. Methods Protoc. 5, 42 (2022).
 11. Deek, R. A. & Li, H. A zero-inflated latent Dirichlet allocation model for microbiome studies. Front. Genet. 11, 602594 (2021).
 12. LeBlanc, P. & Ma, L. Microbiome subcommunity learning with logistic-tree normal latent Dirichlet allocation. Biometrics 79, 

2321–2332 (2023).
 13. Zhou, W. et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 569, 663–671 (2019).
 14. Zhang, Y., Ravishanker, N., Ivan, J. & Mamun, S. An application of the Tau-Path method in highway safety. J. Indian Soc. Probab. 

Stat. 20, 117–139 (2018).
 15. Yu, L., Verducci, J. S. & Blower, P. E. The Tau-Path test for monotone association in an unspecified subpopulation: Application to 

chemogenomic data mining. Stat. Methodol. 8, 97–111. https:// doi. org/ 10. 1016/j. stamet. 2010. 01. 006 (2011).
 16. Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003).
 17. Grün, B. & Hornik, K. topicmodels: An R package for fitting topic models. J. Stat. Softw. 40, 1–30. https:// doi. org/ 10. 18637/ jss. 

v040. i13 (2011).
 18. Saha, S., Rajasekaran, S. & Ramprasad, R. Novel randomized feature selection algorithms. Int. J. Found. Comput. Sci. 26, 321–341 

(2015).
 19. Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).
 20. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

https://portal.hmpdacc.org
https://doi.org/10.1128/mBio.00434-20
https://doi.org/10.3389/fmicb.2021.634511
https://doi.org/10.1155/2018/3130607
https://doi.org/10.1016/j.stamet.2010.01.006
https://doi.org/10.18637/jss.v040.i13
https://doi.org/10.18637/jss.v040.i13


10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8855  | https://doi.org/10.1038/s41598-024-59682-4

www.nature.com/scientificreports/

 21. McCullagh, P. Generalized Linear Models (Routledge, 2019).
 22. James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).
 23. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining 785–794 (2016).
 24. Ripley, B., Venables, W. & Ripley, M. B. Package ‘nnet’. R package version 7, 700 (2016).
 25. Meyer, D. & Wien, F. Support vector machines. R News 1, 23–26 (2001).
 26. Günther, F. & Fritsch, S. Neuralnet: Training of neural networks. R J. 2, 30 (2010).
 27. Agrawal, A., Viktor, H. L. & Paquet, E. SCUT: Multi-class imbalanced data classification using smote and cluster-based under-

sampling. In 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management 
(IC3k), Vol. 1 226–234 (IEEE, 2015).

Author contributions
N.P., N.R., S.R., and G.W. wrote the main manuscript text and conducted the formal analysis. G.W. and D.T. 
curated the data. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 59682-4.

Correspondence and requests for materials should be addressed to N.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-59682-4
https://doi.org/10.1038/s41598-024-59682-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Randomized feature selection based semi-supervised latent Dirichlet allocation for microbiome analysis
	Data description
	Randomized feature selection based latent Dirichlet allocation
	Unsupervised latent Dirichlet allocation
	Semi-supervised latent Dirichlet allocation
	RFSLDA algorithm

	Interpreting results from the RFSLDA algorithm
	Optimal bacteria types by health status levels
	 Within group similarity of subjects by health status

	Comparison to other supervised learning methods
	Optimal bacteria types after data balancing
	Discussion and conclusions
	References


