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Performance and robustness 
of small molecule retention time 
prediction with molecular graph 
neural networks in industrial drug 
discovery campaigns
Daniel Vik *, David Pii , Chirag Mudaliar , Mads Nørregaard‑Madsen  & 
Aleksejs Kontijevskis 

This study explores how machine‑learning can be used to predict chromatographic retention 
times (RT) for the analysis of small molecules, with the objective of identifying a machine‑learning 
framework with the robustness required to support a chemical synthesis production platform. We used 
internally generated data from high‑throughput parallel synthesis in context of pharmaceutical drug 
discovery projects. We tested machine‑learning models from the following frameworks: XGBoost, 
ChemProp, and DeepChem, using a dataset of 7552 small molecules. Our findings show that two 
specific models, AttentiveFP and ChemProp, performed better than XGBoost and a regular neural 
network in predicting RT accurately. We also assessed how well these models performed over time and 
found that molecular graph neural networks consistently gave accurate predictions for new chemical 
series. In addition, when we applied ChemProp on the publicly available METLIN SMRT dataset, 
it performed impressively with an average error of 38.70 s. These results highlight the efficacy of 
molecular graph neural networks, especially ChemProp, in diverse RT prediction scenarios, thereby 
enhancing the efficiency of chromatographic analysis.
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Abbreviations
LC  Liquid chromatography
RT  Retention time
MAE  Mean absolute error
RMSE  Root mean square error
sd  Standard deviation
TPE  Tree-Parzen estimator
ECFP4  Extended connectivity fingerprints, radius 2
FCNN  Fully connected neural network

Chromatographic techniques play a pivotal role in chemical analysis, enabling the separation and identification 
of compounds within complex mixtures. One critical parameter in chromatography is the retention time (RT). 
Accurate prediction of small molecule RT can greatly expedite compound identification and data interpretation 
in applications such as metabolomics, chemical quality control, and beyond.

Parallel organic synthesis of small molecules has in recent years become an integral part of industry-scale 
drug discovery. Particularly, robust nanoscale high-throughput hit resynthesis supporting large-scale screening 
technologies such as DNA-encoded library screening. Such small-scale platforms inherently rely on starting 
material in small quantities (typically nmol range), thus yielding nanoscale amounts of compound of interest. 
To obtain discrete compounds for biological assaying, these are isolated through preparative reverse-phase ultra-
high performance liquid chromatography. Improved purification outcomes can be attempted by pre-purification 
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analysis of compounds through the concept of gradient scouting runs. During scout runs, crude material is 
sacrificed in order to identify optimal gradient conditions for compound separation. However, in a small-scale 
parallel chemistry setting – producing minute amounts of synthetic small molecules in the order of thousands 
– the time and material constraints disfavor such gradient scouting runs. Accurate predictions of small molecule 
RT would enable the use of in silico analytical scouting runs to select optimal compound-specific purification 
methods and gradients. Such achievement has great implications on preparative liquid chromatography efforts, 
benefitting especially: (1) Conserving product material, as physical chromatography scout runs can be omitted; 
(2) Shorter, focused separation runs thereby reducing instrument cycle-time, and solvent consumption; (3) Better 
separation of isomeric compounds (e.g., diastereomers and regioisomers).

We here report the examination of machine-learning (ML) models to predict RT, aiming to enhance the 
efficiency and accuracy of chromatographic analysis, specifically in the context of a high-throughput parallel 
synthesis workflow employed in industrial-scale drug discovery projects. Importantly, we are not providing a 
comprehensive review or exhaustive benchmark of recent ML methods. Rather, we are examining the application 
of several popular modelling frameworks in an industry setting, where reliability and robustness of the models are 
all-important – both in terms of predictive performance, as well as model framework, and associated codebase. 
As the number of reports on innovative and unique model architectures increases (e.g. transformer based 
models)1,2 our focus remains on investigating the time-dependent robustness of models within three firmly 
established frameworks:  XGBoost3,  ChemProp4–6, and  DeepChem7. We examine these frameworks in the context 
of the public METLIN SMRT  dataset8, as well as a proprietary dataset of 7552 small molecule compounds from 
our parallel synthesis platform. Critically, the proprietary dataset enables the unique examination of model 
performance decay over time, closely mirroring the changing chemistries of industrial drug discovery campaigns.

Results
Our examination is based on 7552 compounds which represent a diverse set of chemical series accumulated 
over the course of several years and drug discovery campaigns. This dataset has distinct properties compared 
to the public benchmark dataset, METLIN SMRT (Fig. 1), which is a milestone in RT prediction that has fueled 
improvements in solving the RT prediction  task8–13.

While the importance of large public datasets cannot be understated, it is important to recognize that such 
datasets have implicit biases and limitations which can lead to poor transferability when models are later trained 
on non-standard  datasets14.

We trained a series of different models in combination with three sets of descriptors: extended connectivity 
fingerprints (ECFP), which is a set of binary substructure-based features representing the absence and presence 
of distinct chemical substructures in a molecule; a set of 200 RDKit descriptors (i.e. a wide range of calculated 
physicochemical properties) from the DeepChem python library, as well as a range of ChemAxon LogD at 
different pH values. Calculated LogD has been shown earlier to correlate well with  RT15,16. Four model types 
were examined: (1)  XGBoost3, gradient boosted trees; (2) AttentiveFP, a molecular graph neural network with 
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Figure 1.  Kernel density estimates visualizing the distribution of observations in the two datasets: proprietary 
Amgen dataset and the public METLIN SMRT dataset. Retention times and five calculated descriptors are 
shown to exemplify the dissimilarity between the two datasets.
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an attention-mechanism17; (3) a fully connected neural network (FCNN); and (4) ChemProp, a molecular graph 
neural network based on directed message-passing4. XGBoost and ChemProp were each combined with the 
three descriptor sets (ECFP4, RDKit descriptors, and LogDs). AttentiveFP relies solely on the molecular graph 
representation only and is not able to take advantage of additional descriptors. In addition, we included a FCNN 
as it was applied to the METLIN SMRT dataset in the original report by Domingo-Almenara et al.8 Model 
evaluation was based on fivefold cross validation with hyperparameter optimization is reported in Tables 1 
and 2. The molecular graph neural network models (AttentiveFP and ChemProp) outperformed XGBoost and 
the FCNN. The best performing model based on validation schema was ChemProp combined with RDKit 
descriptors.

Individual drug discovery campaigns typically navigate distinct chemical spaces, exploring chemical series 
based on hit-matter identified in various ways (e.g., DNA-encoded library screening). This can be a challenge for 
ML models as the historical data on which they are trained may differ substantially from the chemical space under 
current investigation. A model will have to generalize well to such uncharted chemical space to be practically 
useful for a new drug discovery campaign. To address this question regarding time-dependent performance 
decay, we next sought to examine model robustness by training models on data that had been split temporally 
(rather than by scaffold-splitting). To do this, we designed a new training regime for the models, where the 
data was split according to the time of acquisition. Data was sorted according to acquisition date and split in 
half, the earliest half (T0) was used for model training, while the latter half was split again in ten equal bundles 
(T1–T10) representing temporal shifts in the chemistry of interest – with decreasing chemical similarity from 
the training data (Fig. 2). This training regime closely mirrors the changing priorities and interests of ongoing 
drug discovery projects where new targets and new chemical series with different properties come into focus. 
Again, the molecular graph-based models (ChemProp and AttentiveFP) outperformed XGBoost and the FCNN 
(Fig. 3). In particular, ChemProp in combination with RDKit descriptors appear to be very robust over time 

Table 1.  General model performance. Models trained on Amgen data. Mean, median and standard deviation 
(sd) are based on fivefold cross validation. Scores are Mean Absolute Error (MAE) in seconds, Root Mean 
Square Error (RMSE) in seconds and  R2.

MAE RMSE R2

Mean Median sd Mean Median sd Mean Median sd

ChemProp_RDKit 6.05 6.13 0.23 9.46 9.49 0.45 0.95 0.95 0.01

ChemProp_LogD 6.48 6.48 0.27 10.87 10.78 0.49 0.93 0.93 0.01

ChemProp_ECFP4 7.16 7.13 0.27 10.6 10.64 0.26 0.93 0.93 0.00

AttentiveFP 9.84 9.56 1.34 13.19 12.9 1.55 0.89 0.9 0.02

FCNN_ECFP4 11.24 11.37 0.5 16.57 16.53 0.67 0.84 0.84 0.01

XGBoost_RDKit 12.27 12.22 0.32 17.35 17.21 0.35 0.82 0.82 0.01

FCNN_RDKit 13.61 13.66 0.14 18.16 18.1 0.09 0.80 0.80 0.00

XGBoost_ECFP4 13.68 13.59 0.14 19.84 19.9 0.18 0.76 0.76 0.00

XGBoost_LogD 15.19 15.21 0.22 20.34 20.3 0.28 0.75 0.75 0.01

FCNN_LogD 16.57 16.26 0.66 21.67 21.22 0.85 0.72 0.73 0.02

Table 2.  Statistical Post-Hoc test, multiple comparisons of RT prediction models. Bonferroni corrected 
p-values from Conover’s test for pairwise dissimilarity between models based on Mean Absolute Error (MAE) 
scores from each cross-validation fold (n = 5). Prior to the post-hoc test a non-parametric Friedmans test was 
performed across all models (uncorrected p-value: 0.000014).

AttentiveFP
ChemProp_
ECFP4

ChemProp_
LogD

ChemProp_
RDKit FCNN_ECFP4 FCNN_LogD FCNN_RDKit

XGBoost_
ECFP4 XGBoost_LogD

AttentiveFP

ChemProp_
ECFP4 0.018

ChemProp_
LogD  < 0.001 0.081

ChemProp_
RDKit  < 0.001  < 0.001 0.628

FCNN_ECFP4 1  < 0.001  < 0.001  < 0.001

FCNN_LogD  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

FCNN_RDKit  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

XGBoost_ECFP4  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001 1

XGBoost_LogD  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001 0.116  < 0.001 0.003

XGBoost_RDKit  < 0.001  < 0.001  < 0.001  < 0.001 0.057  < 0.001 0.002  < 0.001  < 0.001
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(Fig. 3a,b). Thus, a RT model based on ChemProp with RDKit descriptors emerges as accurate and robust for 
solving RT prediction tasks.

Next, we decided to explore its applicability in a wider context by predicting RT for METLIN SMRT dataset. 
The METLIN SMRT dataset is notably different from our dataset, both in terms of chemical diversity and in 
terms of chromatographic system (Fig. 1). Figure 4 demonstrates the relationship between actual and predicted 
RT for the ChemProp model (with RDKit descriptors) trained on the METLIN SMRT dataset. The ChemProp 

Figure 2.  Tanimoto similarity of the nearest neighbor from the T0 training dataset to each compound of each 
time split (T1–T10). Tanimoto similarity calculated based on ECFP4-1024 fingerprints.
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Figure 3.  Performance of RT models trained on the T0 time split and evaluated on ten chronologically 
derived time splits (T1–T10). Panel (a–b) show the model performance at each timepoint with the time splits 
on x-axis and  R2 and MAE (seconds) shown on y-axis. Panel (c–d) boxplots comparing models aggregated 
across all timepoints. Models shown on x-axis, and with  R2 and MAE (seconds) on y-axis in panel (c) and (d), 
respectively.
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model could accurately predict RT with mean absolute error (MAE) of 38.7 s, with RMSE 67.50 s, and  R2 = 0.84, 
which is on par with the recently reported MAE scores of 34–39  s9–13. It is important to note that our evaluation 
was based only on the chromatographically retained compounds of the METLIN SMRT dataset.

Discussion
Several current studies have explored diverse ML models for RT prediction, showcasing the field’s dynamic 
 evolution8–13. Notably, Osipenko et al.18 reported the application of a message-passing neural network architecture 
to the RT prediction task and achieved comparable results on the METLIN SMRT dataset as well as a range 
of other public datasets. However, their approach differs significantly from ours, as ChemProp uses directed 
message-passing (i.e. explicitly considering the directionality of edges in molecular graphs during the message 
passing process, capturing the order and orientation of chemical bonds) which has been shown to positively 
affect  performance4. In addition, rather than applying simple random data splitting, we apply scaffold splitting. 
Scaffold-splitting is known to seemingly decrease the performance of the model; however, it generally leads to 
better generalizability of the model and reduces the risk of  overfitting4.

Recently, impressive results have been achieved by Kang et al.19 who constructed a graph convolutional neural 
network which in addition to an alternative message-passing procedure has a depth of no less than 16 layers. 
Both Osipenko et al.18 and Kang et al.19 do not apply additional features to their models but rely solely on the 
graph representations. This is similar to the AttentiveFP model examined in this  report17, which only relies on 
the molecular graph representation, rather than incorporating additional features such as ECFP4 fingerprints 
or physicochemical descriptors. In our report we show, however, that physicochemical descriptors (i.e. RDKit 
descriptors or calculated LogD descriptors) in combination with graph convolutional neural networks can 
provide accurate prediction results, as well as time-dependent robustness and generalizability.

The apparent success of graph-based methods with the RT prediction task likely reflects that graphs are 
effective representations of the 2D structure of molecules (as the graph structure enables effective capture 
and propagation of complex relationships and dependencies)4,6,20. This might also explain the positive effect 
of RDKit features (compared to ECFP4 features) as they include a range of calculated physicochemical properties 
(such as total polar surface area and fraction of  sp3-hybridization)21 which likely relate more directly with 
chromatographic retention compared to isolated substructures. RT prediction is a task where it can be assumed 
that similar molecules will have similar RT. This is in direct contrast with other molecular property prediction 
tasks which sometimes suffer from so-called activity-cliffs. Interestingly, Dablander et al.22 recently reported 
on modelling such activity-cliffs, and found that in certain cases substructure-based fingerprints (i.e. ECFP4 
fingerprints) outperform both physicochemical descriptors (i.e. RDKit features) and graph convolutional neural 
networks, reflecting that some tasks are more accurately modelled by the absence or presence of individual 
substructures – rather than global molecular properties. This underlines the importance of testing different types 
of molecular features when modelling different molecular properties.

In summary, this study explored ML models for predicting RT in chromatographic analysis, with a focus on 
high-throughput drug discovery. ChemProp, a molecular graph neural network, emerged as a robust choice for 
accurate RT prediction, both in our specialized dataset and the benchmark METLIN SMRT dataset. The study 
highlighted the adaptability of ChemProp to different chemical contexts, showing its efficacy in our proprietary 
parallel synthesis dataset and demonstrated its value in navigating evolving chemical spaces over time. Overall, 
our research underscores the potential of molecular graph neural networks in enhancing RT prediction accuracy 
and efficiency for diverse chemical analyses, propelling advancements in cheminformatics and compound 
identification.
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Figure 4.  ChemProp model with RDKit descriptors trained on the METLIN SMRT dataset. Scatterplot 
showing predicted RT (seconds) vs actual RT (seconds) for the retained compounds in the test split.
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Methods
RT acquisition by liquid chromatography mass spectrometry
Small molecules were analyzed by ultra-high performance liquid chromatography on an Agilent 1290 Infinity 
II LC System coupled to a time-of-flight mass spectrometer Agilent 6230B with a dual electrospray ion source 
and a Diode Array Detector (Agilent Technologies, Santa Clara, CA) using an ACQUITY Premier UPLC BEH 
C18 column (1.7 µm, 2.1 × 50 mm, Waters Corporation, Milford, MA). We used a mobile phase of solvent A 
(0.1% (v/v) formic acid in Milli-Q water) and solvent B (0.1% (v/v) formic acid in methanol) with a gradient 
consisting of 5% B for 0.2 min, 5 to 100% B in 3.8 min, 100% B for 0.5 min, 100 to 5% B in 0.1 min, and 5% B for 
0.9 min with a constant flow rate of 0.75 mL/min. Raw data was processed using Agilent MassHunter Qualitative 
Analysis (v. B.07.00). RT was defined as the centered peak apex of the target compound measured from the start 
of injection and verified through manual inspection.

Data preparation and splitting
Molecules containing stereocenters and common tautomeric motifs were preprocessed prior to model training. 
Stereoisomers with RT differences exceeding 10 s were removed, otherwise RT of stereoisomers was averaged, and 
a racemic mixture was used as a new data point. This yielded 7552 RT datapoints. A 10% scaffold split holdout 
served as the test set, while the remaining 90% was split further into validation/train dataset pairs using scaffold 
splitting for fivefold cross validation.

Time-dependent performance decay was analyzed using 20 equidistant splits based on date of compound 
synthesis. Splits 1–10 were merged into a training (T0) set, the rest remained as chronological test datasets 
(T1–T10). Tanimoto similarity between the sets was calculated using ECFP4 1024-bit fingerprints. Each 
compound from a T1–T10 bundle was compared to all compounds in T0 set to find its closest nearest neighbor 
with the highest Tanimoto similarity.

Molecular descriptors and representations
For model input we explored a series of molecular descriptors and representations:

• ECFP4 fingerprints (2048 bits, radius 2), DeepChem ‘CircularFingerprint’ featurizer.
• Normalized RDKit descriptors (200 descriptors, excluding BCUT2D), DeepChem ‘RDKitDescriptors’ 

featurizer.
• LogD values calculated at 16 pH levels (0.0–7.4 with 0.5 pH bins), ChemAxon cxcalc module.
• Molecular graph convolutions, DeepChem ‘MolGraphConvFeaturizer’.
• Directed-Message Passing Neural Network embeddings, ChemProp (default settings.)

Model training
Models were trained on a cluster with 20 CPUs, GPU (1 × Nvidia V100) and 128 GB RAM. Four model types 
were trained, each optimized with fivefold cross validation:

• AttentiveFP: Hyperparameter optimization for 100 epochs over 20 iterations using DeepChem 
implementation (v.2.7.1). Parameters included layers (1–6), graph feature size (30–300), dropout rate (0–0.5), 
learning rate (0.0001–0.01), and weight decay penalty (0.00001–0.01), optimized via Hyperopt and TPE 
 algorithm23,24.

• ChemProp: Hyperoptimization for 100 epochs over 20 iterations with default settings from ChemProp 
implementation (v.1.60).

• XGBoost: 20 iterations of 100 estimators using Hyperopt and TPE algorithm. Parameters searched: learning 
rate (0.01–0.3), max depth (3–10), subsample (0.7–1.0), gamma (0–1), column sample by tree (0.7–1.0), 
minimum child weight (1–10), and regularization coefficients alpha (1e−10–1.0) and lambda (1e−10–1.0), 
with early stopping.

• Fully connected Neural Network: Hyperparameter optimization for 100 epochs over 20 iterations using 
DeepChem implementation (MultitaskRegressor). Optimized parameters were dropout rate (0–0.5), 
learning rate (0.0001–0.01), and weight decay penalty (0.00001–0.01). Layers were fixed (1000, 500, 200, 
100), activation function was set as ReLU, weight decay penalty type was set as L2.

For statistical evaluation of model performance, a non-parametric Friedmans test was applied followed by 
Conover’s test for post-hoc analysis with Bonferroni  correction25,26.

Training ChemProp on METLIN SMRT data
The chemical structures from METLIN SMRT data were converted from InChI to SMILES strings using RDKit 
Chem module. Next, compounds with RT below 200 s were excluded as ‘non-retained’ compounds. This resulted 
in 77,901 RT datapoints for training. Model training (i.e., hyperparameter optimization and retraining) was 
performed in the same way as described above for ChemProp model training, however, fivefold cross validation 
was not performed.

Data availability
The METLIN SMRT data is available through the supporting information of Domingo-Almenara et al.8 and can 
be found here: https:// figsh are. com/ ndown loader/ files/ 18130 628. While we cannot openly share our proprietary 
dataset used in this publication due to intellectual property concerns, we are open to discussing partial disclosure 

https://figshare.com/ndownloader/files/18130628
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of the dataset on an individual case-by-case basis. Contact the corresponding author with enquiries. Code for 
reproducing the results is available here: https:// github. com/ danie lvik/ arc_ rtpred
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