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Meta‑optimization of resources 
on quantum computers
Ijaz Ahamed Mohammad 1, Matej Pivoluska 1 & Martin Plesch 1,2,3,4*

The current state of quantum computing is commonly described as the Noisy Intermediate‑Scale 
Quantum era. Available computers contain a few dozens of qubits and can perform a few dozens of 
operations before the inevitable noise erases all information encoded in the calculation. Even if the 
technology advances fast within the next years, any use of quantum computers will be limited to 
short and simple tasks, serving as subroutines of more complex classical procedures. Even for these 
applications the resource efficiency, measured in the number of quantum computer runs, will be a 
key parameter. Here we suggest a general meta‑optimization procedure for hybrid quantum‑classical 
algorithms that allows finding the optimal approach with limited quantum resources. This method 
optimizes the usage of resources of an existing method by testing its capabilities and setting the 
optimal resource utilization. We demonstrate this procedure on a specific example of variational 
quantum algorithm used to find the ground state energy of a hydrogen molecule.

Quantum computers, as a theoretical concept, have been suggested in the 1980’s independently by Paul  Benioff1 
and Yuri  Manin2. Later they have been popularized by Richard Feynman in his seminal work on simulating 
quantum physics with a quantum mechanical  computer3. In the following 30 years the potential of quantum 
computers to outperform classical computers in certain tasks was thoroughly  studied4 and many important quan-
tum algorithms have been found, among them an algorithm to factorize large numbers in polynomial  time5 and 
an algorithm for a fast search in unstructured  databases6. In recent years experimental quantum computing has 
achieved tremendous advances and thus the design of quantum algorithms has shifted from purely theoretical 
research towards more practical questions. One of the main new areas of research is the practical utilization of 
contemporary quantum processors, which are encumbered by noise that is reducing their reliability. These are 
called Noisy Intermediate-Scale Quantum (NISQ)  computers7 and in attempt to utilize them efficiently many 
so-called variational algorithms have been  designed8,9. Variational algorithms use both quantum and classical 
computational resources and their main idea is to design a parameterized quantum circuit and a measurement 
method associated to a minimization problem at hand. The parameters of the quantum circuit minimizing the 
value of the target function are then searched for using classical function minimization subroutines. Algorithms 
of this type can be designed for optimization problems in a plethora of real world use cases, ranging from 
 chemistry10,11, through artificial  intelligence12,13 to financial market  modelling14.

Such a combination of classical and quantum approaches leads to many interesting challenges. The accuracy 
and reliability of the final output is inevitably limited by a combination of different factors. First, the classical 
optimization algorithm is not guaranteed to converge to the true minimum. This is because many optimization 
algorithms are stochastic by nature and they use randomness at least during initialization to choose the starting 
point. In many scenarios, randomness is required in each iteration. This randomness ensures that the optimiza-
tion procedures can deal with a large family of different functions without getting stuck in a local minimum, but 
naturally also leads to stochasticity of the whole calculation, i.e. the algorithms are not guaranteed to succeed. 
Thus for obtaining a useful result with high probability, the procedure needs to be repeated several times.

Secondly, even in the noiseless quantum processor scenario the outcome of any useful quantum computation 
is stochastic. Typically, the outcome is a non-computational basis state (otherwise the computation would be clas-
sically efficiently simulable) and is characterized by frequencies of outcomes for different measurement settings. 
A single run of a quantum computer only provides a single snapshot of the state for one measurement setting. 
Any optimization procedure therefore inevitably comes with a trade-off between a more precise measurement 
on a single position in the parameter-space and less precise measurements of many positions. It is non-trivial to 
decide which of these two strategies leads to better results.
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Last, but not least, one cannot rely on any kind of error correcting procedures for NISQ computers. The clas-
sical procedure itself will have to account for the fact that any result of the quantum computer is influenced, on 
top of the statistical fluctuations due to the intrinsic quantum randomness, also by experimental errors. All these 
three complications suggest that the classical procedure will have to go significantly further than just utilizing 
known optimization methods. For any near-future hybrid algorithms the main limiting factor will be the quan-
tum part. Both from the time (queues) and financial (pay-per-shot) perspective, the efficiency of the algorithm 
will be measured by its ability to produce good results with as little utilization of quantum computers as possible. 
This generic statement can be simplified into a measure relating the reliability and precision of the result (the 
probability to get a result and how good the result is) to the number of utilizations of a quantum computer with 
a single measurement outcome (a shot). Simply speaking, the aim is to get the best possible result with a fixed 
budget counted in the number of shots (i.e., time or money).

Instead of suggesting a specific new technique on the classical level, we introduce a meta-optimization tech-
nique that can be utilized for a broad variety of classical-quantum scenarios. For any classical optimization 
procedure and connected quantum calculation the technique first samples the fluctuation of the results depend-
ing on the parameters, estimates this dependence and suggests the optimal setting. These will be expressed in 
the parameters of the classical and quantum part of the procedure and the optimal number of repetitions. We 
demonstrate this approach on a specific example on a Variational Quantum Eigensolver (VQE)15 determin-
ing the ground energy of Hydrogen molecule in combination with the Simultaneous Perturbation Stochastic 
Approximation (SPSA)16 classical minimization procedure. It turns out that for reasonable parameters, namely 
the number of available quantum shots counting in a few millions and the expected accuracy of the energy in 
small multiples of chemical precision, the optimal number of repetitions of the whole procedure is less than a 
dozen and the probability of obtaining the result within the expected precision ranges from 10 % to almost 90 
%. This shows that one needs to be very careful by choosing the exact strategy during the optimization process.

The paper is organized as follows. In the rest of this chapter we introduce the VQE and SPSA. In the Results 
section, we describe the procedure in general terms, apply it to the specific Hydrogen molecule scenario and 
present the results. In Methods we provide details on the implementation of the quantum part of the algorithm 
on IBM quantum machines.

Variational Quantum Eigensolver
In this paper we study variational quantum eigensolver, introduced by Peruzzo et al.15, and subsequently thor-
oughly studied by many authors (see review  papers8,9,17 on the topic of VQE and the references therein). VQE 
is used to calculate the ground state energy ( E0 ) of any Hamiltonian (H). It is based on quantum physics’ vari-
ational principle, which asserts that any Hamiltonian’s expectation with regard to any state ( |ψ� ) is higher than 
the ground state energy:

Classical techniques become impractical to detect the ground energies of the Hamiltonian as the Hamiltonian 
grows in size. VQE is a hybrid method that circumvents this issue by combining quantum processors with clas-
sical optimizers. The working of a VQE algorithm is as follows:

• Preparation of a trial state ( |ψi� ) from an initial state ( |ψ0� ) (typically a zero state) by introducing some 
parameters ( θj ), which can be updated to change the trial state in each iteration;

• Measurement of the state (possibly in several bases defined by the Hamiltonian), obtaining frequencies 
approximating probabilities. In this stage the trade-off is being made between a quick/cheap imprecise value 
and slower/more expensive precise value;

• Evaluation of the cost function (energy Ei ) based on the probabilities approximated in the previous step;
• Using this evaluation as an input to the classical optimizer. This checks for convergence, and if the conver-

gence criteria are not met, it modifies the parameters, resulting in a new iteration. This procedure is repeated 
until the convergence criteria are met.

The VQE algorithm’s operation is depicted in Fig. 1.

Classical optimizers
Previous research in modifying the VQE algorithm to be more resource efficient approached the problem by tai-
loring the classical optimization part of the algorithm to economically distribute the shot budget among various 
required calculations. This is a very fruitful approach and many significant advances have been achieved, involv-
ing both gradient-based and non-gradient based algorithms. One example of such an algorithm is individual 
Coupled Adaptive Number of Shots (iCANS)18. The iCANS algorithm distributes the shot budget available for 
each iteration across all parameters in order to find partial derivatives in all directions. For each direction the 
amount of shots used to evaluate the gradient in each iteration i is inversely proportional to the square of the 
gradient in this direction in iteration i − 1 . In such a way, low gradient directions in each iteration are evaluated 
with larger precision, which is necessary for successful convergence. Another approach is to distribute the shot 
budget for each iteration unevenly across different Hamiltonian terms. This has been explored in conjunction 
with several optimization algorithms, with the best performance observed with iCANS algorithm resulting 
in an algorithm called Random Operator Sampling for Adaptive Learning with Individual Number of shots 
(Rosalin)19. Last but not least, a more general discussion about evaluating only a randomly chosen subset of all 

(1)�ψ |H|ψ� ≥ E0.
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possible Hamiltonian terms in each iteration, with conjunction with evaluating gradients only in a randomly 
chosen subset of directions (so-called stochastic gradient descent) can be found  in20.

In the commonly used stochastic gradient descent algorithms at each iteration, the partial derivative is 
evaluated by perturbing each parameter along and opposite to its direction requiring two function evaluations 
(alternatively in VQE one can use the parameter shift  rule21). This can be computationally expensive for functions 
with many parameters, which suggests that we will need 2pt functions evaluations in total, where p is the length 
of the parameter vector θ and t is the total number of iterations used in optimization. In contrast, in Simultane-
ous Perturbation Stochastic Approximation (SPSA)16, the gradient in each iteration is estimated by simultane-
ously perturbing all parameters θ randomly with only two function evaluations required for the whole gradient. 
Thereby resulting in 2t′ function evaluations in total where t ′ is the number of iterations SPSA took to converge. 
The second advantage of SPSA is its stochasticity, which makes it noise-resistant. Because each parameter is 
already randomly perturbed, subsequent noise perturbations are less likely to disrupt the optimization process.

Costs of final estimation
While rather counter-intuitive, advanced optimization techniques are able to find the parameters of the optimum 
even if very few shots are used per each measurement. In other words, one can find the target even if almost blind, 
with one reservation – the resulting value of the cost function is very imprecise. In many cases this issue is not 
addressed at all and the final value is calculated by classical  means18,19,22. This, however, is a simplification – clas-
sical recalculation of the energies becomes infeasible in instances where the quantum computer is really useful. 
Thus, if one wants to have a complete solution, it turns out that at the end of the calculation one needs to test the 
resulting state for the precise value of the cost function, investing a large number of shots – as we will show in the 
result section, this can be comparable to the whole optimization procedure budget. This further complicates the 
optimization – not only the number of repetitions of the procedure needs to be optimized, but also the distribu-
tion of the shots between the optimization procedure itself and the final estimation of the cost function value.

H
2
 molecule with SPSA optimizer

We will apply the suggested method onto a specific example of Variational Quantum Eigensolver seeking the 
ground energy of an H2 molecule. First, one needs to transform the physical Hamiltonian of the system in 
question expressed in creation and annihilation operators into a Hamiltonian suitable for quantum computers 
expressed in Pauli operators, called qubit Hamiltonian. Here we considered a qubit Hamiltonian of H2 molecule 
with 2-qubits with the distance between the atoms set as 0.725 Å of the form

where X, Z are the usual notations of the Pauli matrices and the coefficients c0 , c1 , c2 , c3 are specified as − 1.05016, 
0.40421, 0.01135, and 0.18038  respectively23. Even for such a simple physical system and form of the Hamiltonian 
a significant cost is required to get the desired results from conventional use of the VQE algorithm. We will show 
by using SPSA method how our optimization can help to achieve better results.

Results
In the most general terms, we suggest a meta optimization procedure with following inputs:

(2)H = c0(I ⊗ I)+ c1(Z ⊗ I)+ c1(I ⊗ Z)+ c2(Z ⊗ Z)+ c3(X ⊗ X),

Figure 1.  The VQE algorithm is divided into two parts. First, the ansatz ( |ψi� ) is prepared from an initial state 
( |ψ0� ) with the help of some parameterized circuit which can viewed as the action of a parameterized unitary 
operator ( U(θi) ). The state is later measured and by using the counts of the outcomes of the measurement, 
the cost function is evaluated. If the convergence of the optimizer isn’t achieved, this process is repeated until 
desired result with good convergence is obtained in the end.
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• An optimization technique parameterized solely by the number of shots used per the whole run;
• Final result estimation method parameterized by its costs measured in the number of shots;
• Shot budget, i.e. the total number of shots available;
• Desired accuracy, i.e. how far away from the exact value of the cost function in optimum the result is con-

sidered as successful.

Regarding the last condition it is important to stress that the success of the optimization is evaluated in terms of 
the cost function and not the parameters. Finding a local minimum far away from the global one (e.g. an excited 
state), which has the value of cost function within the desired accuracy (e.g. if the accuracy is set as low as the 
first energy gap) is taken as a successful result.

The output of the meta optimization consists of

• Optimal number of repetitions of the optimization;
• Number of shots to be used per one optimization run;
• Number of shots to be used per final estimation;
• Probability of success.

Using these results, one has to take the steps as suggested, i.e., run the optimization method desired number of 
times, perform the final estimation of all results and select the best one based on this estimation (this might not 
be the best result according to the optimization method itself, due to a larger variance of energy calculations 
used during the run). The probability of success expresses the likelihood we get the result (at least) as good as 
we wanted. For large budget of shots, resulting into reliable final estimations, we will know how good the result 
is with high probability after obtaining it. This is not completely the case for small budgets, resulting into unreli-
able final estimation – here we might have a good result even if not estimated so, or overestimate the quality of 
a bad result.

Alternatively, one can re-formulate the procedure by exchanging the Success probability and Accuracy. If we 
state the expected probability to get a result, the meta-optimization procedure will suggest the parameters to 
obtain the best result (highest accuracy) with at least the given probability.

The cost of final estimation
While the input-output relation for optimization techniques are complex, the final estimation precision is in 
a simple mathematical relationship with the number of shots used. In VQAs, the objective function, which is 
typically an expectation of summations of different quantum operators with different weights, is calculated from 
the probability estimates from the quantum measurements. Such a quantum operator is of the form F = 

∑

i Ai , 
with Ai denoting a collection of simultaneously-measurable quantum operators with Ai =

∑

j cjOj , where cj 
and Oj denote coefficients and Pauli words, respectively. The cost of a final estimate (S) for a desired accuracy 
of ε is given  by24

The authors of the  article25 have shown that the variance can be computed as

where Cov(·) represents the covariance between the Pauli words. As discussed in the  article26, from the Cauchy-
Schawrtz inequality the covariance between two Pauli words is upper bounded as

As the magnitude of the covariance is upper bounded as shown in Eq. 5, one can consider the average from a 
random distribution of the covariance of cross terms to be zero. Using this and coupling it with the fact that 
the variance of a Pauli word is upper bounded by 1, the number of shots required to obtain the estimate of the 
objective function with accuracy ε is given by

Example of H2 molecule
Measuring the eigenstate of our Hamiltonian’s ground state energy allows us to examine the impact of the sta-
tistical disturbance brought on by measurements. Given that the Hamiltonian matrix in our example is small, 
we performed a classical calculation to identify the Hamiltonian’s corresponding eigenvalues and eigenstates. 
We discovered that the energy of the ground state for our Hamiltonian was 1.8671 Ha. We then measured the 
quantum state with various numbers of shots, initialized it as the eigenstate corresponding to the ground state 
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(
∑

i

√
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energy in qiskit, and repeated the experiment 10, 000 times. We select various desirable ranges surrounding the 
true value, ranging from chemical precision ( ±0.0015 Ha) to 5 times the chemical precision range ( ±0.0075 Ha).

For chemical precision, the variation of energy with different final estimation is shown in Fig. 2. To better 
comprehend how the theoretical estimate mentioned in the subsection “The cost of final estimation” matches 
with the empirical results shown in Fig. 2, we sorted the energy data points, discarded extreme points based on 
the confidence level selected, and then compared them to the theoretical estimate as shown in Eq. (6), which 
corresponds to a confidence level of 68%. This is illustrated in Fig. 3.

It is worth to mention here that setting the number of shots in such a way that the final estimation will achieve 
the accuracy as desired might not be optimal in some scenarios. Naturally, the first and obvious one is when the 
total budget is comparable to the number of shots needed for estimation. Here one would significantly decrease 
the budget for the optimization itself and thus decrease the probability of obtaining a good result. In other 

Figure 2.  This boxplot represents 10000 energy values for different values of final estimation. The circle 
represents the mean of the distribution and the yellow line represents the median. It can be clearly seen here that 
even with the right eigenstate, one requires a large number of shots for the final estimation to get most of our 
results within chemical precision ( ±0.0015 Ha).

Figure 3.  This plot shows a better comparison of theoretical and empirical estimates. Em90 represents the end 
point of energy distribution after discarding extreme points so that 90% of the energies are within this range. 
Similarly with Em68 and Em99 . The theoretical estimate is based on the upper bound of the variance and should 
correspond to Em68 , however one can see that the bound is rather conservative and close to about 95%.
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words, we would know when we get the good result, but we never get it. In such a case it is better to search a bit 
more and risk a failure while increasing the probability of success. The other scenario is when the optimization 
procedure by itself is unreliable, thus resulting in a bad result in many cases even for a high-precision quantum 
subroutine. Here one will use a lot of repetitions and will have to reduce the final estimation costs accordingly.

Benchmarking of the optimization method
To be able to estimate the capabilities of the optimization method to deal with the optimization task depending 
on the available budget of shots, we will have to sample it. It is important to stress here that we will not set any 
internal parameters while sampling, like number of iterations, starting number of samples or the way the pro-
cedure changes the number of shots per measurement. The only criterion here will be the total number of shots 
used n and the quality of the result measured in the probability to be within the desired precision.

We model the method by an exponential function characterized by a set of three parameters

where c is the “guessing” probability of success without any measurement (expected to be very close to zero for 
any realistic scenario), a+ c the probability of obtaining the desired result in the limit of infinite number of shots 
used (i.e. in the situation when the quantum subroutine would provide perfect outputs) and b is the parameter 
expressing how the enhancement of the result depends on the number of shots used.

To obtain such a parametrization, one needs to perform sampling of the procedure. This means running it 
repeatedly with different number of shots and evaluating the results. While the true minimum is not known, we 
expect the obtained results to have a mean around the physical value, i.e. there is no dominant local minima the 
optimization technique ends in. It is also important to stress that while the parameters a, b and c are dependent 
on the desired precision (the probability of success depends on the desired precision), all these values can be 
calculated from the same sampling data.

Showcase of fitting on H2 molecule
To evaluate our method of meta-optimization technique, we used 10000 data points of energies to estimate 
probabilities of success for the energy to lie within the desired accuracy (expressed in multiples of the chemical 
precision (ChP)) by varying the shots per iteration, while fixing the maxiter (maximum number of iterations) 
to 100. Results are depicted for different values of desired accuracy in Fig. 4.

In Table 1 we tabulate the resulting fit parameters for different values of accuracy. As one can see, the c value is 
vanishing as expected, suggesting that random guessing of the state can hardly lead to a reasonable result. Value 
of b expresses the inversed typical number of shots needed to start obtaining reasonable results. This ranges from 
about 40000 for small accuracy to about 200000 for large accuracy, what is a very reasonable result.

The a value now expresses the limiting success probability of the optimization procedure. It ranges from 
about 30% to 60% depending on the desired accuracy, what might seem to be rather small. To validate this result 
independently, we did perform the same rounds of the optimization method, but using a state vector simulator 
instead of (simulation of) quantum computer, which virtually simulates infinite number of shots used. Results 
differ only by a few % compared to the fit parameters proving good extrapolation capabilities of the fit function.

(7)ps = a(1− e−bn)+ c,

Figure 4.  This is the pictorial representation of the probability of success with respect to shots per experiment 
which is shots per iteration × 100 (iterations). Differently colored lines represent different desired precision in 
multiples of chemical precission ( ChP = 0.0015 Ha).
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Repetitions
Instead of investing the whole available budget into a single optimization that, as we have seen in the previous 
section, is likely to fail, it makes sense to repeat the procedure more times. On the other hand, very few shots 
have extremely low probability to succeed, so one might expect that there shall exist an optimum of number of 
repetitions of the whole procedure.

If we repeat the experiment r number of times, then the probability that at least one of the energies lies within 
desired range is given by

where B represents the total shot budget and m represents the number of shots used for final estimation of the 
value of the observable. Note that ps is also a function of n. To get the best possible results, we have to maximize 
this total probability function

Instead of maximizing the above expression, one can minimize the following expression to locate the point of 
maxima

Once the optimal n is found, one can calculate the number of repetitions (r) from B, m and n and repeat the 
experiment r number of times to get the best possible outcomes.

Reliability
Repeating the experiment r times, we get r different results. Then we have to select one of them that shall be 
presented as the final outcome of the meta-optimization technique. The only reasonable way to do that is to 
select the result that has the lowest energy stemming from the final estimation procedure. But while for large 
number of shots used for final estimation the outcoming result will be highly reliable, this is not the case for 
small budget anymore. In particular, if the precision of the final estimation will be comparable or lower than the 
desired precision defined for the meta-optimization technique, the single result provided as the outcome might 
not be the correct one. In other words, even if the optimization procedure in one of the r runs did find a “good” 
result, the insufficient final estimation was not able to identify it correctly.

To account for this aspect, we define a quantity called “Reliable probability”. This is obtained by modifying 
the probability described in Eq. (8) to incorporate the reliability of the energy value by multiplying it with the 
probability that the final estimate is good enough. We first calculate the accuracy which can be obtained with a 
given budget for final estimation E from the Eq. (6)

As this ε corresponds to standard error, it lies at one σ (standard deviation) away from the mean of our energy 
distribution. Thus we can then represent the desired precision (d) in terms of σ to get the Z-score (the number 
of standard deviations the value is above or below the mean value)

and convert it into the corresponding confidence level of the value to lie within the desired range ( γ ). Finally 
the probability (P) defined in Eq. (8) is multiplied with this confidence level to get the reliable probability. In 
our case we define the final reliable probability as a multiplication of the maximal probability defined in Eq. (9) 
with the reliability factor γ

(8)P = 1− (1− ps)
r = 1− (1− ps)

B/n+m
,

(9)Pmax = max
n

(1− (1− ps)
r).

(10)min
n

(1− ps)
B/n+m ≡ min

n
(1− ps)

1/n+m
.

(11)
ε =

√

√

√

√

(
∑

i

√

∑

j c
2
ij)
)2

m
.

(12)Z =
d

σ
,

Table 1.  This table shows the different values of fit parameters of the function a(1− e
−bn)+ c corresponding 

to different accuracy of energies, measured in chemical precision (ChP = 0.0015 Ha). The last column (a)sv 
represents values obtained by using a state vector simulator instead of quantum measurements at each iteration 
in the optimization process. As one can see they correspond well to the obtain fitting parameters a, proving 
good extrapolation capabilities of the fit function.

Precision (Hartree) a b c asv

ChP 0.3416 3.60e−06 9.56e−11 0.3119

2 × ChP 0.4185 9.35e−06 9.58e−18 0.4461

3 × ChP 0.4995 1.46e−05 3.71e−17 0.5313

4 × ChP 0.5629 2.01e−05 1.8e−26 0.5913

5 × ChP 0.613 2.56e−05 2.86e−17 0.6442
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Results for H
2
 molecule

To showcase the working procedure of our technique, we provide a pictorial representation of reliable prob-
abilities with varying repetitions and final estimation costs for different accuracy and budget (maximum number 
of shots that can be spent) in Fig. 5. Here it is clearly visible that for a given budget there exists a clear optimum 
both for the number of repetitions of the classical optimizer and for the value of final evaluation. This can be 
understood as follows.

If the final evaluation cost is too large, not enough shots remain for the optimization itself. Thus the final result 
is evaluated correctly, but is likely out of the desired precision. On the other hand, if the final evaluation costs 
are too low, one of the results might be good, but we will likely choose the wrong one. Similarly, if the number 
of repetitions is too low, we might fail to get a good results simply due to the imperfectness of the underlying 
procedure itself. On the other hand, if the number of repetitions is too high, the budget per repetition is small 
and does not allow for obtaining a good result with reasonable probability.

In the graph presented in Fig. 6 we show the final results of optimal reliable probability for a wide range of 
parameters. In essence, it aggregates the optima – red asterisks depicted in graphs Fig. 5 – for different input 
parameters. This graph showcases the capabilities of the meta optimization technique – for a given budget of 
shots and desired precision, it gives us the information on the maximum probability of obtaining the desired 
result. For each point in the graph, though not depicted, we also obtain the information on how to achieve this 
probability, namely the optimal number of repetitions to be performed and the optimal distribution of shots 
between the optimization itself and the final evaluation.

Discussion
In this paper we have presented a meta-optimization technique that addresses two major obstacles in using 
NISQ quantum computers for variational tasks. Our goal is an efficient use of quantum devices by optimizing 
the number of times they are used during the run of the algorithm.

Existing optimization techniques deal with two major issues. First, even if they are able to identify the opti-
mal state relatively well, the result of the cost function is determined only with a very low accuracy. This is often 
circumvented by evaluating it in the end using classical  means18,19,22, which is not feasible in scenarios with mod-
erately large inputs. We address this problem by introducing the final evaluation step and optimizing the ratio 
of quantum resources used for comparison of the obtained results in multiple runs to the cost of optimization 
itself. It turns out that it might be far from negligible, i.e. to get a reliable result, one has to invest a good portion 
of quantum resources for its final evaluation.

The other problem of existing techniques is that they are stochastic by their nature. This leads to the inevitable 
fact that in some cases it returns an incorrect result even if the quantum part works perfectly, i.e. with no noise 
and statistical deviations. Thus it makes sense to mitigate the risk of investing all quantum resources at hand 

(13)Preliable = γPmax .

Figure 5.  These plots represent the reliable probabilities to obtain a result with energy value within the desired 
range of accuracy for different values of final estimation and repetitions of the VQE for a fixed shot budget. The 
configuration which leads to maximum reliable probability is marked with a red asterisk.
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into a single calculation. We presented a technique to benchmark the underlying optimization procedure and 
decide about the optimal number of repetitions. Interestingly, it turns out that this number is non-trivial (i.e. 
not one) for realistic scenarios.

While we deployed our technique on a specific example of SPSA optimization on a hydrogen molecule, it can 
be applied on a very broad variety of variational quantum algorithms that are currently of a large interest to the 
quantum computation community. We believe that our meta-optimization can provide an easy to implement 
step towards practical use of quantum computers. While the method was tested only on a rather simple problem, 
we believe that the nature of the approach makes the method suggested robust against changes of the system 
in question, i.e. it shall behave in a similar way even if applied to a larger system involving more qubits. This is 
due to the fact that the existence of an optimum between investing “too little” or “too much” into a single try 
is obvious and the nature of the fitting function mimics the expected dependency between precision and cost.

Yet, the exact efficiency and precision of determining this optimum using the method as suggested on large 
systems forms a standalone project for future research. In particular, there exist a risk that for more complicated 
systems the determination of optimization function will turn out to be to “costly” in comparison with the gain 
of it, or, as in any other scenario, unforeseen complications may arise.

Methods
For the quantum subroutine, we have used Ry-Rz ansatz to prepare the state from an initial zero state. This state 
was then measured in both {|0�, |1�} and {|+�, |−�} (the eigenstates of Pauli X operator) basis to calculate the 
expectation value of the Hamiltonian. The procedure was defined by eight parameters θ [0] to θ [7] and circuits 
are shown in Fig. 7.

Data availability
Data and programs used to derive the results presented in this paper are available from the corresponding author 
upon reasonable request.
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