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Sand cat swarm optimization 
algorithm and its application 
integrating elite decentralization 
and crossbar strategy
Yancang Li 1,3, Qian Yu 1* & Zunfeng Du 2,3

Sand cat swarm optimization algorithm is a meta-heuristic algorithm created to replicate the hunting 
behavior observed by sand cats. The presented sand cat swarm optimization method (CWXSCSO) 
addresses the issues of low convergence precision and local optimality in the standard sand cat swarm 
optimization algorithm. It accomplished this through the utilization of elite decentralization and a 
crossbar approach. To begin with, a novel dynamic exponential factor is introduced. Furthermore, 
throughout the developmental phase, the approach of elite decentralization is incorporated to 
augment the capacity to transcend the confines of the local optimal. Ultimately, the crossover 
technique is employed to produce novel solutions and augment the algorithm’s capacity to emerge 
from local space. The techniques were evaluated by performing a comparison with 15 benchmark 
functions. The CWXSCSO algorithm was compared with six advanced upgraded algorithms using 
CEC2019 and CEC2021. Statistical analysis, convergence analysis, and complexity analysis use 
statistics for assessing it. The CWXSCSO is employed to verify its efficacy in solving engineering 
difficulties by handling six traditional engineering optimization problems. The results demonstrate 
that the upgraded sand cat swarm optimization algorithm exhibits higher global optimization 
capability and demonstrates proficiency in dealing with real-world optimization applications.

Keywords Sand cat swarm optimization algorithm, Dynamic exponential factor, Elite decentralization 
strategy, Crossbar strategy, Engineering application

The rapid development of industry and the evolving landscape have given rise to an assortment of engineering 
applications. Our objective is to enhance the efficiency of these technical challenges within a designated period. 
Each engineering application presents unique solutions, and it is evident that no singular optimization technique 
possesses the capability to effectively tackle all optimization challenges effectively. Hence, this proliferation of 
applications has introduced additional challenges to the field of optimization. Historically, optimization methods 
have been widely employed across a diverse range of applications, such as path  planning1,2, location  problem3, 
production shop  scheduling4,5, power generation  prediction6 and a multitude of additional issues. In the present 
era, as engineering issues become more intricate and challenging to simulate, it is crucial to prioritize accelerating 
the creation of superior optimization algorithms. Hence, the process of optimizing algorithms is still far.

Scholars have developed a range of optimization algorithms, drawing inspiration from biology, nature, and 
society. These optimization techniques have been refined and extensively employed to address diverse intricate 
engineering challenges. Optimization algorithms can be divided: swarm, evolutionary, physical, and human. 
Optimization algorithms for populations aim to replicate the social behavior observed in populations. Examples 
of optimization algorithms that replicate the predatory behavior of creatures include the whale optimization 
algorithm (WOA)7, the Harris Eagle algorithm (HHO)8, and the chimpanzee optimization algorithm (COA)9. 
Additionally, the Black tern algorithm (STOA)10 emulates the migratory and aggressive life patterns observed in 
black tern groups. Darwinian evolution inspires for evolutionary optimization techniques. One of the algorithms 
that falls within this category is the backtracking search optimization algorithm (BSA)11 and the differential 
evolution algorithm (DE)12. Physical optimization techniques are derived based on fundamental principles of 
physics. The principle of simulated annealing is based on the simulated annealing algorithm (SA)13. The proposed 
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technique, known as the gravitational search algorithm (GSA)14, draws inspiration from the law of gravitation. 
The method known as the black hole algorithm (BHBO)15 is derived from the inherent characteristics of black 
holes. The algorithms known as human optimization algorithms are derived from the study of human behavior. 
One instance of an optimization algorithm is the brainstorming optimization method (MSA)16, which utilizes of 
human behavior to address optimization problems. Another algorithm, Human Learning Optimization (HLO)17, 
originated from a simplified model of human learning. Optimization challenges possess a notable capacity to 
effectively address engineering problems.

With a growing variety of proposed optimization methods, numerous researchers have enhanced these 
algorithms. An enhanced self-adaptive beneficial factor-based SOS (SaISOS) with adaptive beneficial factors was 
proposed by Nama et al.18. The researcher incorporated a three-way mutualism phase into the model, along with 
the introduction of a random-weighted reflection coefficient and a novel control operator. In a sequence of tests, 
the enhanced algorithm demonstrates a significant superiority over its competitors. Nama et al.19 introduced a 
refined backtracking search technique known as GQR-BSA. The client updates the coordinate structure of BSA by 
implementing quasi-reflection, quantum Gaussian mutation, adaptive parameter execution, and leaping based on 
quasi-reflection. This permits the system to transition from the local optimal to the global optimal. In their study, 
Nama et al.20 presented an enhanced symbiosis algorithm known as I-SOS. The setting up of a balance between 
the core of exploration and activity is achieved by employing adjusted return factors, modified parasite stages, and 
search strategies that rely on random weights. The results of the benchmark function test demonstrate that the 
implementation of I-SOS translates to a boost in search performance. Nama et al.21 blended the SMA algorithm 
with the quasi-reflectomy-based learning mechanism (QRBL), resulting in the facilitation of population diversity 
early development, improved convergence, and elimination of local optimizations. Luo et al.22 proposed a multi-
objective balance optimizer slime mold algorithm (MOEOSMA), which uses dynamic coefficients, an elite filing 
mechanism, a crowding distance method and an equalization pool strategy to enhance the algorithm’s capability. 
The test findings illustrate MOEOSMA’s intense competition. Yin et al.23 introduced a multi-objective EOSMA 
(MOEOSMA). The equilibrium optimizer’s concentration update operator is applied. After optimizing the value 
using the greedy technique, the random difference mutation operator is added. MOEOSMA has a lower solution 
time and an improved convergence accuracy, according to the equivalent results.

Scholarly improvements to algorithms render them more suitable for complex engineering optimization 
issues, other than to be applicable to simple examples like trusses. Zhang et al.24 put forward a search algorithm 
for bald eagles based on bionic polar coordinates (PBES). To improve the algorithm, the initialization is modified, 
and parameters and polar coordinates are introduced. Upon conducting tests, it has been determined that the 
enhanced algorithm exhibits a favorable impact on the approximation of curves. With the goal to ascertain 
the active earth pressure of retaining walls supporting C-backfill, for instance, Nama et al.25 developed a novel 
improved backtracking search optimization algorithm (IBSA) based on adaptive control parameters. The findings 
demonstrated that it had a positive impact. Chakraborty et al.26 introduced an enhanced symbiotic search method 
called NMSOS. It proved that the algorithm improved on all outcomes and could use a multistage threshold 
method with varying thresholds to segment COVID-19 chest X-ray pictures. The original algorithm’s search 
capability is altered by integrating the development potential of SOS with the searching potential of SQI. This 
method establishes the shallow strip foundation’s seismic bearing capacity under pseudodynamic conditions 
and prepares it for numerical analysis.

In the current study, a novel swarm intelligence optimization algorithm is chosen. In 2022, Seyyedabbasi 
et al.27 presented the Sand Cat swarm optimization technique. The primary function of this program is to 
imitate the sand cat’s hunting habits. Because it’s hard to get food in the desert, sand cats choose to spend the 
day underground and hunt at night. The way the sand cat hunts is also really fascinating. They may detect prey 
moving underground because they are highly sensitive to sound frequencies and can hear sounds with low 
frequencies. The SCSO exhibits notable benefits in terms of enhanced mining capacity and reliable performance 
in addressing real-world challenges. Nevertheless, the weaknesses of SCSO are obvious. During the sophisticated 
phase of the SCSO algorithm, the individual sand cat has a tendency to become trapped in a local optima, 
resulting in lack of ability to identify a more favorable position.

Numerous researchers have conducted research with the objective of strengthening the comprehensive 
the ability of the SCSO algorithm. The authors Wu et al.28 provided a modified approach for tackling limited 
engineering optimization problems by introducing an improved sand cat swarm optimization problem. 
Attempting to boost the mobility of sand cats and improve their worldwide discovery ability, the researchers 
implemented the modified sand cat swarm optimization algorithm (MSCSO) with a loitering strategy. In an 
attempt to improve the overall performance of the algorithm and expedite convergence, a shot-based reverse 
learning method is incorporated. A power transformer defect diagnosis approach was proposed by Lu et al.29, 
which utilizes an improved sand Cat swarm optimization algorithm and a unit with a bidirectional gated 
cycle. The conventional sand Cat swarm algorithm was enhanced through the incorporation of logical chaotic 
mapping, a water wave dynamic component, adaptive weighting, and a gold sine approach. The superiority of 
ISCSO in terms of optimization precision and quickness of convergence has been demonstrated. As a result, a 
fault diagnosis technique utilizing L-Isomap and ISSO-BigRU has been created. The adaptive sand cat swarm 
optimization algorithm (COSCSO) was proposed by Wang et al.30. This approach is based on Nonlinear adaptive 
parameters、the Cauchy variation and the optimal neighborhood perturbation strategy. The enhanced algorithm 
has the capability of minimizing the existence of local optima within the population, expediting the rate of 
convergence, promoting the efficiency of search, and promoting population biodiversity. In their study, Jia et al.31 
introduced a Sand Cat swarm optimization algorithm that incorporates quasi-reverse learning strategies. This 
algorithm effectively converts the three-dimensional path planning problem into an objective function derived 
from a mathematical model. Consequently, the algorithm facilitates the identification of the optimal path while 
considering the security constraint. Empirical evidence demonstrates that the enhanced algorithm can effectively 
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identify the most advantageous route in various obstacle-laden conditions. The reactive power optimization 
approach for storage-distribution networks with wind and wind energy was suggested by Shang et al.32. The 
approach incorporates the multi-objective MOSCSO algorithm. The control variable in this research is the energy 
storage facility, and the simulation experiment runs using MOSCSO. In the exploration and development stages, 
Jiang et al.33 introduced the Cauchy mutation mechanism and Gaussian mutation mechanism, respectively. They 
additionally created the ISCSO algorithm and enhanced the engine failure detection technique of SDAE using 
the improved algorithm. The usefulness of the proposed strategy in enhancing average diagnostic accuracy while 
minimizing average time has been verified. The previously mentioned investigators primarily concentrate on 
developing the sand cat swarm optimization algorithm through adaptive weights and local variation. These tactics 
not only strengthen the algorithm’s efficiency in various ways but also have potential applications in engineering.

Given the restrictions of conventional SCSO, along with the enhanced approaches put out by other researchers, 
this study introduces a novel technique called CWXSCSO, which combines elite decentralization and crossbar 
Sand Cat swarm optimization. The paper’s fundamental framework is laid out as follows: The initial portion 
presents the fundamental optimization process of SCSO. The subsequent section introduces an original dynamic 
exponential element and implements elite decentralization during the developmental phase. Simultaneously, the 
algorithm incorporates the crossbar approach to disrupt the previous optimal solution. In the third portion, an 
aggregate of 15 benchmark test functions is employed to evaluate and compare different improvement strategies. 
The optimized performance of each strategy is assessed and compared. In Sect. “Comparison between CWXSCSO 
and different swarm intelligence algorithms”, the efficacy of the CWXSCSO approach is assessed using the 
identical set of CEC2019 test functions and CEC2021 test functions. This evaluation involves assessing several 
performance metrics such as the ideal value, median value, standard deviation, convergence curve, and the results 
of the Wilcoxon rank sum test. Section “Engineering application” of the study employs six classical engineering 
cases to evaluate the viability of the new algorithm in real-world engineering scenarios. To summarize, when 
comparing the conventional SCSO algorithm with CWXSCSO, it can be observed that CWXSCSO exhibits 
a certain degree of effectiveness in extinguishing the algorithm from local optima. Additionally, CWXSCSO 
strengthens the pace of convergence and solution accuracy of SCSO.

Sand cat swarm optimization algorithm
The optimization algorithms of sand cat swarms draw inspiration from their capacity to identify low-frequency 
noise. Sand cats inhabit challenging habitats characterized by sandy and stony deserts, such as the Sahara in 
Central Asia, the Sahara in Africa, and the Arabian Peninsula. They engage in daily relaxation and nocturnal 
hunting activities. They participate in prey detection by sensing low-frequency sounds, whether it is above or 
below ground. When prey is subterranean, they promptly identify it and excavate it. Based on the behavioral 
patterns exhibited by sand cats, the process of foraging can be delineated into two distinct phases: prey detection 
and prey predation. The SCSO algorithm places emphasis on two distinct phases, namely exploration and 
development, with a particular focus on maintaining a balance between these phases.

Initialize
The sand cat in a D-dimensional optimization problem is a one-dimensional array that operates as a 
representation of the solution to the problem. Every variable value ( x1,x1 , …, xn ) represents a node. Additionally, 
every X must be positioned within the limits of the upper and lower limits.

Initially, an initialization matrix is generated based on the issue size, denoted as 
(

Npop × Nd

)

,
(

pop = 1, ..., n
)

 . 
Furthermore, the solution that corresponds to the given input is generated in every iteration. If the subsequent 
output value exhibits higher efficiency, the current approach will be substituted. The solution for the next iteration 
is not stored if a superior solution is not obtained. Each sand cat’s fitness value was established via the fitness 
function.

Hunt for prey
The vector R is derived from Eq. (2). The adaptive parameter R enhances the equilibrium between the transition 
and development of the two phases.

The parameter −→rG  defines a general sensitivity that exhibits a linear reduction from 2 to 0. Furthermore, the 
variable r symbolizes the sensitivity span exhibited by each cat.

The expression iterc  denotes the present proportion of iterations. The notation iterMax denotes the upper limit 
of iterations. The  SM number is derived from the acoustic attributes of the sand cat, hence its assumed value is 2.

SandCati = {SC1, SC2, . . . , SCn}; 1 < i ≤ n

Act
j
i = {X11,X12, . . . ,Xnm}; 1 < i ≤ n; 1 < j ≤ d

Fitness = f (SandCat) = f (SC1, SC2, . . . , SCn); ∀xi

(1)rG = sM −

(

SM∗iterc
iterMax

)

(2)R = 2 ∗ rG ∗ rand(0, 1)− rG
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Every individual sand cat adjusts its location based on its most ideal position (Xb) , present position (Xc) , and 
its sensitivity range (r) . Hence, the sand cat possesses the capability to identify alternative ideal prey areas, as 
determined by Eq. (4).

Attack prey
The formula (5) denotes the gap Xrnd between the sand cat and the prey, representing the simulation of the sand 
cat’s attack on the target. Assuming a circular sensitivity span for the sand cat, a position is produced randomly 
from the best position (Xb) and the present position (Xc) . Subsequently, a random angle is picked using the 
roulette method, and the assault is executed using formula (6). The utilization of randomly generated angles can 
effectively mitigate the risk of the algorithm succumbing to local optima.

Exploration and development
The utilization of adaptive values for the −→rG and R parameters facilitates the process of exploration and 
development, enabling the SCSO to smoothly transition between the two stages. The values of the R argument 
are considered to be well balanced when the contents of the  −→rG argument are spread out in an equitable manner. 
In a nutshell, the R value is a stochastic value within the range [− 2 −→rG , 2 −→rG ], where −→rG is reduced from 2 to 0 in 
each iteration. Consequently, the parameter R is a randomized value within the bounds Report Phrase of [− 4, 4].

If the quantity of |R| is less than 1, the sand cats are directed to engage in prey assault. Conversely, if |R| is 
greater than 1, the cats are assigned the responsibility of identifying a novel potential solution over the entire 
region.

Improved sand cat swarm optimization algorithm
This study presents novel approaches to address the issues of slow convergence and susceptibility to local 
optima in the SCSO algorithm. Specifically, it introduces a dynamic exponential factor, an elite decentralization 
technique, and a crossbar strategy as potential enhancements to the SCSO algorithm. The subsequent part 
contains a detailed introduction to three improvement strategies.

Dynamic exponential factor
The parameter of the weight factor holds significant importance. With a relatively high weight factor, the 
algorithm exhibits robust global search capabilities, enabling it to enhance population variety and cover a vast 
area. When the comparison is small, the algorithm has a robust local search capability, enabling it to efficiently 
explore the ideal solution and expedite convergence. Local optimization is a process in which the sand cat 
participates in local search, as described by formula (4). According to formula (6), as the sand cat swarm 
approaches the local solution, it is restricted to approaching the solution that is deemed to be locally optimal 
and lacks the ability to achieve superior local optimization. A novel dynamic exponential factor is suggested as 
a solution to this challenge, drawing inspiration from existing work. This factor can compensate for the limited 
capacity for local exploitation during the initial phase and improve the overall search capability during the latter 
phase, so preventing the population from prematurely settling in the local optimal. Equation (8) illustrates an 
equation for the exponential factor.

In the given context, k represents an optimization factor that adheres to an exponential distribution. The 
variable t  depicts the present quantity of iterations, while T indicates the ultimate amount of iterations.

Elite decentralization strategy
In the desert, the sand cat’s power to update its individual location is limited to relying on the guidance of random 
individuals within the community, resulting in a weak global search capability. This study shows a novel approach 
to elite decentralization, aiming toward improving the proximity of individual sand cats to elite individuals and 
bolstering the local development capabilities of the sand cat population. The ultimate goal is to expedite and 
improve the sand cat population’s ability to identify optimal solutions with greater speed and accuracy.

The calculation of fitness for each individual sand cat is performed, followed by the replication of the 
individual with the highest level of fitness into n copies, so building the elite matrix. When the probability of |R| 
is equal to 1, various probabilities h are introduced to update the location. Specifically, when h is equal to or less 

(3)r = rG ∗ rand(0, 1)

(4)X(t + 1) = r ∗ (Xb(t)− rand(0, 1) ∗ Xc(t))

(5)Xrnd = |rand(0, 1) ∗ Xb(t)− Xc(t)|

(6)X(t + 1) = Xb(t)− r ∗ Xrnd ∗ cos(θ)

(7)X(t + 1) =

{

r ∗ (Xb(t)− rand(0, 1) ∗ Xc(t)); |R| > 1; exploration
Xb(t)− Xrnd ∗ cosα ∗ r; |R| ≤ 1; exploitation

(8)ω =

(

e

(

1−( t
T )

2
)
)kt
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than 1/3, the population is searched worldwide. This approach addresses the limitation of the original algorithm, 
which is vulnerable to local optima, and prevents the sand cat population from evolving into "precocious". When 
the value of h exceeds 0.5, the elite matrix is included, ensuring that each dimension of the sand cat individual 
is in close alignment to the elite individual. This allows for the rapid identification of the best value.

Please revise formula (6) to update its position to the following formula:
When h ≤ 1/3:

When h > 1/3:

among:

Crossbar strategy
With a boost in the total amount of iterations, the sand cats within the population tend to cluster around the 
optimal individuals. This may give rise to the phenomenon of population diversity decline and hinder the 
algorithm’s ability to develop the global optimal solution. This paper incorporates the horizontal crossover 
strategy into the sand cat swarm optimization algorithm to mitigate the occurrence of local optima within the 
algorithm. The horizontal crossover is utilized to cross-search the population, thus minimizing search blind 
spots and addressing the global optimization problem. The vertical crossover operation is executed on the 
optimal solution for the purpose of addressing early convergence of the algorithm, hence enabling the algorithm 
to transcend the local optima and enhance the population’s variety. The Crossbar technique, as described in 
 reference34, has the potential to improve the worldwide search functionality for addressing intricate optimization 
issues. Consequently, this can result in better precision in solving the algorithm and accelerated convergence 
speed.

Transverse crossing
Horizontal crossover refers to the process of conducting crossover operations across all dimensions of 
a population for the purpose to facilitate reciprocal learning among distinct individuals. Prior to the 
implementation of the horizontal crossing approach, all participants of the sand cat population are randomly 
paired together without any repetition. Subsequently, an arithmetic crossover is conducted, with the probability 
Ph typically assigned an estimate of 1. The offspring are formed through the process of crossing the parent 
generation, as indicated by formula (13), (14):

where: q1 and q2 are random numbers [0,1]; Both c1 and c2 are random numbers [-1, 1]. X(i, d) and X
(

j, d
)

 are 
the parents of d dimension X(i) and X

(

j
)

 respectively. Mhc
i,d and Mhc

j,d represent the D-dimensional progeny of 
X(i, d) and X

(

j, d
)

 by horizontal crossing, respectively. The generated offspring compete with their parents to 
retain the best fitness individual.

Longitudinal crossing
The SCSO algorithm exhibits a tendency to encounter local optima in subsequent iterations, a phenomenon 
frequently attributed to the occurrence of local optima in specific dimensions during the updating procedure. 
The vertical crossover is a type of arithmetic crossover that is applied to all individuals between two distinct 
dimensions. It involves updating only a specific dimension, so facilitating the evasion of a dimension that is 
imprisoned in a local optima. The vertical intersection of the d1 and d2 dimensions of individual i  yields the 
descendant individuals, as calculated via Eq. (15).

where: q is the random number on [0,1]: Mvc
i,d1

 is the child of parent X(i) generated by vertical crossing in d1 and 
d2 dimensions. The offspring individuals produced by longitudinal crossing compete with their parents to retain 
the individuals with better fitness.

Implementation of CWXSCSO algorithm
The modified sand cat swarm optimization technique suggested in this research follows the basic flow based on 
the aforementioned enhancement methods.

Step 1 Establish the initial position of the population and ascertain the parameters;

(9)X(t + 1) = ω ∗ Xb(t)− C1 ∗ cos(C2)|r ∗ Xrnd ∗ cos(θ)| + XE

(10)X(t + 1) = ω ∗ |Xb(t)− X(t)| + XE

(11)C1 = 2 ∗ π ∗ rand(0, 1)

(12)C2 = 2 ∗
(

1− t
T

)

∗ cos
(

3∗π∗t
2

)3

(13)Mhc
i,d = q1 ∗ X(i, d)+

(

1− q1
)

∗ X
(

j, d
)

+ c1 ∗
(

X(i, d)− X
(

j, d
))

(14)Mhc
j,d = q2 ∗ X

(

j, d
)

+
(

1− q2
)

∗ X(i, d)+ c2 ∗
(

X
(

j, d
)

− X(i, d)
)

(15)Mvc
i,d1

= q ∗ X(i, d1)+
(

1− q
)

∗ X
(

j, d2
)
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Step 2 The objective is to determine the fitness of a sand cat colony by calculating the current ideal location 
and target value.

Step 3 The position update formula of the basic SCSO algorithm (4) is utilized to update the current position 
of the sand cat when the value of |R| is greater than 1.

When the quantity of R is less than 1, the process of choosing the hunting approach is selected based on a 
random probability h . When h is less than or equal to 1/3, the spatial arrangement of the sand cat is updated 
using the improved position formula (9). Conversely, when h is greater than or equal to 1/3, the spot of the sand 
cat is updated using the location formula (10).

Step 4 The horizontal cross operation is performed to cross all dimensions, and the position is updated based 
on Eqs. (13) and (14).

Step 5 Based on Formula (15), the longitudinal crossover operation is executed, followed by a comparison 
of fitness standards, and ultimately, the ideal reserve is selected.

Step 6 Assess the extent to which the algorithm satisfies the stop condition. If affirmative, exit the primary 
loop and display the desired location and value; else, revert back to Step 3.

Step 7 Terminate the program and display the optimal outcome.

Improved pseudocode of sand cat group optimization algorithm

Algorithm 1.  Improved the pseudocode of sand cat swarm optimization algorithm.

CWXSCSO flow chart
Figure 1 describes the flow chart of the improved algorithm in detail, as shown below:

Computational complexity
The numerical representation of the time complexity of an algorithm is commonly denoted as O . The CWXSCSO 
algorithm primarily comprises the dynamic exponential factor, elite decentralization approach, and crossbar 
strategy. The dimension of the search space is given as m when the population size is N  , and the greatest 
amount of iterations is T , the time complexity analysis of the algorithm in this paper is as follows: The time 
complexity of initialization is O(m) ; The time complexity of calculating the fitness value is the dynamic exponent 
O(N + N × logN) . The dynamic index is improved on the basis of the original linear weight, and the time 
complexity is still O(N ×m) The elite decentralization approach has a temporal complexity of O(N ×m) . The 
temporal complexity of the crossbar technique can be expressed as O(N ×m/2+m/2) = O(N ×m+m) , and 
other calculations are small and negligible. Thus, the CWXSCSO method exhibits an overall computational 
complexity of O

(

m+ T × N
(

1+m+ logN
))

 , aligning with the computational complexity of the conventional 
sand cat swarm optimization algorithm.
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Simulation experiment and result analysis
Benchmark function
To assess the efficacy and enhancement of CWXSCSO, a set of 15 benchmark functions was chosen, as outlined 
in Appendix A1. The function F1-F7 is unimodal, meaning it has just one global ideal and no local optimal. 
This characteristic allows for a more accurate evaluation of the algorithm’s convergence time and optimization 
accuracy. The function F8-F13 exhibits multidimensionality and multimodality. Multiple local extreme values 
are frequently employed to assess the algorithm’s performance in preventing local optima and facilitating search 
worldwide. The fixed-dimensional multimodal functions F14 and F15 are being referred to. Multimodal functions 
exhibit numerous local extrema.

Experimental results and analysis of reference function
To enhance the verification of the efficacy of each enhanced method in CWXSCSO, three strategies are examined 
individually. The concept can be categorized into three distinct strategies: dynamic factor (JSCSO), elite 
decentralization strategy (ZSCSO), and Crossbar strategy (XSCSO). The length of the query space for F1-F15 
is fixed at 30, with a total size of N = 50 . Additionally, the upper limit for the number of iterations, denoted as 
Tmax , is limited to 1000. The optimum value, average value, and standard deviation are obtained by executing 
each function 30 times.

The statistics shown in Tables 1 and 2 demonstrate that the ideal value, median value, and standard deviation 
of CWXSCSO exhibit improved performance in comparison with SCSO when considering a dimensionality of 
30. CWXSCSO, JSCSO, and ZSCSO algorithms achieve the theoretical best value for every round of the F1-F4 
function for simple unimodal functions. In the F5 algorithm, the ideal value and mean value of CWXSCSO 
exhibit inferior performance compared to XSCSO, while the normal deviation is inferior to that of JSCSO. 
Nevertheless, CWXSCSO still possesses certain advantages when compared to the basic algorithm. The 
convergence of the method to the theoretical best value for the complex unimodal function F6 is frequently 
challenging. However, the inclusion of the crossbar method has resulted in improved optimization accuracy 
for the algorithm. The modified algorithm exhibits a 15-fold increase in accuracy compared to its original 
counterpart. The CWXSCSO strategy in F7 has superior performance in terms of ideal value, average value, and 

Figure 1.  CWXSCSO flow chart.
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variance compared to SCSO and other methodologies. CWXSCSO exhibits the maximum optimization accuracy 
and the lowest standard deviation for multi-modal functions F8, F12, and F13. In conjunction with CWXSCSO, 
XSCSO exhibits superior optimization efficacy, hence indicating the advantageous nature of employing the 
crossbar technique to facilitate the algorithm’s departure from local optima. All strategies in the F9-F11 function 
attain the theoretical ideal value, suggesting that the incorporated strategies exhibit favorable stability. Table 2 
demonstrates that the optimization accuracy of CWXSCSO is preferable to that of SCSO and other processes for 
the multi-modal function F14-F15 with fixed dimensions. In simple terms, the revised algorithm incorporates 
dynamic factors and elite decentralization strategies to enhance its development performance. Additionally, the 
crossbar technique facilitates the algorithm’s ability to transcend local optima.

The iteration rules for functions exhibit a high degree of similarity, as depicted in Fig. 2. The iterative curve 
of CWXSCSO on the F1-F7 function exhibits a nearly linear pattern, suggesting that the enhanced approach 
outperforms the original technique with regard to both velocities of convergence and optimization precision. The 
F8 curve clearly demonstrates that the CWXSCSO algorithm achieved the optimal value after 110 iterations, but 
the previous algorithm did not reach the optimal value within 1000 iterations. Moreover, the image has multiple 
inflection points, indicating that the improved algorithm not only has a high fitness value, but also has a good 
ability to jump out of the local optimal. The curve between F11 and F13 has a linear pattern, suggesting that 
while the ideal value can be identified, the enhanced method demonstrates superior speed. The convergence 
speed of F9, F10, F14, and F15 exhibits rapid convergence towards the initial optimal value. Additionally, there 
are instances where the enhanced algorithm demonstrates the ability to surpass local optima and achieve speedy 
convergence.

Table 1.  The optimization outcomes of the single-peak test function (F1-F6) were compared using various 
improvement methodologies. Significant values are in bold.

Function Algorithm Optimal value Mean value Standard deviation

F1

SCSO 1.6505E − 248 1.7794E − 232 0

JSCSO 0 0 0

ZSCSO 0 0 0

XSCSO 6.3662E − 255 4.7234E − 239 0

CWXSCSO 0 0 0

F2

SCSO 4.9174E − 128 7.4487E − 122 1.6613E − 121

JSCSO 0 0 0

ZSCSO 0 0 0

XSCSO 2.9000E − 132 3.9944E − 127 2.0088E − 126

CWXSCSO 0 0 0

F3

SCSO 4.6337E − 219 1.2671E − 203 0

JSCSO 0 0 0

ZSCSO 0 0 0

XSCSO 1.0331E − 213 1.2787E − 196 0

CWXSCSO 0 0 0

F4

SCSO 2.3733E − 110 3.4932E − 103 1.5215E − 102

JSCSO 0 0 0

ZSCSO 0 0 0

XSCSO 3.3619E − 109 4.5124E − 101 2.4371E − 100

CWXSCSO 0 0 0

F5

SCSO 4.6159E + 01 4.7947E + 01 8.7684E − 01

JSCSO 4.8102E + 01 4.8839E + 01 2.1074E − 01

ZSCSO 4.8070E + 01 4.8755E + 01 2.4136E − 01

XSCSO 4.4000E + 01 4.4501E + 01 2.5036E − 01

CWXSCSO 4.5664E + 01 4.6590E + 01 6.9594E − 01

F6

SCSO 1.9686E + 00 3.5213E + 00 7.0735E − 01

JSCSO 1.0616E + 01 1.1043E + 01 2.4024E − 01

ZSCSO 9.2714E + 00 1.0675E + 01 4.8528E − 01

XSCSO 9.9686E − 06 1.6590E − 05 4.0816E − 06

CWXSCSO 2.7082E − 15 1.7763E − 13 3.4775E − 13

F7

SCSO 9.6579E − 07 4.9265E − 05 5.5692E − 05

JSCSO 6.5727E − 07 1.8145E − 05 1.4117E − 05

ZSCSO 1.0667E − 07 1.7231E − 05 1.7336E − 05

XSCSO 1.1360E − 06 1.4352E − 05 1.4999E − 05

CWXSCSO 2.2485E − 07 4.8359E − 06 5.1410E − 06



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8927  | https://doi.org/10.1038/s41598-024-59597-0

www.nature.com/scientificreports/

The numerical simulation results, as shown in Tables 1 and 2, along with the convergence diagram depicted 
in Fig. 2, demonstrate that the CWXSCSO algorithm exhibits superior optimization accuracy, faster convergence 
acceleration, and better robustness compared to the alternative approach. These findings provide empirical 
evidence supporting the effectiveness of the algorithm under consideration.

Comparison between CWXSCSO and different swarm intelligence algorithms
Test on CEC2019 benchmark function
The effectiveness analysis of the improved algorithm
This section presents a selection of six new upgraded algorithms for the purpose of comparing the optimization 
performance of CWXSCSO with other optimization algorithms. They are Salp swarm algorithm based on 
craziness and adaptive (CASSA)35, Subtraction-Average-Based Optimizer (GSABO)36, Grey Wolf Optimization 
Algorithm Based on Elite Learning for Nonlinear Parameters (IGWO)37, Whale optimization algorithm based 
on chaotic search strategy (CWOA)38, Whale Optimization Algorithm Based on Elite Opposition-based and 

Table 2.  The optimization outcomes of multi-peak and fixed-dimension test functions (F8-F15) were 
compared using various improvement methodologies. Significant values are in bold.

Function Algorithm Optimal value Mean value Standard deviation

F8

SCSO  − 1.3399E + 04  − 1.1025E + 04 1.0451E + 03

JSCSO  − 5.0405E + 03  − 3.7293E + 03 4.9570E + 02

ZSCSO  − 1.1647E + 04  − 9.5069E + 03 1.2672E + 03

XSCSO  − 2.0930E + 04 2.0477E + 04 2.3510E + 02

CWXSCSO  − 2.0949E + 04  − 2.0949E + 04 9.3256E − 09

F9

SCSO 0 0 0

JSCSO 0 0 0

ZSCSO 0 0 0

XSCSO 0 0 0

CWXSCSO 0 0 0

F10

SCSO 4.4409E − 16 4.4409E − 16

JSCSO 4.4409E − 16 4.4409E − 16

ZSCSO 4.4409E − 16 4.4409E − 16

XSCSO 4.4409E − 16 4.4409E − 16

CWXSCSO 4.4409E − 16 4.4409E − 16

F11

SCSO 0 0 0

JSCSO 0 0 0

ZSCSO 0 0 0

XSCSO 0 0 0

CWXSCSO 0 0 0

F12

SCSO 4.9159E − 02 1.0704E − 01 4.2033E − 02

JSCSO 8.6098E − 01 9.8243E − 01 7.4996E − 02

ZSCSO 7.4167E − 01 9.8563E − 01 1.3681E − 01

XSCSO 3.2517E − 07 5.8252E − 07 1.5196E − 07

CWXSCSO 9.7303E − 17 2.5354E − 15 5.5692E − 15

F13

SCSO 2.9328E + 00 4.4606E + 00 3.1602E − 01

JSCSO 4.7350E + 00 4.8159E + 00 3.3593E − 02

ZSCSO 4.1989E + 00 4.6829E + 00 1.7204E − 01

XSCSO 1.0363E − 05 1.8981E − 05 4.7085E − 06

CWXSCSO 1.5743E − 20 1.2104E − 18 1.8608E − 18

F14

SCSO 9.9800E − 01 1.3948E + 00 8.8732E − 01

JSCSO 2.9821E + 00 4.5383E + 00 3.4798E + 00

ZSCSO 2.9821E + 00 8.0322E + 00 4.6754E + 00

XSCSO 9.9800E − 01 9.9800E − 01 1.5260E − 14

CWXSCSO 9.9800E − 01 9.9800E − 01 1.5701E − 16

F15

SCSO 3.0749E − 04 4.0386E − 04 2.7901E − 04

JSCSO 4.5646E − 04 7.4476E − 04 1.4641E − 04

ZSCSO 3.1404E − 04 9.0459E − 04 1.4293E − 03

XSCSO 3.0749E − 04 3.3801E − 04 1.6718E − 04

CWXSCSO 3.0749E − 04 3.3062E − 04 4.2702E − 05
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Figure 2.  Convergence curve for comparison between strategies.
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Crisscross Optimization (ECWOA)34 and Multi-Strategy Chimp Optimization Algorithm and Its Application 
of Engineering Problem (EOSMICOA)39. The solution to the benchmark function in Appendix A2 has been 
obtained. The experiment had a population size of N = 50 , with 1000 iterations. Each experiment was completed 
independently 30 times.

The analysis of Table 3 reveals that the enhanced CWXSCSO algorithm exhibits superior optimization 
accuracy compared to the other six intelligent optimization algorithms. Furthermore, the improved CWXSCSO 
algorithm demonstrates greater efficacy on the chosen test functions. The optimization accuracy of CWXSCSO 
meets the theoretical optimal value of 1 while solving the function F1-F2. Additionally, the average and standard 
deviations of CWXSCSO are preferable to those of the comparison algorithm. The results produced from the 
F3, F5, F6, F8, and F10 functions exhibit superior performance compared to the comparison algorithm. The 
standard deviation of CWXSCSO in function F4 is inferior to that of ECWOA, with just a slight improvement. 
However, in the F7 function, the ideal value and mean exhibit inferior performance compared to ECWOA, 
but the standard deviation demonstrates greater accuracy in comparison to ECWOA. In the F9 function, the 
CWXSCSO algorithm exhibits higher precision comparable to other algorithms. However, it is worth noting that 
the median value and standard deviation of CWXSCSO are comparatively weaker to those of other algorithms. 
Hence, it can be ascertained that while certain values of the enhanced algorithm presented in this study may 
not align with the theoretical ideal value, it generally exhibits superiority over other algorithms and possesses 
advantages in the realm of function optimization problems. This observation further underscores the efficacy 
of the proposed method.

The convergence properties of CWXSCSO can be easily observed in Fig. 3, in comparison to other methods. 
The figure clearly demonstrates that in functions F1 and F2, the curve exhibits rapid convergence and can 
swiftly approach the global optimal value. In function F3, the population rapidly attains an ideal value, which 
exhibits superior accuracy compared to alternative algorithms. Despite the relatively low solution accuracy in 
the F4 and F5 images, the function nevertheless offers several advantages beyond the original approach and 
other techniques. The optimization of F6-F10 exhibits several nuanced inflection points, suggesting that the 
algorithm demonstrates an exceptional capacity to overcome local optima and achieve stronger convergence 

Table 3.  Compare the results with his intelligent algorithm. Significant values are in bold.

CASSA GSABO IGWO CWOA ECWOA EOSMICOA SCSO CWXSCSO

F1

Best 1 1 1 1 3474.3991 6260.3105 1 1

Mean 1 1 1 1 10,000.6681 10,000.6681 1 1

Std 0 0 0 0 8518.0766 477,985.0910 0 0

F2

Best 1.4091 1.00E + 20 8.5056 4.0767 1.4099 1.4933 2.3151 1.4091

Mean 2.9881 1.00E + 20 9.2246 5.1725 4.5412 2.1452 2.7594 1.4092

Std 2.2330 1.7639 1.0168 1.5497 4.4283 0.9219 0.6284 1.53E − 05

F3

Best 1.1230 11.4670 75.4821 25.3538 1.4307 3.2677 1.5556 1.0207

Mean 1.1526 18.5796 96.4431 31.0024 1.4526 4.4711 1.6968 1.0672

Std 0.2248 0.0815 7.6634 20.8279 0.1307 12.1507 1.3174 0.0715

F4

Best 2.5058 10.2528 10.2574 9.1796 2.3958 6.4279 6.2361 2.1589

Mean 3.8835 10.3381 10.8924 10.0072 3.9861 7.0716 7.2697 3.6835

Std 1.9484 0.1206 0.8980 1.1704 2.2490 0.9103 1.4617 2.1561

F5

Best 1.2141 1.1329 77.7605 23.5512 1.2593 3.2219 1.4557 1.1203

Mean 1.3501 1.3484 94.1279 28.1548 1.4679 3.9688 1.6677 1.2474

Std 0.2108 0.2175 14.1900 4.4841 0.2427 1.0345 0.2204 0.1262

F6

Best 3.1971 3.3326 5.0071 4.1673 3.4876 3.8973 3.2628 3.0976

Mean 3.9949 4.0924 5.2635 4.6559 3.9699 4.5614 4.0700 3.7678

Std 0.5302 0.4634 0.3457 0.3097 0.3837 0.4100 0.7014 0.2903

F7

Best 1.1795 3.3630 3.8032 1.4946 1.1436 1.2602 1.2684 1.2625

Mean 1.3022 3.4388 3.9093 1.5758 1.2892 1.2708 1.3057 1.3136

Std 0.1735 0.1071 0.1500 0.1149 0.2058 0.0150 0.0528 0.0723

F8

Best 21 21.3679 21.5129 21.3529 21.0038 21.3571 21.0295 21

Mean 21.0483 21.3932 21.5931 21.4019 21.0045 21.4181 21.0904 21.0002

Std 0.0683 0.0358 0.1134 0.0694 9.58E − 04 0.0862 0.0861 2.90E − 04

F9

Best 1.1473 1.2329 2.9577 1.5190 1.1462 1.1723 1.2199 1.1180

Mean 1.2021 1.3221 3.4002 1.5839 1.3918 1.2529 1.3176 1.3344

Std 0.0955 0.1036 0.3092 0.0593 0.2111 0.0625 0.0751 0.1853

F10

Best 20.9196 20.9814 21.3684 21.3097 21.0005 21.3421 21.0485 20.9039

Mean 21.0430 21.0153 21.4347 21.3790 21.0073 21.4387 21.0491 20.9908

Std 0.1121 0.0556 0.0501 0.0672 0.0091 0.0909 0.0982 0.0085



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8927  | https://doi.org/10.1038/s41598-024-59597-0

www.nature.com/scientificreports/

accuracy as opposed to other techniques. In a nutshell judging on the CEC2019 test, CWXSCSO outperforms 
other algorithms.

Wilcoxon rank sum test
The Wilcoxon rank sum test is a non-parametric statistical test that can be utilized irrespective of the distribution 
of the subject under investigation and the availability of information regarding the distribution. Hence, it is 
frequently employed to assess the data distribution of two sets of autonomous samples that deviate from a normal 

Figure 3.  The fitness curves of each algorithm are compared.
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distribution. This approach uses the rank of the sample as a substitute for the sample value in order to facilitate 
data comparison, thereby mitigating the impact of a single value within the sample on the entire sample. Hence, 
this approach can provide a more scientific representation of the algorithm’s optimization performance contrasted 
to the median value and standard deviation. This section presents a comparison and analysis of the findings 
obtained from the CEC2019 test. The optimization outcomes of CASSA, GSABO, IGWO, CWOA, ECWOA, and 
EOSMICOA were compared using the Wilcoxon rank sum test, based on the CWXSCSO method. The hypothesis 
test employs a significance level of p = 5% as the criterion for judgment. At a significance level of 5%, it can be 
concluded that there is a substantial difference between the two groups of samples.

In Table 4, the presence of NaN  indicates that there lacks a statistically noteworthy disparity between the 
two groups of data. Additionally, the symbols " + ", " = ", and " − " are used to indicate that the outcomes of the 
CWXSCSO algorithm outperforms, is equivalent to, or falls short of the comparison algorithm, appropriately. 
The findings indicate that CWXSCSO exhibits a notable advantage over both the novel method and existing 
enhanced optimization techniques.

Test on CEC2021 benchmark function
Validity analysis on CEC2021 function
With the aim to comprehensively evaluate the optimization capabilities of the upgraded method, a set of 
10 CEC2021 test functions with distinct optimization features were chosen (as illustrated in Appendix A3). 
The CWXSCSO is computed and thereafter compared to the previous six enhancements. The parameters are 
uniformly set to the total size N = 50 , the upper limit number of iterations Tmax = 1000 , and the dimension 
d = 10 . Each function was simulated 30 times to obtain the optimum value, the average value, and standard 
deviation of the result. A plot is generated to depict the convergence curves of ten functions.

Based on the analysis of the data presented in Table 5, it turns out apparent CWXSCSO has higher 
performance relative to other algorithms in terms of both the ideal value and average value over the ten functions. 
The C3 function exhibits superior minimum and average values compared to GSABO and IGWO, while its 
standard deviation surpasses that of IGWO and EOSMICOA. This observation indicates that the enhanced 
algorithm lacks robust flexibility to the C3 function. The lowest and average values of functions C7 and C9 are 
optimal. However, the standard deviation is suboptimal. The algorithm exhibits a wide variety of fluctuations, 
although it possesses the capability to get the ideal theoretical value. The CWXSCSO algorithm outperforms 
other algorithms in functions C1, C2, C4-C6, C8, and C10, exhibiting superior values with a narrow range of 
fluctuations and excellent precision.

Figure 4 clearly demonstrates that all images of functions C1-C10 exhibit significant slopes, suggesting that 
the enhanced technique achieves faster convergence compared to existing optimization strategies. Photos C1, 
C4-C6, and C9 exhibit several twists in the CWXSCSO lines, suggesting that the enhanced CWXSCSO possesses 
the capability to transcend local optima. Contrary to CWXSCSO, other comparison algorithms like EOSMICOA 
have the capacity to exit the local optimal at numerous iterations. However, their rates of convergence rapidity 
and precision are not as great. CWXSCSO demonstrates rapid convergence to the global optimal in photos C3, 
C7, C8, and C10. In images, C3 and C8, the optimal fitness value of CWXSCSO convergence are comparable to 
that of the original method and CASSA algorithm, but it exhibits the fastest convergence speed.

To summarize, the CEC2021 function test demonstrates that the CWXSCSO algorithm outperforms 
competing algorithms, hence confirming its effectiveness.

Wilcoxon rank sum test of CEC2021 test function
This section presents a comparison and analysis of the findings obtained from the CEC2021 test, with the aim of 
enhancing the evaluation of the algorithm’s optimization performance. The optimization outcomes of CASSA, 
GSABO, IGWO, CWOA, ECWOA, and EOSMICOA were compared using the Wilcoxon rank sum comparison 
test, based on the CWXSCSO method. According to the analysis of the results in Table 6, it indicate that 
CWXSCSO has no significant disparity with the comparison algorithm across several functions. However, none 

Table 4.  Results of Wilcoxon rank sum test for CEC2019 functions.

Function CWXSCSO-CASSA CWXSCSO-GSABO CWXSCSO-IGWO CWXSCSO-CWOA CWXSCSO-ECWOA
CWXSCSO- 
EOSMICOA

F1 1.2118e − 12 1.2118e − 12 1.2118e − 12 NaN 1.2118e − 12 1.2118e − 12

F2 1.2118e − 12 1.2118e − 12 1.2118e − 12 NaN 1.2118e − 12 1.2118e − 12

F3 2.9727e − 2 3.0199e − 11 3.0199e − 11 3.0199e − 11 2.0095e − 1 2.3715e − 10

F4 3.0199e − 11 3.0199e − 11 3.0199e − 11 3.0199e − 11 3.0199e − 11 3.0199e − 11

F5 9.7555e − 10 3.0199e − 11 5.8737e − 4 3.5638e − 4 9.7555e − 10 3.0199e − 11

F6 2.2798e − 11 2.2798e − 11 2.2798e − 11 2.2798e − 11 2.443e − 3 2.2798e − 11

F7 3.0199e − 11 3.0199e − 11 3.0199e − 11 3.0199e − 11 3.0199e − 11 3.0199e − 11

F8 3.0199e − 11 3.0199e − 11 3.0199e − 11 3.0199e − 11 3.0199e − 11 3.0199e − 11

F9 5.4991e − 3 4.5356e − 09 2.5464e − 11 2.5464e − 11 8.5026e − 09 2.5464e − 11

F10 2.7071e − 1 2.9972e − 11 3.3384e − 11 1.5292e − 05 3.0339e − 3 3.0199e − 11

 + / = / − 9/0/1 10/0/0 10/0/0 8/2/0 9/0/1 10/0/0
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of the functions is inferior to the algorithm, and almost all of the functions demonstrate superior performance in 
comparison to alternative algorithms. Hence, it may be inferred that CWXSCSO has excellent results compared 
to both the new method and existing enhanced optimization techniques.

Engineering application
Six engineering challenges have been selected for this part for the purpose to assess how well CWXSCSO performs 
when used to engineering optimization problems. The sine and cosine optimization algorithm (SCA)40, frost 
and ice optimization algorithm (RIME)41, butterfly optimization algorithm (BOA)42, Harris Eagle Optimization 
algorithm (HHO)8, and Osprey optimization algorithm (OOA)43 were chosen as the primary three technical 
applications. The whale optimization algorithm (WOA)7, the locust optimization algorithm (GOA)44, the gray 
wolf optimization algorithm (GWO)45, the marine predator optimization algorithm (MPA)46, and the frost and 
ice optimization algorithm (RIME) were used to compare the final three technical applications. Every algorithm 
in the experiment has a population of 30 and an upper limit of 1000 iterations.

Pressure vessel design problems
The performance of the modified algorithm pair gets assessed using pressure vessel design issues in this research. 
The main objective of the pressure vessel design challenge is to decrease the production expenses associated with 
the pressure vessel. This problem contains the selection of four optimization variables, namely shell thickness 
TS , head thickness ( Th ), inner radius ( R ), and length of cylinder section without head ( L ). The mathematical 
description of the pressure vessel design problem is as follows:

variable:

Function:

−→x = [x1x2x3x4] = [TSThRL]

f
(−→x

)

= 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4 + 19.84x21x3

Table 5.  Compared optimization results of different intelligent algorithms. Significant values are in bold.

CASSA GSABO IGWO CWOA ECWOA EOSMICOA SCSO CWXSCSO

C1

Best 1.2770E + 02 1.2993E + 09 7.0927E + 09 1.1002E + 09 1.1900E + 03 1.0502E + 08 2.7518E + 03 1.2365E + 02

Mean 4.4886E + 03 2.5211E + 09 1.0700E + 10 3.8009E + 09 9.4817E + 03 2.6645E + 08 3.6662E + 07 1.4211E + 03

Std 4.0543E + 03 1.1013E + 09 2.2716E + 09 1.8719E + 09 7.5948E + 03 2.0107E + 08 1.1572E + 08 2.0781E + 03

C2

Best 1.7667E + 03 2.3346E + 03 3.2079E + 03 2.3391E + 03 1.6261E + 03 2.2988E + 03 1.4653E + 03 1.4790E + 03

Mean 1.9982E + 03 2.4861E + 03 3.3776E + 03 2.5867E + 03 1.7865E + 03 2.4907E + 03 1.9857E + 03 1.7264E + 03

Std 1.6752E + 02 1.5764E + 02 1.5839E + 02 2.2368E + 02 2.1225E + 02 1.4459E + 02 3.7318E + 02 1.3608E + 02

C3

Best 7.7204E + 02 7.9987E + 02 7.9485E + 02 7.2364E + 02 7.4722E + 02 7.3684E + 02 7.2538E + 02 7.7204E + 02

Mean 8.1813E + 02 8.2776E + 02 8.0825E + 02 7.3987E + 02 7.5915E + 02 7.6649E + 02 7.4936E + 02 8.1813E + 02

Std 1.8206E + 01 1.4039E + 01 9.3858E + 00 1.7625E + 01 1.2128E + 01 2.1164E + 01 2.0668E + 01 1.8206E + 01

C4

Best 2.1189E + 03 2.7864E + 03 2.9433E + 04 2.1943E + 03 2.5204E + 03 2.1458E + 03 1.9325E + 03 1.9023E + 03

Mean 4.3398E + 03 6.0417E + 03 7.4329E + 05 6.1336E + 05 1.1093E + 04 1.3695E + 04 7.5499E + 03 2.6462E + 03

Std 2.4632E + 03 2.5662E + 03 6.9340E + 05 7.1498E + 05 9.6835E + 03 6.9745E + 03 5.7211E + 03 1.6531E + 03

C5

Best 6.4462E + 03 3.4701E + 05 7.5719E + 04 2.0987E + 04 6.2107E + 03 2.9823E + 03 2.3850E + 03 1.7081E + 03

Mean 1.8034E + 04 6.8947E + 05 1.6888E + 05 5.7084E + 04 5.7894E + 04 4.4089E + 03 7.4505E + 03 1.7026E + 03

Std 1.1607E + 04 2.0154E + 05 1.0430E + 05 2.7900E + 04 4.2677E + 04 8.3703E + 02 4.0438E + 03 2.5760E + 00

C6

Best 1.6069E + 03 1.7253E + 03 2.0057E + 03 1.9540E + 03 1.6012E + 03 1.7437E + 03 1.6206E + 03 1.6012E + 03

Mean 1.8896E + 03 2.0374E + 03 2.3068E + 03 2.0543E + 03 1.7799E + 03 1.8695E + 03 1.7903E + 03 1.6613E + 03

Std 8.1860E + 01 1.7762E + 02 1.4360E + 02 8.1340E + 01 1.4419E + 02 1.0423E + 02 1.6925E + 02 7.7536E + 01

C7

Best 6.3967E + 03 3.8404E + 03 1.2623E + 04 6.9373E + 03 3.5546E + 03 5.5198E + 03 2.5484E + 03 2.5220E + 03

Mean 9.9662E + 03 1.5493E + 04 2.3631E + 04 1.1691E + 04 1.0403E + 04 7.7588E + 03 7.5426E + 03 6.8049E + 03

Std 3.5773E + 03 8.6727E + 03 9.2201E + 03 4.7531E + 03 4.7816E + 03 1.4491E + 03 5.9916E + 03 3.5373E + 03

C8

Best 2.2247E + 03 2.3359E + 03 2.7625E + 03 2.5119E + 03 2.2358E + 03 3.5616E + 03 2.3015E + 03 2.2203E + 03

Mean 2.2989E + 03 2.5472E + 03 3.0783E + 03 2.6354E + 03 2.3003E + 03 3.8722E + 03 2.3120E + 03 2.2976E + 03

Std 3.3494E + 01 6.1475E + 02 2.1883E + 02 5.1482E + 01 5.3854E + 00 1.4566E + 02 8.1098E + 00 4.2554E + 00

C9

Best 2.7391E + 03 2.5728E + 03 2.8215E + 03 2.7478E + 03 2.7469E + 03 2.7703E + 03 2.5007E + 03 2.5000E + 03

Mean 2.7529E + 03 2.7102E + 03 2.9502E + 03 2.8016E + 03 2.7720E + 03 2.7751E + 03 2.6671E + 03 2.6512E + 03

Std 1.8449E + 01 1.3534E + 02 7.9333E + 01 4.8917E + 01 3.2469E + 01 4.4290E + 00 1.2739E + 02 1.3806E + 02

C10

Best 2.8978E + 03 2.9234E + 03 3.2134E + 03 2.9804E + 03 2.8981E + 03 2.9151E + 03 2.9070E + 03 2.8978E + 03

Mean 2.9466E + 03 3.1055E + 03 3.3319E + 03 3.1321E + 03 2.9294E + 03 2.9573E + 03 2.9387E + 03 2.9317E + 03

Std 2.3832E + 01 1.4414E + 02 5.2824E + 01 8.8272E + 01 2.6473E + 01 2.6135E + 01 2.6639E + 01 2.3378E + 01
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Figure 4.  Convergence curves of different algorithms.
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Constraint condition:

Variable interval:

The experimental findings of CWXSCSO and the comparison algorithm are presented in Table 7. The 
CWXSCSO yields a value of 5886.05. When compared to alternative algorithms, this particular algorithm exhibits 
a superior competitive advantage in terms of maintaining the proper functioning of the pressure vessel while 
simultaneously minimizing costs. Benefits in guaranteeing the operation of the pressure vessel while reducing 
expenses. The updated method demonstrates rapid convergence to the ideal value with the best convergence 
accuracy, as depicted in Fig. 5. In turn, the CWXSCSO facility exhibits exceptional engineering optimization 
capabilities.

Welding beam design problems
The issue at hand is the Welded Beam Design (WBD), which involves the utilization of an optimization method 
to minimize the production cost associated with the design. The optimization problem can be boiled down to 
the identification of four design variables that meet the constraints of shear stress (τ ) , bending stress (θ) , beam 
bending load (Pc) , end deviation (δ) , and boundary conditions, namely beam length (l) , height (t) , thickness (b) , 
and weld thickness (h) . The objective is to minimize the manufacturing cost of welded beams. The problem of 
welded beams is a common example of a nonlinear programming problem. The mathematical description of the 
welded beam design problem is as follows:

Variable:

g1
(−→x

)

= −x1 + 0.0193x3 ≤ 0

g2
(−→x

)

= −x3 + 0.00954x3 ≤ 0

g3
(−→x

)

= −πx23 −
4

3
πx33 + 1296000 ≤ 0

g4
(−→x

)

= x4 − 240 ≤ 0

0 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200

Table 6.  Results of Wilcoxon rank sum test for CEC2021 test.

Function CWXSCSO-CASSA CWXSCSO-GSABO CWXSCSO-IGWO CWXSCSO-CWOA CWXSCSO-ECWOA
CWXSCSO- 
EOSMICOA

C1 1.2118e − 12 1.2118e − 12 NaN NaN 1.2118e − 12 1.2118e − 12

C2 2.9343e − 05 NaN NaN NaN 4.7899e − 06 1.3205e − 4

C3 1.9457e − 09 NaN NaN NaN NaN 1.6572e − 11

C4 NaN NaN NaN NaN NaN NaN

C5 1.2118e − 12 1.2118e − 12 NaN NaN 1.2118e − 12 1.2118e − 12

C6 1.2118e − 12 1.2118e − 12 NaN 1.7016e − 08 1.2118e − 12 1.2118e − 12

C7 1.2118e − 12 1.2118e − 12 1.608e − 2 3.4526e − 07 1.2118e − 12 1.2118e − 12

C8 1.6082e − 12 NaN NaN NaN NaN NaN

C9 1.1364e − 11 2.9785e − 12 2.9009e − 07 7.8379e − 08 3.4571e − 12 1.271e − 11

C10 2.6286e − 11 2.6286e − 11 2.6286e − 11 2.6286e − 11 2.6286e − 11 2.6286e − 11

 + / = / − 9/1/0 6/4/0 3/7/0 4/6/0 7/3/0 8/2/0

Table 7.  Optimization results of pressure vessel design problems.

Algorithm TS(x1) Th(x2) R(x3) L(x4) Result

BOA 1.7058 2.1120 63.6295 37.6427 21,767.48

HHO 1.0975 0.5495 56.2523 55.3661 6774.49

OOA 4.4124 13.0999 54.7594 64.5801 104,691.28

SCA 0.7830 0.3883 40.5700 196.6224 5899.53

RIME 1.2599 0.6233 65.2280 10.0000 7331.08

SCSO 0.8063 0.3986 41.7742 180.7003 5936.00

CWXSCSO 0.7783 0.3847 40.3262 199.9175 5886.05
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Function:

Constraint condition:

Variable interval:

As can be seen from Table 8, the final result of CWXSCSO is 1.6935. As can be seen in Fig. 6, the initial fitness 
value of the improved algorithm is already very good, and there are several subtle turns later, indicating that it 
has the ability to jump out of the local optimal. The improved algorithm achieves the purpose of reducing the 
manufacturing cost, and the cost of manufacturing welded beams is minimal compared with other algorithms.

−→x = [x1x2x3x4] = [hltb]

f
(−→x

)

= 1.10471x21x2 + 0.04811x3x4(14.0+ x2)

g1
(−→x

)

= τ
(−→x

)

− τmax ≤ 0

g2
(−→x

)

= σ
(−→x

)

− σmax ≤ 0

g3
(−→x

)

= δ
(−→x

)

− δmax ≤ 0

g4
(−→x

)

= x1 − x4 ≤ 0

g5
(−→x

)

= P − Pc
(−→x

)

≤ 0

g6
(−→x

)

= 0.125− x1 ≤ 0

g7
(−→x

)

= 1.10471x21x2 + 0.04811x3x4(14.0+ x2)− 5.0 ≤ 0

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2

Figure 5.  Optimization convergence diagram of pressure vessel design problem.

Table 8.  Optimization results of welding beam design problems.

Algorithm h l t b Result

BOA 0.1682 8.0508 8.8515 0.2168 2.2875

HHO 0.2087 3.1115 9.1852 0.2113 1.7476

OOA 0.7460 2.4806 4.7436 0.7467 4.3336

SCA 0.2071 3.1690 9.2701 0.2095 1.7547

RIME 0.2157 3.5682 7.9583 0.2654 1.9687

SCSO 0.2038 3.2750 9.0367 0.2057 1.6954

CWXSCSO 0.2058 3.2359 9.0342 0.2058 1.6935
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Reducer design problem
The reducer holds an important place within mechanical systems as a crucial component of the gear box, serving 
a diverse range of applications. The primary aim of this challenge is to diminish the overall weight of the reducer 
through the optimization of the seven parameter variables. They are the tooth surface width b(= x1 ), the gear 
module m(= x2) , the tooth count in the pinion z(= x3) , the measurement of the initial shaft distance between 
bearings. l1(= x4) , the distance between the bearings of the second shaft l2(= x5) , the diameter of the initial shaft 
d1(= x6) and the measurement of the diameter of the second shaft d2(= x7) . The mathematical description of 
the speed reducer design problem is as follows:

Variable:

Function:

Constraint condition:

−→x = [x1x2x3x4x5x6x7] = [bmzl1l2d1d2]

f
(−→x

)

= 0.7854x1x
2
2

(

3.3333x23 + 14.9334x3 − 43.0934
)

− 1.508x1
(

x26 + x27
)

+ 7.4777
(

x36 + x37
)

+ 0.7854(x4x
2
6 + x5x

2
7)

g1
(−→x

)

=
27

x1x
2
2x3

− 1 ≤ 0

g2
(−→x

)

=
397.5

x1x
2
2x

2
3

− 1 ≤ 0

g3
(−→x

)

=
1.93x34
x2x3x

4
6

− 1 ≤ 0

g4
(−→x

)

=
1.93x35
x2x3x

4
7

− 1 ≤ 0

g5
(−→x

)

=

√

(

745x4
x2x3

)2
+ 16.9× 106

110.0x36
− 1 ≤ 0

g6
(−→x

)

=

√

(

745x4
x2x3

)2
+ 157.5× 106

85.0x36
− 1 ≤ 0

g7
(−→x

)

=
x2x3

40
− 1 ≤ 0

g8
(−→x

)

=
5x2

x1
− 1 ≤ 0

Figure 6.  Optimization convergence diagram of welding beam design problem.
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Variable interval:

Table 9 and Fig. 7 demonstrate that the modified method is adept at minimizing the weight of the reducer 
under 11 boundaries. It suggests that the enhancement is effective and may be more effectively utilized in 
mechanical systems.

Step cone pulley problem
This engineering project aims to create a 4-step cone pulley with a minimal weight by looking at 5 design 
elements. Four variables represent the diameter of individual step of the pulley, denoted as di(i = 1, 2, 3, 4) , 
while the final variable represents the magnitude of the pulley’s breadth, denoted as w . There are 8 nonlinear 
constraints and 3 linear constraints in the problem. The restriction is to maintain uniformity in the belt length 
Ci , tension ratio Ri , and belt transfer power Pi throughout all steps. The mathematical description of the step 
cone pulley problem is as follows:

Function:

Constraint condition:

g9
(−→x

)

=
x1

12x2
− 1 ≤ 0

g10
(−→x

)

=
1.5x6 + 1.9

x4
− 1 ≤ 0

g11
(−→x

)

=
1.1x7 + 1.9

x5
− 1 ≤ 0

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3,

2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

f (x) = ρω

[

d21

{

1+

(

N1

N

)2
}

+ d22

{

1+

(

N2

N

)2
}

+ d23

{

1+

(

N3

N

)2
}

+ d24

{

1+

(

N4

N

)2
}]

Table 9.  Optimization results of reducer design problems.

Algorithm x1 x2 x3 x4 x5 x6 x7 Result

BOA 3.3994 0.7088 19.6705 7.8068 8.2178 3.4333 5.2689 1.9119E + 98

HHO 3.5827 0.7000 17.0000 8.2264 7.7636 3.4083 5.2867 3051.49

OOA 3.5411 0.7082 25.5903 7.7667 7.7708 3.5589 5.2860 4990.53

SCA 3.6000 0.7000 17.0000 7.6626 8.3000 3.6003 5.3054 3130.57

RIME 3.5003 0.7000 17.0000 7.3000 7.7227 3.3506 5.2868 2994.95

SCSO 3.5001 0.7000 17.0000 7.6154 8.1498 3.3510 5.2868 3007.17

CWXSCSO 3.5003 0.7000 17.0000 7.3000 7.7172 3.3503 5.2867 2994.66

Figure 7.  Reducer design optimization convergence curve.
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where:

Variable interval:

Table 10 clearly demonstrates that the MPA method outperforms the CWXSCSO algorithm, but it still 
possesses certain advantages over other algorithms. Figure 8 illustrates that while the precision of convergence 
in CWXSCSO is less than that of MPA, its convergence speed beats that of MPA. Despite lacking MPA for the 
stepping cone pulley problem, CWXSCSO still has the benefit of rapid convergence speed.

Planetary gear train design optimization problem
In power mechanical systems, the design of a planetary gear train presents a limited optimization problem. The 
issue encompasses three optimization variables, specifically the quantity of gear teeth (N1,N2,N3,N4,N5,N6) , 
gear modulus (m1,m2) , and the figure of merit 

(

p
)

 . The primary aim of the issue is to limit the maximum error 
associated with the transmission ratio employed in automotive production. The issue at hand encompasses a 

h1(x) = C1 − C2 = 0, h2(x) = C1 − C3 = 0, h3(x) = C1 − C4 = 0

g1,2,3,4(x) = Ri ≥ 2, g5,6,7,8(x) = Pi ≥ (0.75 ∗ 745.6998)

Ci =
πdi

2

(

1+
Ni

N

)

+

(

Ni
N − 1

)2

4a
+ 2ai = (1, 2, 3, 4)

Ri = exp

[

µ

{

π − 2sin−1

{(

Ni

N
− 1

)

di

2a

}}]

i = (1, 2, 3, 4)

Pi = stw

[

1− exp

[

−µ

{

π − 2sin−1

{(

Ni

N
− 1

)

di

2a

}}]]

πdiNi

60
i = (1, 2, 3, 4)

ρ = 7200kg/m3, a = 3m,µ = 0.35, s = 1.75MPa, t = 8mm

0 ≤ d1, d2 ≤ 60, 0 ≤ d3,ω ≤ 90

Table 10.  Optimization results of step cone pulley problem.

Algorithm d1 d2 d3 d4 w Result

WOA 41 56 75 90 85 1.6659E + 89

GOA 34 47 54 85 90 9.7914E + 97

GWO 41 56 74 89 89 2.2103E + 92

MPA 39 54 72 86 90 3.0726E + 81

RIME 39 54 72 87 90 2.0414E + 90

SCSO 40 56 74 89 86 5.3743E + 90

CWXSCSO 40 55 73 88 88 1.2490E + 89

Figure 8.  Optimization convergence diagram of step cone pulley problem.
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total of six integer variables, three discrete variables, and eleven distinct geometric and assembly restrictions. 
The mathematical description of the planetary gear train design optimization problem is as follows:

Variable:

Function:

where:

Constraint condition:

where:

Variable interval:

Based on the data shown in Fig. 9 and Table 11, it is evident that CWXSCSO continues to outperform other 
methods in terms of convergence accuracy and convergence speed. This illustrates the potential for widespread 
implementation and utilization of the upgraded algorithm in power machinery.

Robot clamping optimization problem
The issue of robot hand claws is a complex challenge within the field of mechanical structure engineering. The 
goal of the robot clamping optimization is to minimize the disparity between the highest and lowest magnitudes 

x = (x1, x2, x3, x4, x5, x6, x7, x8, x9) =
(

N1,N2,N3,N4,N5,N6,m1,m2, p
)

f (x) = max|ik − iok|, k = {1, 2, . . . ,R}

i1 =
N6

N4
, io1 = 3.11, i2 =

N6(N1N3 + N2N4)

N1N3(N6 + N4)
, iOR = −3.11, IR = −

N2N6

N1N3
, iO2 = 1.84

g1(x) = m2(N6 + 2.5)− Dmax ≤ 0

g2(x) = m1(N1 + N2)+m1(N2 + 2)− Dmax ≤ 0

g3(x) = m2(N4 + N5)+m2(N5 + 2)− Dmax ≤ 0

g4(x) = |m1(N1 + N2)−m1(N6 + N3)| −m1 −m2 ≤ 0

g5(x) = −(N1 + N2)sin

(

π

p

)

+ N2 + 2+ δ22 ≤ 0

g6(x) = −(N6 − N3)sin

(

π

p

)

+ N3 + 2+ δ33 ≤ 0

g7(x) = −(N4 + N5)sin

(

π

p

)

+ N5 + 2+ δ55 ≤ 0

g8(x) = (N3 + N5 + 2+ δ35)
2 − (N6 − N3)

2 − (N4 + N5)
2 + 2(N6 − N3)(N4 + N5)cos

(

2π

p
− β

)

≤ 0

g9(x) = N4 − N6 + 2N5 + 2δ56 + 4 ≤ 0

g10(x) = 2N3 − N6 + N4 + 2δ34 + 4 ≤ 0

h1(x) =
N6 − N4

p
= integer

δ22 = δ33 = δ55 = δ35 = δ56 = 0.5

β =
cos−1

(

(N4 + N5)
2 + (N6 − N3)

2 − (N3 + N5)
2
)

2(N6 − N3)(N4 + N5)

Dmax = 220

P = (3, 4, 5),m1,m2 = (1.75, 2.0, 2.25, 2.5, 2.75, 3.0), 17 ≤ N1 ≤ 96,

14 ≤ N2 ≤ 54, 14 ≤ N3 ≤ 51, 17 ≤ N4 ≤ 46, 14 ≤ N5 ≤ 51, 48 ≤ N6 ≤ 124
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of forces. The challenge of robot grippers encompasses a total of seven continuous design variables– the three 
connecting rods (a, b, c) , the vertical displacement of the linkages (d) , the vertical distance separating the initial 
node of the robotic arm from the end of the actuator (e) , the displacement in the horizontal direction between 
the actuator end and the linkages node (f ) , and the angle of the second and third linkages in a geometric context 
(ρ) . There appear a total of seven distinct limitations. The mathematical description of the robot clamping 
optimization problem is as follows:

Variable:

Function:

Constraint condition:

where:

x = (x1, x2, x3, x4, x5, x6, x7) =
(

a, b, c, d, e, f , p
)

f (x) = −min
z
Fk(x, z)+max

z
Fk(x, z)

g1(x) = −Ymin + y((x),Zmax) ≤ 0

g2(x) = −y((x),Zmax) ≤ 0

g3(x) = Ymax − y((x), 0) ≤ 0

g4(x) = y((x), 0)− YG ≤ 0

g5(x) = l2 + d2 − (a+ b)2 ≤ 0

g6(x) = b2 − (a− d)2 − (l − Zmax)
2 ≤ 0

g7(x) = Zmax − f

Figure 9.  Convergence curve of planetary gear train design optimization problem.

Table 11.  Results of planetary gear train design optimization problem.

Algorithm N1 N2 N3 N4 N5 N6 m1 m2 p Result

WOA 26 24 19 24 20 69 1 1 1 0.2422

GOA 17 16 14 17 14 50 2 1 1 0.2513

GWO 43 35 19 27 15 78 1 3 1 0.2379

MPA 30 24 22 32 22 92 3 1 1 0.2355

RIME 18 16 17 22 14 64 4 1 1 0.2398

SCSO 26 20 16 24 14 69 2 1 1 0

CWXSCSO 17 16 14 17 14 50 3 2 1 0
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Variable interval:

The data presented in Table 12 indicates that the CWXSCSO has the smallest disparity between its maximum 
force and minimum force. The curve convergence accuracy of CWXSCSO is the highest, as depicted in Fig. 10. 
Thus, the modified algorithm exhibits commendable competitive prowess within the field of mechanical 
engineering.

Conclusion
The article introduces a sand cat swarm optimization algorithm which enhances the optimization power by 
including elite decentralization and crossbar technique. The algorithm that has been enhanced introduces a novel 
dynamic exponential factor. The position formula is updated using the elite decentralization technique, followed 
by the introduction of the crossbar strategy to accelerate the rate of convergence and improve the precision 
of search results. All strategies undergo testing using an assortment of 15 benchmark functions. CWXSCSO 
demonstrates superior search efficiency and stability, along with improved local search power and optimization 
accuracy, when compared to SCSO. Among the many strategies, elite decentralization and crossbar strategies 
have been found to be advantageous in enabling the algorithm beyond local optima. Simulation experiments 
were conducted on 10 test functions of CEC2019 and 10 test functions of CEC2021 using CWXSCSO and 6 other 
optimization algorithms. The results show that CWXSCSO outperforms the other 6 optimization algorithms in 
terms of optimization results. Additionally, CWXSCSO has the capacity to produce global optimal solutions for 

α = cos−1

(

a2 + g2 − b2

2ag

)

+�, g =

√

f 2 +
(

z − f
)2

β = cos−1

(

b2 + g2 − a2

2ag

)

−�,� = tan−1

(

d

f − z

)

y(x, z) = 2
(

l + d + csin
(

β + p
))

Fk =
Pbsin(α + β)

2ccos(α)
,Ymin = 50,Ymax = 100,YG = 150,P = 100

0 ≤ d ≤ 50, 100 ≤ c ≤ 200, 10 ≤ e, a, b ≤ 150, 1 ≤ p ≤ 3.14, 100 ≤ f ≤ 300

Table 12.  Results of robot clamping optimization problem.

Algorithm a b c d e f ρ Result

WOA 100 38 100 0 10 100 1 1.4554E − 16

GOA 92 30 100 0 11 100 1 2.6670E − 16

GWO 100 38 199 0 125 100 2 7.3214E − 17

MPA 100 38 200 0 71 100 2 7.2741E − 17

RIME 100 38 200 0 101 100 2 7.3241E − 17

SCSO 100 38 200 0 14 100 1 7.0141E − 21

CWXSCSO 94 32 124 0 10 100 1 0

Figure 10.  Convergence diagram of robot clamping optimization problem.
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certain functions. The feasibility of the modified algorithm in practical engineering issues is further proven by the 
design of pressure vessel, welding beam, reducer, stepping cone pulley, planetary gear train design optimization, 
and robot clamping optimization. consequently, the primary purpose of this stage is to utilize it in order to 
address extensive, intricate multi-objective optimization problems and real engineering implementations.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on 
reasonable request.
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