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Joint transformer architecture 
in brain 3D MRI classification: its 
application in Alzheimer’s disease 
classification
Sait Alp 1, Taymaz Akan 2,3, Md. Shenuarin Bhuiyan 4, Elizabeth A. Disbrow 3,5,6,7, 
Steven A. Conrad 2,8, John A. Vanchiere 5,8, Christopher G. Kevil 4,9 & 
Mohammad A. N. Bhuiyan 2,3*

Alzheimer’s disease (AD), a neurodegenerative disease that mostly affects the elderly, slowly 
impairs memory, cognition, and daily tasks. AD has long been one of the most debilitating chronic 
neurological disorders, affecting mostly people over 65. In this study, we investigated the use of 
Vision Transformer (ViT) for Magnetic Resonance Image processing in the context of AD diagnosis. 
ViT was utilized to extract features from MRIs, map them to a feature sequence, perform sequence 
modeling to maintain interdependencies, and classify features using a time series transformer. The 
proposed model was evaluated using ADNI T1-weighted MRIs for binary and multiclass classification. 
Two data collections, Complete 1Yr 1.5T and Complete 3Yr 3T, from the ADNI database were used 
for training and testing. A random split approach was used, allocating 60% for training and 20% for 
testing and validation, resulting in sample sizes of (211, 70, 70) and (1378, 458, 458), respectively. 
The performance of our proposed model was compared to various deep learning models, including 
CNN with BiL-STM and ViT with Bi-LSTM. The suggested technique diagnoses AD with high accuracy 
(99.048% for binary and 99.014% for multiclass classification), precision, recall, and F-score. Our 
proposed method offers researchers an approach to more efficient early clinical diagnosis and 
interventions.
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Alzheimer’s disease (AD) is distinguished by the accumulation of aberrant protein deposits in the brain, known 
as plaques and tangles, which result in the death of nerve cells and the degeneration of brain tissue. Neural 
degeneration reduces cognitive function and causes mood and behavior changes1,2. AD is typically categorized in 
three stages3,4. The first stage is the preclinical stage, characterized by brain, blood, and cerebrospinal fluid (CSF) 
abnormalities without outward signs5. It is believed that AD pathology begins at least 20 years before symptoms 
appear6. The second stage of the disease is referred to as mild cognitive impairment (MCI), which involves 
cognitive impairment confined to a single cognitive domain, usually memory. Dementia, the final stage of the 
disease, is defined as a cognitive disturbance in more than one domain, often memory and executive function, 
with substantial interference with daily life activities.
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With the recent approval of new drugs for early AD intervention, early detection of AD and differentia-
tion of MCI have become of primary importance for successful disease treatment and management7,8, and to 
slow disease progression and improve the quality of life for those with AD9,10. AD classification is one of the 
most challenging problems neurologists face1. Advances in computer-aided diagnosis (CAD) systems based 
on neuroimaging data tools have improved classification. CAD systems can be divided into conventional and 
deep learning-based techniques. Most traditional approaches to image analysis employ a four-stage pipeline of 
pre-processing, segmentation, feature extraction, and classification9. Deep learning (DL) algorithms have an 
advantage over conventionally based methods because they require little or no image pre-processing. They can 
automatically infer an optimal data representation from raw images without requiring prior feature selection, 
resulting in a more objective and less biased process10–14. CNN-based architectures are used extensively for 
medical image analysis. They have been applied to 2D and 3D ultrasound and MRI images15 and are the deep 
models used most frequently to detect AD15–18. However, a 3D MRI brain image consists of stacked 2D data 
slices. 3D-CNN model to learn spatiotemporal features would be optimal, which is impossible with 2D CNN. 
But, because it requires many parameters and a high amount of computation, the 3D model cannot be used to 
construct deep models15.

Although transformer architecture dominates natural language processing, its use in medical imaging has 
been limited19. However, Vision Transformer (ViT) has recently gained popularity due to its impressive results 
in various medical imaging tasks, including image classification, object detection, and semantic segmentation20. 
ViT took note of the scaling success of Transformers in NLP and applied a standard Transformer to images with 
minimal modifications. Transformer-based architectures have also been used in medical image analysis21,22,24. 
ViT has recently demonstrated superior performance in many computer-vision tasks, making it a viable alter-
native to CNN as a network architecture23. CNNs collect features gradually from local to global by adding 
more convolutional layers. ViT, on the other hand, uses a multi-headed self-attention mechanism to capture 
long-range dependencies. For this approach, the model equally weights all elements in the input sequence for 
superior performance. ViT extracts features across the entire image without degrading image resolution, pre-
venting spatial loss from information skipping. Thus, ViT is ideal for brain imaging analysis. The self-attention 
strategy of ViT has the capacity to accurately capture the interdependencies between various dispersed networks 
of brain regions21.

ViT is based on the concept of Transformers from natural language processing (NLP) applied to medical 
images. It uses a standard Transformer architecture, with minimal modifications, to process MRI images instead 
of text. Other neural network models, which process the image sequences sequentially (RNN) or in parallel 
(CNN), require more time to train and infer the results, and fail to control for long-term dependencies among 
the image layers24. The joint transformer handles long-range dependencies, avoids recursion, and allows parallel 
computation to reduce training time and avoid performance drops due to long-range dependencies24.

ViT has outperformed CNN in several computer-vision tasks, giving it an appropriate network architectural 
option. We were motivated to use ViT’s benefits to diagnose AD patients using 3D MRIs. The lack of large-scale 
datasets in this field is one of the major obstacles to training deep models from scratch. The model can adapt to 
the smaller target dataset by using transfer learning to learn from a larger dataset. The 3D data from a plane was 
divided into a 2D slice array in order to benefit from transfer learning using a pre-trained ViT. Furthermore, 
it should be possible for slice-based methods to track the dependencies of related features across slices. The 
sequence classification task uses a time series classification with a transformer to get around this issue. We have 
combined time series transformers and pre-trained ViT to create a deep learning-based classification system 
for AD.

The goal of this article is twofold with respect to the proposed ViT: (1) evaluate the predictive performance of 
ViT combined with a transformer neural network; and (2) capture long-range dependencies and the global con-
text of MRIs, allow parallel computation to reduce training time, and avoid performance drops due to long-range 
dependencies. We propose testing the hypothesis that ViT with a time series transformer performs better for AD 
patient classification based on MRI by using the self-attention mechanism to capture long-range dependencies 
and contextual relationships from MRI images.

Methods
We used ViT to derive T1-weighted MRI slice attributes and a transformer neural network model for sequential 
feature classification, maintaining inter-association between the slices. The transformer neural network archi-
tecture and the ViT architecture for the sequential feature classification model are explained in Supplementary 
Sections 1 and 1.1. The summary of the ADNI dataset and steps of the proposed method are described in Sec-
tions 2.1–2.4, and the pipeline of the proposed method’s architecture is shown in Fig. 1.

Dataset
Data used in this study was obtained from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership led by Principal Investi-
gator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early 
Alzheimer’s disease (AD).

We performed binary and multiclass classification using T1-weighted 3D MRI scans from ADNI25,26. We 
trained and tested the models on subjects who had scans taken at screening and at 6- and 12-month visits 
(ADNI1: Complete 1Yr 1.5T data) and on subjects who had scans taken at screening, and at 6 months, 1 year, 
and 18 months (MCI only), and 2 and 3 years (normal and MCI only) (ADNI1: Complete 3Yr 3T data). We tested 
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the model performance in three types of MRI scans (from the top down, axial plane; from front to back, coronal 
plane; and side to side, sagittal plane). We randomly split each data set into 60% training, 20% testing, and 20% 
validation sets. We performed extensive experiments on binary (NC/AD) and multi-classification tasks (NC/
MCI/AD) to assess the proposed method. The details of model variants are listed in Supplementary Table S1. 
The configuration of training parameters is summarized in Supplementary Table S2. Both binary and multi-
classifications were performed for all sagittal, coronal, and axial planes. We also implemented different baseline 
architectures to make comparisons with the proposed method. The details of baseline model variants are listed 
in Supplementary Table S3. The Complete 1Yr 1.5T data results are provided in Supplementary Section 3. The 
descriptive statistics of the ADNI data are provided in Table 1.

MRI Pre‑processing
T1-weighted MRI scans were standardized in Montreal Neurological Institute (MNI) space. For comparison 
across subjects each skull was stripped using Statistical Parametric Mapping 12 (SPM12)27 and Computational 
Anatomy Toolbox (CAT12; http://​www.​neuro.​uni-​jena.​de/​cat/) in MATLAB (see Fig. 2).

Handling 3D MRI using 2D ViT
ViT models are pre-trained using a vast number of 2D data (mageNet21K28 and 21,843 classes at a resolution 
of 224× 224 pixels. By taking advantage of transfer learning with a pre-trained 2D network model, we split the 
standardized 3D MRI into 2D slices. In the 2D slices, the sizes of each slice in the axial, coronal, and sagittal 
planes were 113× 137 , 113× 113 , and 137× 113 pixels, respectively.

Each slice was then converted to an image of  224× 224 pixels, and each slice was divided into 14× 14 patches 
where each patch was 16× 16 pixels (see Fig. 3).

These patches, which were flattened into a vector as a sequence of 196 patches, were considered to be an input 
token for the model, called the self-attention model. Later, we applied a multiple-layer self-attention model and 
feed-forward neural network to process the sequence of patched pixels and perform the feature selection. The 
proposed model comprised multiple transformer blocks, each applying the multi-head attention layer as a self-
attention mechanism to the patch sequence. Finally, the output of the transformer encoder was processed via a 

Figure 1.   The proposed pipeline of the ViT-TST. MRI images were pre-processed using CAT12 (image 
registration to standardize the images and skull stripping to reduce biases by ensuring consistent voxel 
intensities). ViT was used from each plane to derive slice attributes. Finally, the time series transformer was used 
to classify the feature sequences.

Table 1.   The details of data collections. # NC, cognitively normal; MCI, mild cognitive impairment; AD, 
Alzheimer’s disease.

Image scans# NC MCI AD Male Female Age (years)

ADNI1: Complete 3Yr 3T 351 129 145 77 194 157 75 ± 7.07

ADNI1: Complete 1Yr 1.5T 2294 705 1113 476 1341 953 75 ± 6.6

http://www.neuro.uni-jena.de/cat/
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classifier head to produce the final class probability output. Figure 4 provides a visual summary of the proposed 
model.

Sequence classification using a time series transformer
After features extraction using ViT, a transformer model24 was used as a tensor for time-series classification to 
maintain the relationships between the slices. Due to the self-attention mechanisms of transformer-based time 
series classifications, long-term dependencies between time steps (features of each slice) were captured more 
effectively. We then used feature embedding to map each token sequence to a meaningful numeric vector. Since 
we used ViT to map the slices of each MRI to a sequence of dimensional numerical features, this transformer did 
not need an embedding module. As each slice provides dimensional numerical features, the MRI classification 
problem was changed to a multi-dimensional time series classification. The summary of the model is illustrated 
in Fig. 5.

By utilizing transfer learning with the ViT, we adeptly address the challenges posed by the voluminous nature 
of 3D MRI datasets. Splitting the 3D MRIs into 2D slices allows for the application of pre-trained models, which 
are predominantly designed and optimized for 2D image data. This strategy not only circumvents the need for 
large 3D medical imaging datasets but also uses the power of models trained on extensive 2D image datasets.

Furthermore, our method extends the benefits of transfer learning beyond mere feature extraction from 
individual slices. By applying transfer learning to the time series classification of these extracted features, we 

Coronal Sagittal Axial

A

B

C

Figure 2.   A sample of an MRI slice in three planes (coronal, sagittal, and axial). (A) Original MRI; (B) 
segmented anatomical image with the skull removed; and (C) segmented anatomical scan warped to MNI space.

Coronal Sagittal Axial

Figure 3.   14× 14 image patches. Patches of 16× 16 pixels were taken from the input images, with 14× 14 
patches.
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innovatively create a two-tiered application of transfer learning. This approach capitalizes on the inherent tem-
poral information within MRI scans, treating the progression of slices as a sequence that can provide valuable 
insights into the underlying medical conditions.

This dual application of transfer learning—first, to the feature extraction from 2D slices, and second, to the 
temporal analysis of these features—ensures a comprehensive utilization of available data. It effectively applies 
deep learning advances to medical imaging issues, specifically managing 3D MRI data with limited resources 
and data privacy concerns.

Results
The analysis was performed in two main steps: feature extraction and sequence modeling tasks on ADNI1: 
Complete 3Yr 3T and ADNI1: Complete 1Yr 1.5T MRI data. First, we compared our classification result with 
CNN alongside Bi-LSTM, CNN alongside Transformer, and ViT alongside Bi-LSTM. Then, we compared the 
classification performance, model accuracy, precision, F-score, and recall. The results for ADNI1: Complete 1Yr 
1.5T are shown in the Supplement Section 2.1.

Experiments on ADNI1: complete 3Yr 3T
Binary classification
The results from the four architectures were similar, with CNN-TST and ViT-TST achieving the highest accuracy 
and precision scores of 98.81% and 0.99, respectively. Meanwhile, CNN-Bi-LSTM and ViT-Bi-LSTM had slightly 
lower scores but still performed well, with accuracy scores of 97.14% and 97.38%, respectively. To measure the 
ability of our proposed model to capture the positive instances, we calculated the recall score, and to measure 
the balance between the precision and the recall, we calculated the F-Score. The F-scores and recall scores for 

Figure 4.   A visual summary of the proposed method. ViTs consist of several transformer blocks. Each 
transformer block comprises two sub-layers, a feed-forward layer and a multi-head self-attention layer.

Figure 5.   Summary of the proposed model. Features were extracted using ViT and the sequence of features was 
classified using the time series transformer model.
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all architectures were very similar, ranging from 0.97 to 0.99, indicating good performance in these metrics (see 
Table 2).

The architectures CNN-Bi-LSTM and ViT-TST had the highest accuracy, at 98.333%, while CNN-TST had 
the lowest accuracy, at 97.381%. Based on precision, F-score, and recall, the CNN-Bi-LSTM and ViT-TST archi-
tectures achieved the highest performance, with precision and recall scores of 0.98 and an F-score of 0.98. The 
CNN-TST also had a strong performance, with a precision and recall of 0.98 and an F-score of 0.97. The ViT-
Bi-LSTM model had the lowest precision score, 0.97, but still achieved a strong F-score and recall score of 0.98 
and 0.97, respectively.

The table shows the performance of four different deep-learning architectures on a particular task. The ViT-
TST architecture performed the best among all the models, achieving the highest accuracy of 99.048% and the 
highest scores for precision, F-score, and recall. The ViT-Bi-LSTM architecture also performed well, achieving an 
accuracy of 98.571% and competitive precision, F-score, and recall scores. The CNN-TST architecture attained 
an accuracy of 98.333% and high precision, F-score, and recall scores. Overall, the ViT-TST and ViT-Bi-LSTM 
architectures were better suited for the given task, followed by CNN-TST. The CNN-Bi-LSTM architecture was 
the least effective, although the differences were minor.

The results on sagittal, coronal, and axial planes for binary classification (NC and AD) are listed in Table 2.
To calculate the performance of the proposed model for binary classification, we calculated the confusion 

matrix based on the proposed method and compared it with the other methods. The performance of the pro-
posed method for binary disease classification using different MRI planes is shown in Fig. 6. The diagonal cells 
indicate the prediction performance of the models when used to identify the true positive cases. ViT with time 
series transformer performed better than the other models for all the planes.

Multiclass classification
ViT-TST architecture achieved the highest accuracy and precision scores for multiclass classification based on 
sagittal planes. The CNN-Bi-LSTM model achieved an accuracy of 98.028%, with a precision of 0.98, an F-score 
of 0.98, and a recall of 0.98. The ViT-TST model achieved an accuracy of 98.310%, with a precision of 0.98, an 
F-score of 0.98, and a recall of 0.98. All four architectures had the best precision score of 0.98, with the ViT-TST 
architecture achieving the highest accuracy and precision scores (see Table 3).

For the coronal plane, CNN-Bi-LSTM achieved an accuracy of 96.479%, with a precision of 0.96, an F-score of 
0.96, and a recall of 0.96. ViT-TST achieved the highest accuracy, 99.014%, with a precision of 0.99, an F-score of 
0.99, and a recall of 0.99. Overall, the CNN-Bi-LSTM architecture had lower scores than the other architectures, 
especially for accuracy.

For the axial plane, the ViT-Bi-LSTM and CNN-TST architectures also performed well, with accuracy, preci-
sion, F-score, and recall values above 0.98. The CNN-Bi-LSTM architecture had the lowest precision and F-score 
values but achieved high accuracy and recall value. These results suggest that the ViT-TST architecture is the 
most efficient for this task.

The results on sagittal, coronal, and axial planes for multiclass classification (NC, MCI, and AD) are listed 
in Table 3.

The ViT-TST algorithm excelled in multiclass classification, demonstrating superiority in true positive (TP), 
true negative (TN), false positive (FP), and false negative (FN). It consistently demonstrated exceptional per-
formance in accurately classifying instances belonging to various classes, with high TP and TN values across 
all classes. This demonstrated its ability to accurately identify positive instances and differentiate them from 

Table 2.   Results for binary disease classification on ADNI1: Complete 3Yr 3T. *TST, Time series transformer; 
ACC, accuracy; Precision, accuracy of positive prediction; Recall, accuracy of positive instances; F1-Score, 
balance between precision and recall. Significant values are in bold.

Architecture ACC​ Precision Recall F-score

Sagittal

 CNN-Bi-LSTM 97.143% (± 3.658) 0.97 0.97 0.97

 CNN-TST 98.810% (± 2.195) 0.99 0.99 0.99

 ViT-Bi-LSTM 97.381% (± 2.704) 0.97 0.97 0.97

 ViT-TST 98.571% (± 2.857) 0.99 0.98 0.98

Coronal

 CNN-Bi-LSTM 98.333% (± 2.619) 0.98 0.98 0.98

 CNN-TST 97.381% (± 4.185) 0.98 0.97 0.97

 ViT-Bi-LSTM 97.619% (± 2.817) 0.97 0.97 0.98

 ViT-TST 98.333% (± 2.827) 0.98 0.98 0.98

Axial

 CNN-Bi-LSTM 96.190% (± 4.012) 0.96 0.96 0.96

 CNN-TST 98.333% (± 2.143) 0.98 0.98 0.98

 ViT-Bi-LSTM 98.571% (± 2.182) 0.99 0.98 0.98

 ViT-TST 99.048% (± 1.905) 0.99 0.99 0.99
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Sagittal Plane

ViT-TST ViT-Bi-LSTM CNN-TST CNN-Bi-LSTM
Coronal Plane

ViT-TST ViT-Bi-LSTM CNN-TST CNN-Bi-LSTM
Axial Plane

ViT-TST ViT-Bi-LSTM CNN-TST CNN-Bi-LSTM
Figure 6.   Confusion matrices for binary classification on ADNI1: Complete 3Yr 3T.

Table 3.   Results for multiclass disease patient classification on ADNI1: complete 3Yr 3T. *TST, time series 
transformer; ACC, accuracy; Precision, accuracy of positive prediction; Recall, accuracy of positive instances; 
F1-Score, balance between precision and recall. Significant values are in bold.

Architecture ACC​ Precision Recall F-score

Sagittal

 CNN-Bi-LSTM 98.028% (± 0.934) 0.98 0.98 0.98

 CNN-TST 97.324% (± 2.394) 0.97 0.97 0.97

 ViT-Bi-LSTM 97.746% (± 2.456) 0.98 0.97 0.97

 ViT-TST 98.310% (± 1.380) 0.98 0.98 0.98

Coronal

 CNN-Bi-LSTM 96.479% (± 2.205) 0.96 0.96 0.96

 CNN-TST 97.465% (± 2.423) 0.98 0.97 0.97

 ViT-Bi-LSTM 97.465% (± 2.164) 0.97 0.97 0.97

 ViT-TST 99.014% (± 1.672) 0.99 0.99 0.99

Axial

 CNN-Bi-LSTM 96.761% (± 2.601) 0.97 0.96 0.96

 CNN-TST 98.169% (± 2.820) 0.98 0.98 0.98

 ViT-Bi-LSTM 98.028% (± 1.804) 0.98 0.98 0.98

 ViT-TST 99.014% (± 1.268) 0.99 0.99 0.99
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negatives. Additionally, the algorithm minimized false negatives (FN), reducing the risk of misclassifying positive 
occurrences as negatives, crucial in medical diagnostic applications such as AD classification. The ViT-TST also 
excelled in managing false positives (FP), ensuring that instances from other classes were correctly identified 
as non-relevant. Overall, the superiority of ViT-TST in TP, TN, FN, and FP further solidified its position as a 
highly effective and reliable choice for multiclass disease classification tasks.

The performance of the proposed method based on a confusion matrix for multiclass classification on dif-
ferent planes is shown in Fig. 7.

We also compared our proposed model with conventional deep models. Tables 4 and 5 show numerical results 
from different deep learning model for the binary and multiclassification tasks on ADNI datasets and compared 

Sagittal

ViT-TST ViT-Bi-LSTM CNN-TST CNN-Bi-LSTM
Coronal

ViT-TST ViT-Bi-LSTM CNN-TST CNN-Bi-LSTM
Axial

ViT-TST ViT-Bi-LSTM CNN-TST CNN-Bi-LSTM
Figure 7.   Confusion matrices of axial planes for multiclass disease patient classification (NC, MCI, and AD) on 
ADNI1: Complete 3Yr 3T.

Table 4.   Performance compared with state-of-the-art methods for binary disease patient classification.

Work Input

Image scans

Method

NC/AD classification

(NC/MCI/AD) ACC (%) SEN (%) SPE (%)
29 Voxel based 429/–/858 3D CNN 90.3 82.4 96.5
30 Voxel based 119/233/97 3D DenseNet 88.9 86.6 90.8
31 Voxel based 330/299/299 3D CNN 93.2 95.0 89.8
32 Patch based 324/316/319 Self-attention 98.0 97.7 98.2
33 Voxel based 457/808/346 3D ResNet 94.00 – –
34 Voxel based 407/–/418 3D CNN 99.20 98.90 99.50
35 ROI based 209/401/188 2.5D CNN 79.90 84.00 74.80

Proposed method Sequence based 129/145/77 ViT-TST 99.048 99.5 –

Proposed method Sequence based 705/1113/476 ViT-TST 95.169 95.5
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with our proposed model. For binary classification, the proposed method outperformed other traditional models. 
Moreover, as shown in Table 5, the proposed method ranked first among all competitors.

The results on sagittal, coronal, and axial planes for multiclass disease patient classification (NC, MCI, and 
AD) are shown in Table 5.

The ADNI1: Complete 1Yr 1.5T results are shown in Supplement Section 2.2.1.

Discussion
In this study, we proposed use of a vision transformer with sequential transformer architecture for binary and 
multiclass MRI classification. We also compared the performance of the proposed model with other traditional 
image analysis architectures such as convolutional neural networks and long short-term memory networks on 
medium and large-sized ADNI datasets.

Reducing false negatives (FN) is crucial in medical diagnosis and healthcare, since models can inaccurately 
categorize positive occurrences as negative, causing failure to identify or detect cases. In AD categorization, 
false negative outcomes may misclassify individuals as being in good health, preventing timely identification 
and administration of appropriate medical interventions. The ViT-TST algorithm appears to be the best choice 
for binary AD classification. It provides a balanced combination of accuracy and sensitivity, which is crucial 
for medical applications where both false positives and false negatives can have significant implications. Since 
minimizing FN is a top priority in AD classification, ViT-TST would be the most suitable choice.

Our proposed method, the ViT-TST, outperformed the ViT-Bi-LSTM, CNN-TST, and CNN-Bi-LSTM mod-
els when classifying MCI patients. The ViT-TST achieved higher accuracy, sensitivity, or recall, resulting in an 
increase in the number of TP predictions and a decrease in the number of FN. This suggests that the ViT-TST 
accurately identified more MCI patients, reducing the chances that they would be misclassified as healthy or as 
belonging to other classes. The viability of the ViT-TST for multiclass disease classification tasks, particularly in 
the diagnosis of AD, is supported by its promising results.With the approval of new drugs for early intervention 
in AD7,8, early detection of AD and differentiation of MCI have become critical. Classifying MCI vs. NC or AD 
in a multiclassification framework is challenging because it is a heterogeneous condition with many subtypes 
and causes. Many studies have overlooked this problem and have experimented only with binary classification. 
However, our experiments were performed on binary (NC/AD) and multiclass disease classification tasks (NC/
MCI/AD), and the performance of each model was evaluated using accuracy, precision, F-score, and recall.

When averaging the accuracy rates over all planes for binary disease classification on the ADNI1: Complete 
3Yr 3T data, ViT-TST achieved the highest average accuracy of 98.65% (see Table 2), followed closely by CNN-
TST with 98.17%. ViT-Bi-LSTM and CNN-Bi-LSTM also performed well, with average accuracies of 97.85% and 
97.22%, respectively (see Table 2). These results suggest that all four architectures are effective for binary disease 
patient classification on this dataset, with CNN-Bi-LSTM being the most effective.

When averaging the accuracy rates over all planes for multiclass disease classification on the ADNI1: Com-
plete 3Yr 3T, ViT-TST achieved the highest average accuracy of 98.77%, followed by ViT-Bi-LSTM with 97.74%. 
CNN-TST and CNN-Bi-LSTM also performed well, with average accuracies of 97.64% and 97.08%, respectively 
(see Table 3). These results suggest that all four architectures are effective for multiclass classification on this 
dataset, with ViT-TST being the most effective.

Evaluation of all the results obtained revealed the ViT-TST architecture to be consistently among the top-
performing architectures across all datasets and classification tasks. Therefore, the ViT-TST architecture may be 
a good choice when designing a classification model for similar datasets and tasks if computational resources 
and other practical considerations are allowed.

Thus, we have devised a way to classify AD based on deep learning by combining pre-trained ViT and time 
series transformers. Many tasks have limited data, making training a model from scratch difficult. In small or 
unbalanced target datasets, transfer learning lets the model learn from a large dataset and adapt to the smaller 
target dataset. Transfer learning in ViT improves generalization, training speed, and adaptability to datasets and 

Table 5.   Performance compared with state-of-the-art methods for multiclass disease patient classification.

Work Input

Image scans

Method

NC/MCI/AD classification (%)

(NC/MCI/AD) ACC​ Recall Precision SPE F1-Score
36 Slice based 300/300/300 VGGNet. 16 91.85 – – – –
37 Voxel based 70/70/70 3D CNN 89.10 – – – –
38 Slice based 229/243/188 ResNet-18 56.80 – – – –
39 Slice based 169/234/101 2D CNN 96.00 96.0 – 98.0 –
33 Voxel based 574/808/346 3D ResNet 87.00 – – – –
40 Voxel based 207/215/193 3D VGGNet 91.13 – – – –
41 Slice based 50/50/50 VGGNet-16 95.73 96 96.33 – 95.66
42 Voxel based 351/297/221 3D DenseNets 97.52 97 97.13 – 97.02
43 Patch based 475/224/70 3D CNN 97.48 95.33 97.33 97.0
44 Slice based 25/13/25 ResNet18 and DenseNet121 98.21 98.14 – 98.14 –

Proposed method Sequence-based 129/145/77 ViT-TST 99.01 99.0 99.0 99.0

Proposed method Sequence-based 705/1113/476 ViT-TST 91.42 91.0 92.0 – 90.0
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tasks; the proposed method generalizes well when trained on insufficient amounts of data. To take advantage 
of transfer learning with a pre-trained ViT, the 3D data from a plane were split into a 2D slice array. The prob-
lem with slice-based approaches such as CNN is that they fail to retain the dependencies of associated features 
between slices. To overcome this problem, the sequence classification task uses a time series classification with 
a transformer. Another alternative is to use 3D deep models; however, transfer learning with a pre-trained 3D 
is not currently available. Therefore, these approaches do not generalize well when trained on insufficient data.

Conclusions
Overall, our results show that all four architectures achieved high levels of accuracy and performance on binary 
and multiclass disease classification tasks. Based on accuracy scores, all models performed well. However, we 
conclude that the Vi-TST and ViT-Bi-LSTM models perform better than the CNN-TST and CNN-Bi-LSTM mod-
els in terms of long-term dependencies among the spatial and temporal patterns in dynamic MRI sequences. In 
addition, they capture the global context using the self-attention mechanism to ensure that the relevant informa-
tion from the entire or sequence of images is considered during classification, which reduces overfitting. Transfer 
learning with the ViT can efficiently handle large 3D MRI datasets by splitting them into 2D slices and applying 
pre-trained models. This approach not only minimizes the need for large datasets but also utilizes models trained 
on extensive 2D image datasets. The method also extends transfer learning beyond feature extraction to time 
series classification, providing valuable insights into underlying medical conditions. We gain deeper understand-
ing of the underlying medical conditions by leveraging the attention mechanism in both feature extraction and 
classification, demonstrating a sophisticated combination of advanced AI techniques for medical image analysis.

Data availability
No datasets were generated or analysed during the current study.
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