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In‑situ particle analysis 
with heterogeneous background: 
a machine learning approach
Adeeb Ibne Alam 1, Md Hafizur Rahman 3, Akhter Zia 1, Nate Lowry 3, 
Prabuddha Chakraborty 3, Md Rafiul Hassan 2 & Bashir Khoda 1*

We propose a novel framework that combines state‑of‑the‑art deep learning approaches with pre‑ and 
post‑processing algorithms for particle detection in complex/heterogeneous backgrounds common 
in the manufacturing domain. Traditional methods, like size analyzers and those based on dilution, 
image processing, or deep learning, typically excel with homogeneous backgrounds. Yet, they often 
fall short in accurately detecting particles against the intricate and varied backgrounds characteristic 
of heterogeneous particle–substrate (HPS) interfaces in manufacturing. To address this, we’ve 
developed a flexible framework designed to detect particles in diverse environments and input types. 
Our modular framework hinges on model selection and AI‑guided particle detection as its core, with 
preprocessing and postprocessing as integral components, creating a four‑step process. This system 
is versatile, allowing for various preprocessing, AI model selections, and post‑processing strategies. 
We demonstrate this with an entrainment‑based particle delivery method, transferring various 
particles onto substrates that mimic the HPS interface. By altering particle and substrate properties 
(e.g., material type, size, roughness, shape) and process parameters (e.g., capillary number) during 
particle entrainment, we capture images under different ambient lighting conditions, introducing a 
range of HPS background complexities. In the preprocessing phase, we apply image enhancement 
and sharpening techniques to improve detection accuracy. Specifically, image enhancement adjusts 
the dynamic range and histogram, while sharpening increases contrast by combining the high pass 
filter output with the base image. We introduce an image classifier model (based on the type of 
heterogeneity), employing Transfer Learning with MobileNet as a Model Selector, to identify the 
most appropriate AI model (i.e., YOLO model) for analyzing each specific image, thereby enhancing 
detection accuracy across particle–substrate variations. Following image classification based on 
heterogeneity, the relevant YOLO model is employed for particle identification, with a distinct YOLO 
model generated for each heterogeneity type, improving overall classification performance. In the 
post‑processing phase, domain knowledge is used to minimize false positives. Our analysis indicates 
that the AI‑guided framework maintains consistent precision and recall across various HPS conditions, 
with the harmonic mean of these metrics comparable to those of individual AI model outcomes. 
This tool shows potential for advancing in‑situ process monitoring across multiple manufacturing 
operations, including high‑density powder‑based 3D printing, powder metallurgy, extreme 
environment coatings, particle categorization, and semiconductor manufacturing.

Keywords Heterogeneous image, Particle detection with deep learning, Particle entrainment, Image 
processing, YOLO

Powder particles and granular materials are important forms of material commonly used in manufacturing parts 
such as additive  manufacturing1 and powder  metallurgy2, transforming surfaces for rust  protection3–5, controlling 
roughness and  conductivity6, creating meta  surface7,8, enabling self-cleaning hydrophilic  surfaces9,10, enhancing 
properties like viscosity  modifications11. Particle-size composition plays a key role for the functionality as well as 
 performance12 of the manufactured part and coating properties. The characteristics of suspensions, emulsions, 
and mixtures often used in powder-based manufacturing depend largely on powder materials size, shape and 
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distribution of powder materials. These factors control the porosity and mechanical properties of  sintered13 and 
additively manufactured  samples14, improves flowability and wettability of yield stress  fluids15, and influence 
thermal and electrical  conductivity16. Therefore, characterizing the particle size distribution before and during 
manufacturing becomes important at advanced production and scientific  facilities17–19.

Among many powder manufacturing processes, melt atomization processes are widely used in industries due 
to their better control in shape and distribution of particles. However, polydispersity is the intrinsic characteristic 
of the particle produced and often requires classification and separation. For bulk particles, their size and distri-
bution are often measured with particle size analyzer (i.e., laser diffraction technique) during the preprocessing 
stage of their applications at a controlled environment as shown in Fig. 1a. This bulk particle analysis technique 
requires some degree of dilution and may compromise measurement  accuracy20. Particle size analysis is also 
performed on static or dynamic images by different image analysis techniques. Static image analysis is performed 
when the particles are stationary and motionless whereas dynamic image analysis is carried out in a media of 
gas or liquid with particles and  matrix21. The image-based particle analysis techniques are effective in the pres-
ence of distinguishable morphologies (i.e., polydispersity, color, and shapes). Static images can be obtained by 
optical, confocal, scanning electron microscopy (SEM) or Transmission electron microscopy (TEM) techniques. 
The quantitative analysis of SEM or optical images is important to understand the powder characteristics for its 
variety of applications. Visual and structural information including particle size range, size distribution shape 
and morphology obtained from images is crucial since it provides technical and scientific insights to the process 
of material synthesis, fabrication, and manufacturing  operations22.

Most image analysis tools drive researchers to extract information from the microscopic and spectroscopic 
images without prepossessing the particles (e.g., adding media). However, these tools are often user specific, 
involve semantic knowledge, and produce qualitative results. A widely used, conventional image processing tool, 
applied for general purposes is ImageJ developed by National Institute of Health (NIH)23. Kumara et al. per-
formed image analysis of gravels (2–19 mm) through ImageJ  software24. They captured the 2D images of gravels 
in a transparent sheet as background using a digital single-lens reflex (DSLR) camera. Berardi et al. studied the 
size expansion of tablets during disintegration for pharmaceutical  applications25. They also captured images 
of tablets with a DSLR camera and performed image analysis through ImageJ to determine projected area and 
aspect ratio. Lee et al.26 analyzed the confocal laser scanning microscopy (CLSM) images of pellet coating using 
ImageJ and calculated the coating thickness from the irregular shape measurement of pellets. He et al.27 studied 
the influence of process parameters including solution concentration, collection distance, voltage and collection 
speed on the diameter and orientation of nanofibers made of electrospinning process. They investigated the sur-
face morphology of nanofibers using SEM images and analyzing it through ImageJ. Depending upon the sample 
and imaging conditions, this software sometimes emits particles and incorrectly identifies particle boundaries 
which requires labor intensive post-processing.

Apart from ImageJ software, several automatic and semiautomatic software packages have also been used to 
determine particle size distribution. Mondini et al.28 developed a custom software named Pebbles to measure the 
surface morphology and diameter of nanoparticles. Phromsuwan et al.29 analyzed the nanoparticle size distribu-
tion in transmission electron microscopy (TEM) images using an automated image processing technique called 
Otsu binarization. Laramy et al.30 also developed particle analysis software with a customized algorithm and the 
MATLAB image analysis toolbox to detect the structure of nanoparticles in SEM images.

With the recent development in machine vision and deep learning process, researchers have reported auto-
mated image processing techniques to identify the surface morphology and segment regions of optical or spec-
troscopy images. Xu et al.31 identified microstructure properties in SEM images using machine learning (ML) 
techniques. Modarres et al.32 introduced convolutional neural network (CNN)- based models to extract surface 
morphological properties from SEM images. Massarelli et al.33 analyzed images from digital cameras and used 
computer vision and ML algorithms to count and classify the dimensional and morphological properties of 
microplastics in water. The morphology of core–shell and rod nanostructures is determined from SEM images 
using a combination of computer vision and ML techniques, available as a GUI software  package22. The developed 
ML algorithms work efficiently with distinguishable background, controlled illumination, and high-resolution 
images. Thus, the background substrate containing the particles is often chosen to ensure contrast, which helps 
these algorithms in extracting a clear particle outline. This analysis is feasible when particles are in a bulk state, 

Figure 1.  Particle images at different environment (a) highly controlled SEM image of NicroBraz particles only 
(low noise) (b) molybdenum particles on substrate as glass slide (medium background distraction) (c) polymer 
entrapped NicroBraz particles on tungsten rod substrate (heterogeneous interface).
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meaning they are analyzed as raw material before **their applications, in a controlled or semi-controlled envi-
ronment (pre-processing stage), as shown in Fig. 1a,b.

However, when particles are at the intermediate state of a manufacturing process (work-in-process), image 
background noise can arise from particle, substrate and process trio, as shown in Fig. 1c. Analyzing particles at 
such a heterogenous interface can be challenging due to the lack of contrast, high image noise, uneven illumina-
tion, and hazy backgrounds, as shown in Fig. 2. For example, in our recent work we developed a poly-disperse 
inorganic particle sorting process by entrapment onto a cylindrical  rod34. We used Ni-based brazing powder 
(Nicrobraz 51; Wall Colmonoy company, Ohio; Spherical dia range ~ 0–100 µm) as bulk particles. The bulk 
particles are sieved with Gilson Performer III shaker through Stainless Steel 635 Mesh (20 µm) to reduce the 
polydispersity and are analyzed using SEM (Avg. 5.69 μm) before the sorting process. In our developed particle 
sorting process, the spherical micro-particles are added into a liquid carrier system (LCS) with binder polymer. 
A thin metal rod is dipped into the mixture, and particles of different sizes are entrained on the rod’s surface due 
to the balance between viscous drag, and capillary action. Entrainment based sorting of bi-dispersed ceramic 
particles is also proposed by Sauret et al.35 where a flat glass substrate is used for dipping and entrained glass 
particles are analyzed for size distribution. The entrained or entrapped particle on the substrate often needs to be 
characterized in-situ before they can be sent to the next step of the manufacturing or coating process. For exam-
ple, in our recent work, we used the entrained particles on an elastic rod to control the friction  coefficient36,37. By 
analyzing the entrained particles, we can predict and hence control the friction coefficient for various applications 
including robot grippers, knot design, wire entanglement etc.

The entrained particles on metal rods have been used to develop a novel porous structure manufacturing 
technique with rod reported in our earlier  work38,39. The characteristics of the entrained particles on the substrate 
define the diffusion bonding strength and thus their size and distribution are important to analyze before they are 
placed in a vacuum furnace. However, the particle–substrate-process trio creates a heterogeneous interface as a 
background (shown in Fig. 1), which is often difficult to analyze with conventional image processing techniques. 
Due to the deep drawing fabrication of the metal rod, a rough and irregular surface morphology is common, 
which contributes further towards the heterogeneity of the image. As a result, the pixel contrast between particle 
and substrate is difficult to differentiate in such a heterogeneous surface. Similar complexity can occur for in-situ 
measurement of particles in other manufacturing processes (e.g., brazing, sintering, refractory material coating, 
spray painting etc.). In such circumstances, most existing tools (e.g., ImageJ, variable thresholding) generate 
significant errors in particle analysis without labor intensive semantic knowledge (compared in the result sec-
tion). For example, as shown in Fig. 1, due to localized variation, a single image processing parameter cannot 
detect particles across the entire region.

In this work, we have:

 (i) Dealt with the challenge of in-situ particle analysis from complex and varied backgrounds typical of 
heterogeneous particle–substrate (HPS) interfaces in the manufacturing industry, which is scarce in 
literature.

 (ii) Defined and demonstrated heterogeneous particle–substrate (HPS) interface as complex background, 
which are common in powder-based manufacturing processes.

 (iii) Implemented and tested traditional particle detection methods, such as those using size analyzers and 
based on dilution, image processing, or deep learning that are popular for particle identification from 
homogeneous background and demonstrate their struggle to accurately detect particles against the HPS 
interfaces.

Figure 2.  Conventional image processing algorithms applied to a heterogeneous image taken by VHX 7000 
digital 4 K microscope after dip coating process. (a) Shows the particle–substrate system with 80X Zoom (b) 
with 1000X zoom, two insets show two different regions of the same image. (c) shows the effect of traditional 
image processing methods applied to the two inset images, which generates completely different outcomes for 
the same input.
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 (iv) Proposed and developed a novel framework by combining a state of art deep learning with image pre- 
and post-processing to address the aforementioned challenge.

 (v) Proposed and developed a set of novel post processing algorithms for enhancing the efficacy of the 
particle detection framework.

 (vi) Conducted extensive experimentation to evaluate the efficacy of the proposed framework.

Background and motivation
Conventional image processing algorithms can automatically identify and count particles in an image and can 
measure their size, distribution, surface coverage. However, these algorithms have significant drawbacks when 
applied to counting particles, especially in the heterogeneous backgrounds discussed earlier. Moreover, the 
performance of the image processing techniques is highly dependent on several parameters, including image 
quality, light source, background surface texture, optimal threshold value, and particle morphology.

For example, the heterogeneous images in Fig. 3 illustrate the performance of image processing under varying 
illumination conditions. The image presented in Fig. 3a utilizes full ring illumination to transform the gray-scale 
image into a black and white image. Then the watershed algorithm along with the morphological operations 
(dilation and opening) are applied to identify the regions covered by individual particles. An empirical threshold 

Figure 3.  Demonstration inconsistency in particle identification outcome in HPS images with different existing 
algorithm (a) Image taken with full circle illumination and custom thresholding algorithm to segment the 
particle coverage area, (b) Image taken with coaxial full ring illumination segmentation is done by changing 
parameters of the customized thresholding algorithm, (c) Image taken with coaxial full ring illumination and 
localized contrasting algorithm is applied.
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value, such as Otsu’s thresholding, can be selected when other variable thresholding  methods40,41 appear not 
suitable for the problem, as shown in Fig. 3. This can be a common attribute of heterogeneous background dis-
cussed earlier. Figure 3b,c show the particle identification performance using an image processing approach on 
the images with coaxial full ring lighting. As mentioned, the figures demonstrate that the particle morphology 
has completely changed due to variation in lighting conditions; a careful analysis of these images reveal that 
each particle can be identified by the central illuminated circle rather than the light ring. For the image shown 
in Fig. 3c, a comparable performance has been achieved by localized contrasting algorithms. These results prove 
that there are no universal image processing parameters available that can be applied to heterogeneous images 
for particle characterization from images. The performance of the traditional image processing approach varies 
with optimal choice of the threshold value along with the variation of background noise and lighting illumina-
tion. Thereby, an automated computational tool would assist both professionals and novice users in automatically 
characterizing particles from heterogeneous images. This approach will eliminate the need for manual parameter 
selection in image processing and facilitate the capture of semantic knowledge, thereby improving the perfor-
mance of the particle identification technique.

To illustrate the current challenge, we evaluated the performance of ImageJ software with the assistance of a 
graduate student who has at least 40 h of experience using the software. When implemented on the HPS datasets, 
the results, as shown in Table 1, indicate that recall is always higher than precision which can be interpreted as 
over detection due to the presence of heterogeneity. Additionally, the prediction of surface area showed significant 
deviation from the ground truth, attributed to the software’s inability to differentiate between particle clusters 
and nuances on the substrate, a common issue in the manufacturing domain. Expertise in image processing 
is crucial for identifying particles in images with heterogeneous backgrounds. Correct particle identification 
may require a deep understanding of filtering, edge detection, image conversion, and more. However, particle 
identification via image processing alone may not always yield optimal results due to the necessity of adjusting 
various parameters like threshold values and skewness degrees for each image which may require immense 
knowledge on filtering, edge detection, image conversion and many other approaches. This research introduces a 
semi-supervised innovative approach, reducing the need for deep technical knowledge by combining basic image 
processing with advanced deep learning, enabling more accessible particle identification from heterogeneous 
images without requiring detailed knowledge of image processing or artificial intelligence.

Sample preparation and image capturing
We utilized an in-house continuous dipping system to produce heterogeneous images, simulating a continuous 
manufacturing process by entraining particles onto a substrate. Initially, we formulated a polymer solution using 
Polymethyl Methacrylate (PMMA) and the solvent 1,3- Dioxolane, both sourced from Sigma Aldrich. After stir-
ring for 8 h, a clear and uniform liquid carrier solution (LCS) is obtained. We then introduced particles into the 
LCS to formulate the dipping mixture, ensuring the ratio of polymer and solvent (LCS) to particles maintains the 
mixture within the Newtonian regime. We chose cylindrical rods as substrates, and these are dipped through the 
mixture for particle entrainment, as illustrated in Fig. 4. To prevent particle sedimentation during the dipping 
process, we agitate the mixture to disperse the particles uniformly, forming a ’pseudo-suspension’42,43.

As the rod is withdrawn from the mixture, a balance between the viscous drag and capillary action facilitates 
the entrainment of particles onto the rod substrate. This balance, characterized by a dimensionless capillary 
number, dictates the dipping characteristics and the subsequent particle transfer. Details of this are further 
discussed in our previous  work42. Once entrained, the particles adhere to the substrate, using the binder as a 
glue, and the solvent rapidly evaporates. An in-situ analysis of the transferred particles can be conducted using 
an in-line microscope or camera, as depicted in Fig. 4. The resulting surface of the rod, dotted with particles, 
serves as a representation of the particle–substrate-process system, showcasing a heterogeneous morphology.

For framework evaluation, we constructed five different types of heterogeneous images by varying the trio of 
particle, substrate, and imaging processes. The samples are created from our laboratory developed continuous 
entrainment process by dipping and images are taken afterward. By adjusting the particle morphologies (i.e., 
type, size, and shapes), substrate and capillary number during the entrainment process, we’ve captured images 
at various ambient lighting which creates a diverse level of heterogeneous background (Sample A ~ E in Table 1). 
These images were captured with a VHX 7000 digital 4 K microscope (by KEYENCE Corporation Ltd., IL) at 
1000X magnification, covering a 300 × 200 micron area. Following this, our proposed particle characterization 
framework was applied to these varied heterogeneous images for both training and validation purposes.

Table 1.  Performance metrics of ImageJ software with HPS dataset.

Dataset Recall Precision F1 TP FP FN

Particle Surface Area (sq. 
pixel)(×10

3)

Ground Truth Predicted

A 0.857 0.857 0.857 12 2 2 37.4 240.6

B 0.923 0.800 0.857 12 3 1 45.7 315.2

C 0.944 0.739 0.829 17 6 1 30.2 197.3

D 0.889 0.667 0.762 24 12 3 44.9 82.2

E 0.941 0.800 0.865 16 4 1 22.7 156.8
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Design and Implementation of the Proposed AI Framework
In this section we describe the proposed particle detection framework. As shown in Fig. 5, this framework has 
four main steps: preprocessing, model selection, AI-Guided particle detection, and post processing.

Preprocessing strategies
The provided particle–substrate image requires some preprocessing before it is ready for the AI model. In this 
study, we experimented with enhancement and sharpening. Image enhancement increases the dynamic range 
of gray levels through linear stretching, expands dark pixel values, performs gamma correction, and equalizes 
the intensity histogram. Image sharpening is typically carried out by adding a high pass filter output of the 
image with the base image. This increases contrast, making object detection and localization more accurate. 
We demonstrated the visual effects of these pre-processing strategies on a sample image in Fig. 6. Sharpening 
indeed makes detection easier for smaller objects and enhancement makes dimmer objects brighter, thereby 
facilitating their detection in subsequent steps. Together, these techniques reduce noise impact, enhance device 
capabilities, and contribute to cleaner data for analysis. Overall, they improve image visualization and help to 
make more accurate insights and decisions. The framework is designed in a modular fashion allowing future 
addition of more preprocessing units such as background removal and other image correction techniques. The 
effectiveness of this process is investigated in the results section.

Figure 4.  Schematic of continuous dipping process for particle entrainment and imaging setup.

Figure 5.  Overview of the proposed modular particle detection framework.
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Model selection
Extensive quantitative analysis on the HPS images has shown that separate AI detectors are necessary to accu-
rately detect particles for each particle–substrate combination. In the presence of a set of AI-models, we must 
determine, for an incoming image, which AI model should be used for it. To address this, our study employs an 
image classifier model, effectively guiding the selection process by identifying the most suitable AI model to be 
employed for the analysis of a specific image. We use Transfer Learning (TL) as a Model Selector (MS) where 
MobileNet acts as a base model to categorize the particle–substrate dataset. While we chose MobileNet for its 
increased inference time efficiency, this model can be replaced with one that is either more accurate, at the cost 
of speed, or faster, at the cost of accuracy. The model selector is designed to enable end-to-end automation by 
eliminating any human-interaction that would generally be required for determining the right model for a given 
particle–substrate combination.

To train the MS model we first split up the five different particle–substrate datasets into training, validation 
and testing with a ratio of 65%, 15% and 20% respectively where each dataset acted as labels. We trained the 
model up to 50 epochs with a batch size of 64, using Adam  optimizer44 with an initial learning rate of 0.001. 
We also used early stopping where training was terminated if validation loss did not improve for 10 successive 
epochs. Our model selector achieved 99.69% testing accuracy and 0.9967 F1-score.

AI‑guided particle detection
Once a specific AI particle detector has been selected for an input image, we utilize it for detecting bounding 
boxes for each image particle. The proposed framework is designed to leverage diverse object detection tech-
niques depending on which one serves the purpose best. These techniques include DetectorNet, SPPNet, MSC 
Multibox, YOLO, SSD, MASK RCNN, and RetinaNet. Each technique has its own unique strengths and weak-
nesses. The selection of a specific algorithm (or a set) will depend on priorities placed on metric such as: (1) Infer-
encing speed; (2) Accuracy; (3) Model size; (4) Training speed; (5) Data requirements. For example, SSD is faster 
than YOLO but has difficulty detecting smaller objects. Mask RCNN can be accurate but lacks inferencing speed.

Most of these particle detection algorithms have certain similarities. For example, in the case of the YOLO 
algorithm, the image is divided into a set of grids/cells followed by a CNN based detection of the presence or 
absence of an object (Fig. 6). The scores (indicating the presence or absence of an object) for each of the grids 
are considered as confidence corresponding to the respective grids. If the confidence score for a grid is high 
enough to have an object (particle) in it, the corresponding grid is expanded further to identify a suitable bound-
ing box. Once the bounding box with the highest score is achieved this score is considered as class probability 
for the corresponding bounding box. The same approach is repeated for each grid of the input image. Thereby, 
each bounding box has confidence as well as class probability. Confidence refers to whether the box contains 
any object or not and the class probability refers to the probability of the class of the object that is inside the 

Figure 6.  Preprocessing effects: Sharpening leads to better definition of smaller particles while enhancing 
visibility.
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bounding box. Finally, the class label of each bounding box is determined following the class probability map as 
shown in the right most figure of Fig. 7. The overall framework is highly flexible and can incorporate any set of 
object detection algorithms. However, for our experiments we have decided to move ahead with YOLO due to 
its demonstrated ability in detecting small objects (our use case). We have picked YOLOv5 for our experiments 
due to its ability to learn from a small dataset (an unavoidable limitation for this particle detection domain). Also, 
YOLOv5 can handle images of variable size which would be useful during inferencing. CSPDarknet53 (Conv, 
BatchNorm, SiLU, C3, and SPPF) acts as the backbone for the YOLOv5 model. Next YOLOv5 up-samples the 
output feature map to create more complex features and the head portion of the model is responsible for making 
the final predictions.

Apart from the AI algorithm selection, we have also observed that training separate AI-models for all possible 
particle–substrate-image combinations yields the best results. Hence, a set of AI models will be trained and stored 
for performing this step (the selection of which is done using the prior step). The select AI model will output a 
set of bounding boxes indicating the location of each particle in the input image.

Domain knowledge guided post processing
The detections obtained from using the AI models can be extremely noisy, reducing the overall efficacy of the 
framework. The biggest concern arises due to having a large number of false positives (detections that are wrong). 
Specifically, these false positives can be due to overlapping detection boxes, phantom detection, and double 
counting (see Fig. 8). We propose three different algorithms to remove some of these false positives, thereby 
increasing the overall efficacy of the framework.

In Fig. 9, we describe the first proposed algorithm used to detect bounding boxes that are extremely small or 
extremely large. This process involves computing the area of the current set of bounding boxes, calculating the 

Figure 7.  Object detection strategy for YOLO net.

Figure 8.  Common detection issues observed.
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mean and standard deviation of the distribution, and then eliminating any bounding box located X standard 
deviation away. Here X can be provided as a user input and determined based on empirical analysis. In Fig. 10a, 
we describe the process of pruning overlapping bounding boxes. This process involves calculating the overlap 
for each pair of bounding boxes based on the number of pixels in the intersecting area, then removing one of 
the boxes if the overlap exceeds a certain user-defined threshold. In Fig. 10b, we describe the process of pruning 
bounding boxes with skewed shapes compared to other detections. This process involves calculating the ratio 
between the length and the breadth of each bounding box and then eliminating all detections beyond user-
defined upper and lower bounds, as determined by empirical observations. We opt for post-processing because it 
is an effective and computationally efficient method to enhance prediction accuracy and precision by leveraging 
domain knowledge in particle detection strategies.

Figure 9.  Algorithm for pruning based on area.

Figure 10.  From left to right: (a) algorithm for pruning overlapping boxes; (b) algorithm for pruning boxes 
with skewed shape.
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Results and validation
Experimental setup
In this study, we used a desktop computer with Ubuntu 22.04.03 operating system, Intel Core i9 2.5 GHz 16 Cores 
CPU, NVIDIA GeForce RTX 3060 12 GB GPU, 2 TB HDD, and 32 GB RAM. We utilized the PyTorch deep learn-
ing framework (version 2.0.1) with CUDA support for accelerated training. We consider five different types of 
particle–substrate-process image dataset (discussed in Table 2) where each image has resolution of 2880 × 2160. 
The original dataset comprised 12 images each for Samples A, B, and C, 13 images for Sample D, and 8 images 
for Sample E. With the help of web-based annotation software “Roboflow” (app.roboflow.com), we divided the 
original dataset into training, validation, and test sets with ratios of 70%, 15%, and 15% for data Sample A, B, 
and C and with a ratio of 60%, 15% and 25% for data Sample D and E. After splitting, we got 8 training, 2 testing 
and 2 validation images for Sample A, B, and C where for D we got 8 training, 3 testing and 2 validation images 
and for E we got 5 training, 2 testing and 1 validation images. We then tiled each image into a 6 × 5 block and 
resized each block to 416 × 416 resolution. After tiling images, we got 240 training, 60 testing and 60 validation 
images for Sample A, B, and C and for D we got 240 training, 90 testing and 60 validation images and for E we 
got 150 training, 60 testing and 30 validation images. We augmented the training dataset with random clockwise 
and anticlockwise rotation, and random vertical and horizontal flips. After random augmentation we got 660, 
720, 720, 720, and 450 training samples for Sample A, B, C, D and E.

We used YOLOv5 for predicting particle bounding boxes. We utilized the small-sized variant of YOLOv5 
(YOLOv5s) with a model configuration of 416 × 416 input resolution. We adopted a batch size of 16 and employed 
the SGD optimizer with an initial learning rate of 0.01, momentum of 0.937 and weight-decay of 0.005. We also 
used early stopping where the model stops its training process if the validation loss does not improve for 10 
successive epochs. The model was trained for a total of 100 epochs.

Table 2.  Sample preparation with varying particles, substrates, and processes for generating heterogeneous 
images.

Sample Particle Substrate and Roughness value Imaging Sample Image

A Nicrobraz LM, Spherical Shape AISI 1006 Mild Steel Rod (Ra = 0.26µm) Full Ring lighting

B Nicrobraz LM, Spherical Shape AISI 1006 Mild Steel Rod (Ra = 0.26µm) Co-axial lighting

C Nicrobraz LM, Spherical Shape AISI 306 Stainless Steel Rod (Ra = 0.37µm) Co-axial lighting

D Alumina, Irregular Shape Tungsten (W) Rod (Ra = 0.19µm) Full Ring lighting

E Nicrobraz LM, Spherical Shape Titanium Rod used in TIG welding 
(Ra = 2.14µm)

Full Ring lighting
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The table above shows the experimental results of five different particle detection datasets using YOLOv5s. 
To better understand the contributions and interactions of individual components within our framework, we 
have performed several ablation studies and report them in Table 3. Particularly, we performed analyses under 
four different conditions: (1) without preprocessing and post-processing, (2) without preprocessing but with 
post-processing, (3) with preprocessing but without post-processing, and (4) with both preprocessing and post-
processing. We utilized three metrics-recall, precision, and F1-score- to evaluate the performance of each model 
configuration and compare it with the overall framework performance as combined. These metrics can be 
calculated using the following mathematical expressions-

Where, TP (True positives) refers to correctly predicted boxes as particles, ’FP’ (False Positives) refers to 
incorrectly predicted boxes as particles, and ’FN’ (False Negatives) refers to particles that the model failed to 
identify. In the ’E’ dataset, the YOLOv5 model achieved a recall of 0.9063, precision of 0.8985, and F1-score of 
0.9024, following a training regimen that includes 30% image enhancement and sharpening (preprocessing) 
combined with postprocessing. In the ’E’ dataset alone, the recall is higher than precision, suggesting that the 
model misses a significant number of particles, leaving them undetected. This can be attributed to the higher 
heterogeneity in substrate as shown in the roughness measurement. In this scenario, pre-processing steps help 
increase the precision which can be seen in the results. For the remaining four datasets (A–D), precision surpasses 
recall, indicating the beneficial impact of the postprocessing algorithm following the deep learning model’s 
predictions. This improvement can be observed in the result table above. The “C” dataset model shows recall of 
0.9146, precision of 0.9713 and F1-score of 0.9421 in the combination of 10% image enhancement and sharpening 
without post-processing. Implementing the proposed framework, rather than relying on individual AI models, 
ensures consistency in both precision and recall, with their harmonic mean (F1-score) comparable to the out-
comes of individual AI models. This indicates that the transfer learning-based model selection algorithm was able 
to classify the incoming image and pair it to the appropriate algorithm designed for the dataset. The proposed 
framework is also extremely scalable in terms of speed due to lightweight pre/post processing and decision-
making models. Experimental results show 80.86 frames per second processing efficiency during inferencing.

Conclusions
Particle size assessment is essential in metrology research due to the significant influence of particle size and 
its distribution on chemical, physical, and metallurgical activities. During the manufacturing process, particles 
merge with substrates or are suspended in liquid mediums, complicating their identification with conventional 
tools. In this paper, we presented a novel framework by combining state of art deep learning approaches with 
pre- and post-processing algorithms for particle detection in complex/heterogeneous backgrounds which are 
common in the manufacturing domain. The proposed frame detects and counts particles with very high accuracy, 
even in complex backgrounds with diverse morphology. Our comprehensive analysis reveals that within the 
proposed unified framework, precision and recall remain consistent across various HPS conditions, and their 
harmonic mean is comparable to outcomes from individual AI models.

The proposed framework can be adapted for in-situ measurement of particle size, distribution, and coverage, 
and thereby evaluate the quality of particles during manufacturing. The framework can be applied online to 
correct the process parameters during manufacturing due to its quick, immediate, and accurate outcome. This 
innovative tool holds promise for enhancing in-situ process monitoring for multiple manufacturing operations, 
such as high-density powder-based 3D printing, powder metallurgy, extreme environment refractory coatings, 
particle categorization and semiconductor manufacturing. Additionally, this algorithm holds the potential to 
reverse-engineer manufacturing characteristics, such as liquid carrier systems, benefiting various industrial 
applications, including blood diagnosis and wastewater treatment etc.

(1)Recall =
TP

(TP + FN)

(2)Precision =
TP

(TP + FP)

(3)F1− Score =
2 ∗ Recall ∗ Precision

Recall + Precision
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Table 3.  Results with model selection.

Dataset Pre-processing Post-processing Recall Precision F1 TP FP FN

Particle Surface Area (sq. 
pixel)(×10

6)

Ground Truth Predicted

E

Without

Without

0.9325 0.8106 0.8673 428 100 31

25.6

28.2

10% 0.9302 0.8609 0.8942 427 69 32 27.0

20% 0.902 0.8961 0.899 414 48 45 25.1

30% 0.9063 0.8927 0.8995 416 50 43 25.3

Without

With

0.9325 0.8121 0.8682 428 99 31 28.2

10% 0.9281 0.8623 0.894 426 68 33 26.8

20% 0.902 0.8961 0.899 414 48 45 25.1

30% 0.9063 0.8985 0.9024 416 47 43 25.0

C

Without

Without

0.915 0.9601 0.937 409 17 38

22.5

22.7

10% 0.9146 0.9713 0.9421 407 12 38 21.9

20% 0.9083 0.9713 0.9387 406 12 41 22.2

30% 0.9105 0.9645 0.9367 407 15 40 22.5

Without

With

0.9083 0.9598 0.9333 406 17 41 22.5

10% 0.9034 0.9757 0.9352 402 10 43 21.6

20% 0.8993 0.9734 0.9349 402 11 45 21.8

30% 0.9016 0.9641 0.9318 403 15 44 22.4

B

Without

Without

0.8876 0.9497 0.9176 774 41 98

44.6

42.5

10% 0.8842 0.9345 0.9087 771 54 101 42.6

20% 0.8968 0.931 0.9136 782 58 90 43.6

30% 0.8876 0.9337 0.9101 774 55 98 43.0

Without

With

0.8624 0.9555 0.9066 752 35 120 40.7

10% 0.8658 0.9426 0.9026 755 46 117 41.1

20% 0.8739 0.9407 0.9061 762 48 110 41.6

30% 0.8693 0.9404 0.9035 758 48 114 41.6

A

Without

Without

0.8989 0.8911 0.895 409 50 46

22.2

21.9

10% 0.9077 0.9137 0.9107 413 39 42 21.9

20% 0.8901 0.8804 0.8852 405 55 50 21.9

30% 0.8835 0.9371 0.9095 402 27 53 20.9

Without

With

0.8747 0.8964 0.8854 398 46 57 21.6

10% 0.8835 0.9178 0.9003 402 36 53 21.4

20% 0.8725 0.8822 0.8773 397 53 58 21.4

30% 0.8593 0.9444 0.8999 391 23 64 20.2

D

Without

Without

0.8131 0.8452 0.8288 770 171 177

49.7

49.2

10% 0.7855 0.8626 0.8222 747 119 204 47.2

20% 0.7793 0.8817 0.8274 738 99 209 45.5

30% 0.7926 0.8596 0.8248 753 123 197 47.9

Without

With

0.794 0.8487 0.8205 752 134 195 47.8

10% 0.7761 0.8719 0.8212 735 108 212 46.2

20% 0.7614 0.8868 0.8193 721 92 226 44.2

30% 0.7684 0.866 0.8143 730 113 220 45.9

Combine

Without

Without

0.8654 0.921 0.8924 2753 236 428

164.6

157.5

10% 0.8699 0.9165 0.8926 2767 252 414 158.9

20% 0.8658 0.9131 0.8888 2754 262 427 159.7

30% 0.8655 0.9086 0.8865 2753 277 428 158.6

Without

With

0.8475 0.9268 0.8556 2697 213 484 152.8

10% 0.8444 0.9214 0.8812 2686 229 495 152.4

20% 0.846 0.9184 0.8807 2691 239 484 154.7

30% 0.8463 0.9122 0.878 2692 259 489 154.1
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