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Three‑dimensional biphase fabric 
estimation from 2D images by deep 
learning
Daniel Chou 1,3, Matias Etcheverry 2,3 & Chloé Arson 1*

A pruned VGG19 model subjected to Axial Coronal Sagittal (ACS) convolutions and a custom VGG16 
model are benchmarked to predict 3D fabric descriptors from a set of 2D images. The data used for 
training and testing are extracted from a set of 600 3D biphase microstructures created numerically. 
Fabric descriptors calculated from the 3D microstructures constitute the ground truth, while the input 
data are obtained by slicing the 3D microstructures in each direction of space at regular intervals. The 
computational cost to train the custom ACS‑VGG19 model increases linearly with p (the number of 
images extracted in each direction of space), and increasing p does not improve the performance of 
the model ‑ or only does so marginally. The best performing ACS‑VGG19 model provides a MAPE of 
2 to 5% for the means of aggregate size, aspect ratios and solidity, but cannot be used to estimate 
orientations. The custom VGG16 yields a MAPE of 2% or less for the means of aggregate size, distance 
to nearest neighbor, aspect ratios and solidity. The MAPE is less than 3% for the mean roundness, and 
in the range of 5‑7% for the aggregate volume fraction and the mean diagonal components of the 
orientation matrix. Increasing p improves the performance of the custom VGG16 model, but becomes 
cost ineffective beyond 3 images per direction. For both models, the aggregate volume fraction is 
predicted with less accuracy than higher order descriptors, which is attributed to the bias given by 
the loss function towards highly‑correlated descriptors. Both models perform better to predict means 
than standard deviations, which are noisy quantities. The custom VGG16 model performs better than 
the pruned version of the ACS‑VGG19 model, likely because it contains 3 times (p = 1) to 28 times (p 
= 10) less parameters than the ACS‑VGG19 model, allowing better and faster cnvergence, with less 
data. The custom VGG16 model predicts the second and third invariants of the orientation matrix 
with a MAPE of 2.8% and 8.9%, respectively, which suggests that the model can predict orientation 
descriptors regardless of the orientation of the input images.

Keywords Convolutional neural network, Microstructure analysis, 3D fabric descriptor, Stacked 2D images, 
Loss function

Relating fabric tensors to the stiffness tensor is a long-standing issue in  geomechanics1. A fabric tensor is, broadly 
speaking, a convolution of moments of probability density functions of microstructure descriptors. It can be a 
scalar, a vector, a matrix, or a tensor of higher order. Perhaps the most widely used fabric tensor in rock mechanics 
is the crack density tensor, initially defined by  Oda2, who established a linear correlation between the first invari-
ant of that fabric tensor and uniaxial compression strength in rock. In granular media, the principle of virtual 
work was invoked to relate the branch density tensor to the expression of the macroscopic stress  tensor3,4. Joint 
invariants, defined as invariants of fabric tensors that are highly correlated to the stress invariants, were used to 
replace the stress invariants in the Dracker-Prager yield function, under the assumption of axial  symmetry5,6. In 
those studies, the stress tensor was highly correlated to the fabric tensor that represents the statistical distribution 
of particle orientations. Zysset and  Curnier7 derived an analytical expression of the elasticity tensor as a function 
of a general fabric tensor that represents the orientation distribution of directional dependent microstructure 
properties for isotropic, transverse isotropic and orthotropic materials. Later studies established correlations 
between the mechanical properties of salt rock and tensors that capture the magnitude and orientation of solid-
ity, coordination, local solid volume fraction, and crack  volume8.
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X-ray Computed Tomography (XCT) scanning allows one to obtain stacks of 2D images that represent sec-
tions of a 3D material. XCT images are routinely used to reconstruct microstructures in 3D and to calculate 
statistical geometric features that can be used to define fabric  tensors9,10. Kuo et al.11 calculated 2D fabric tensors 
from 2D binary images obtained in three orthogonal planes during XCT scanning and established a methodology 
to calculate 3D fabric tensors from those 2D fabric tensors. They assumed that the 3D fabric tensors were axi-
ally symmetric and that the principal values of the 3D fabric tensors were proportional to those of the 2D fabric 
tensors. To date, identifying 3D fabric descriptors from XCT images remains a  challenge10,11.

Descriptors such as fabric tensors encapsulate a clear physical meaning, but they are chosen based on experi-
ence in a particular field of  study12,13. Alternatively, the morphology and heterogeneity of microstructures can 
be quantified by means of correlation  functions14,15. The N-point correlation function can accurately capture 
information of a dual phase microstructure. Deep learning has enabled huge advances in pattern detection, rec-
ognition and selection. It now has many applications, like in medical imaging. Resnet and the Visual Geometry 
Group (VGG) emerged as very powerful  networks16, and transfer learning has shown a clear improvement in 
convergence time and result  accuracy17,18. Although most problems treated with Resnet and the VGG pertain to 
image classification, it is easy to convert a model for regression and extract good  results19. Thanks to the advance-
ment of deep learning, 2-point correlation functions and descriptors have been used as input for microstructure 
reconstruction and can serve as proxy to measure the quality of a reconstruction in a generative model. To 
overcome the bias in the choice of descriptors, statistical methods were created to enable reconstruction with 
style data  only17,20,21.

In the present study, we propose a deep learning approach to optimize the number of 2D slices in a 3D volume 
to achieve a targeted accuracy of 3D fabric tensor estimates in biphase media made of cemented aggregates. In 
“Data generation” section, we explain how we constructed virtual 3D microstructures, calculated associated 3D 
fabric descriptors that served as ground truth, and extracted 2D slice images that served as input data. In “Deep 
learning approach” section, we present two custom VGG models that take inputs of different formats, and we 
explain the protocol for training and testing. Our implementation is coded with python and Matlab22. We 
used Pytorch as our main machine learning module, and pytorch-lightning as a Pytorch frame-
work. Our results are described and interpreted in “Results” section. The advantages, limitations and possible 
improvements to the models are discussed in “Discussion” section. Lessons learned and perspectives for future 
work are summarized in “Conclusions” section.

Data generation
Numerical construction of the virtual specimens
Synthetic three-dimensional biphase microstructures were constructed to represent coarse aggregates embedded 
in a homogeneous matrix. The process to construct the numerical specimens is illustrated in Fig. 1. Aggregates 
were scanned and the resulting point clouds were transformed into solid alpha-shapes with Matlab (step 1). In 
total, 87 alpha-shapes were obtained from point clouds and stored in a database. Loose assemblies of aggregates 
were created with a Random Sequential Absorption (RSA) algorithm that sequentially and randomly picked 
alpha shapes from the database and fitted them in a cubic space (step 2). All shapes were equiprobable, and 
were scaled by the size distribution shown in Fig. 2a. The RSA algorithm takes the target volume fraction and a 
measure of exclusion distance as input. The RSA places objects randomly in a finite volume and rejects an object 
that is within the exclusion distance of another object previously fitted in that volume. The maximum volume 
fraction that can be reached iteratively with an RSA algorithm does not exceed 20%. Despite attempts to alter the 

Figure 1.  Method employed to generate three-dimensional biphase microstructures.
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exclusion distance  criteria23,24 to improve the efficiency of the RSA algorithm, it remains difficult to generate high-
density specimens. For that reason, we used the RSA algorithm to generate six cubes filled with loose aggregate 
assemblies, placed them along the sides of the target cubic domain, and used the Finite Element Method (FEM) 
to simulate the packing of the six loose assemblies into the target domain (step 3: dynamic gathering). These 
explicit dynamic simulations were conducted with Abaqus25. The loose assemblies were pushed by six rigid 
walls that were subjected to a controlled displacement (approximately 100 mm). The aggregates were modeled 
as rigid bodies with a mass density of ρ = 2800 kg/m3 , and a non-penetration condition was used at the contact 
between the aggregates. After dynamic gathering, the aggregate volume fraction was between 0.6 and 0.8. Target 
volume fractions of Vf ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4} were obtained by randomly removing aggregates from 
the aggregate assemblies obtained in step 3 (step 4). As a reference, the aggregate volume fraction in concrete 
used in construction is around 0.4. In total, 600 cubes filled with aggregate alpha-shapes were created, with the 
aggregate volume fractions shown in Fig. 2a. The 600 aggregate assemblies were imported into Abaqus, which 
was used to mesh the space between the aggregates, called matrix (step 5). Abaqus then automatically meshed 
the aggregates to match the mesh of the matrix. Lastly, the aggregate meshes were saved as .stl files, which 
can easily be opened in Matlab to calculate statistical microstructure descriptors (step 6).

Generation of 2D images
Regularly spaced two-dimensional images were extracted from the generated 3D microstructures in planes 
orthogonal to the x, y and z directions (Fig. 3). A 2D grid of squared elements was first created in the plane of 
interest (for example, at y = y0 for the plane orthogonal to the y direction at position y = y0 ). Each cell of the 2D 
grid was turned into a black pixel if the square was in an aggregate, and into a white pixel otherwise. The number 
of squares in the 2D grid thus equaled the number of pixels in the binary image. The position of the top left node 
of a square was the determining criterion to decide whether the square was in the aggregate phase or the matrix 
phase, since a square could lie at the interface between both phases. The Matlab module inpolyhedron26 
was used to check whether the nodes of the 2D grid were located inside an aggregate or not. This algorithm has 
a very poor complexity: O(p× N × w × h) with p the total number of images per direction, N the number of 
aggregates inside the virtual specimen, w and h the width and height of the 2D grid.

Calculation of 3D fabric tensors (ground truth)
Here, the ground truth is a set of fabric tensors (scalars, vectors and second-order tensors) that describe the 
composition (e.g., aggregate volume fraction), dispersion (e.g., aggregate distance to nearest neighbor) and 
geometry (e.g., aggregate size, aspect ratios) of the features of the microstructure. By contrast with microstructure 
characterization approaches based on correlation functions or the Gaussian Random Field (GRF)  method27,28, 
here, the fabric tensors are pre-defined and assigned a physical meaning, as explained below.

Principal component analysis (PCA)
By construction, each aggregate in the virtual specimen is a cloud of points (i.e., voxels). A principal compo-
nent analysis (PCA) was performed on the vectors that connect each point of an aggregate to its barycenter. 
Each aggregate in the 3D microstructure is represented by a matrix Pk ∈ R

Jk×D that stores the positions of its 
points in reference to the barycenter. Here, k is an index that refers to the aggregate number in the specimen 
( k ∈ {1, 2, 3 . . . ,N} ), Jk is the number of points detected in the k th aggregate, and D the space dimension (here, 
D = 3 ). Noting C

k
∈ R

D×D the covariance matrix of Pk  , we obtain the eigenvalues �ki ∈ R
1×1 and eigenvectors 

v
k
i ∈ R

1×D of C
k
 by solving the following equation:

Figure 2.  Controlled parameters of the numerically generated specimens.
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with i ∈ {1, . . . ,D} . The eigenvector vki  associated with the greatest/smallest/intermediate eigenvalue �ki  defines 
the direction of the major/minor/intermediate axis of the k th aggregate. The major/minor/intermediate semi-axis 
lengths are obtained by projecting the data points on the major/minor/intermediate axes, respectively, as follows:

where ak , bk and ck are respectively the semi -axis lengths of the major, intermediate and minor axes of the k th 
aggregate, and where the eigenvalues are sorted in descending order: �k1 ≥ �

k
2 ≥ �

k
3.

Definition of the fabric descriptors
Volume fraction

One scalar descriptor denoted vf  encodes the aggregate volume fraction (also called density in the following), 
calculated as the ratio between the volume of the aggregates by the volume of the cubic specimen.

Size
The size of an aggregate is defined as twice the length of the major semi-axis found by PCA. For the k th 

aggregate: Gk = 2 ak , where ak is defined in Eq. (2). At the scale of the specimen, we define two descriptors: the 
mean and standard deviation of the distribution (Gk)k=1...N.

Aspect Ratio
We define two aspect ratios per aggregate: bk/ak and ck/ak , where ak , bk and ck are the lengths of the major, 

intermediate and minor semi-axes of aggregate k, found by PCA (see Eq. 2). At the scale of the 3D virtual 
specimen, we define four descriptors: the means and standard deviations of the distributions (bk/ak)k=1...N and 
(ck/ak)k=1...N.

Roundness
The roundness descriptor encodes the elongation of the aggregates. The roundness Rk of the k th aggregate 

is defined as the ratio of the aggregate volume by the volume of its circumscribed sphere, of diameter 2 ak (see 
Eq. 2). At the scale of the specimen, we define two descriptors: the mean and standard deviation of the aggregate 
roundness (Rk)k=1...N.

Solidity
The solidity Sk of the k th aggregate is defined as the ratio between the volume of the k th aggregate and the 

volume of its convex hull. At the scale of the specimen, we define two descriptors: the mean and standard devia-
tion of the aggregate solidity (Sk)k=1...N.

Orientation
The unit eigenvector associated to the major eigenvalue of the k th aggregate point cloud (calculated by PCA 

in “Principal component analysis (PCA)” section) is noted mk = [m1,k , m2,k , m3,k] in the global coordinate 
system ( e1 , e2 , e3 ). The local orientation matrix of the k th aggregate is defined as:

(1)C
k
· vki = �

k
i v

k
i

(2)







ak = maxj(P[j, :] · vk1)
bk = maxj(P[j, :] · vk2)
ck = maxj(P[j, :] · vk3)

∀ k ∈ {1, 2, 3...,N}, ∀ j ∈ {1, 2, 3..., Jk}

Figure 3.  From a 3D microstructure to 2D grids and from 2D grids to binary images.
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The matrix [Fk] is symmetric and can be encoded by six coefficients only: Fk,11, Fk,22, Fk,33, Fk,23, Fk,13, Fk,12 . At 
the scale of the specimen, we define 12 descriptors: the means and standard deviations of each of the coefficients 
Fk,11, Fk,22, Fk,33, Fk,23, Fk,13, Fk,12 over the distribution of aggregates ( 1 ≤ k ≤ N  ). In order to encode frame-
invariant information about the orientation of the aggregates, we also encode the second and third invariants 
( I2 and I3 ) of the average orientation matrix [F], as follows:

Distance to nearest neighbor
We compute the barycenter-to-barycenter distance between each aggregate k and its nearest neighbor, ndk . 

At the scale of the specimen, we define two descriptors: the mean and standard deviation of the distances to 
aggregate nearest neighbor (ndk)k=1...N.

Correlated descriptors
Figure 4 shows the correlations between the 27 descriptors defined in “Principal component analysis (PCA)” 
section. The geometric aggregate descriptors (mainly size, aspect ratio, roundness and solidity) exhibit a high 
degree of correlation (close to 1). As expected, the aggregate volume fraction is negatively correlated to the aver-
age distance between an aggregate and its nearest neighbor. Of note, the non-diagonal coefficients of the average 
aggregate orientation tensors ( F12 , F23 and F31 ) are not correlated to any other descriptor, likely because the 
non-diagonal terms of the aggregate orientation tensors are close to zero. The values of F12 , F23 and F31 exhibit a 
low magnitude and a low variance, which suggests that the non-diagonal terms of the orientation tensors will be 
difficult to estimate with a deep learning algorithm. We will test this hypothesis in the performance assessment 
presented in “Results” section.

(3)
[

Fk
]

=
[

m1,km1,k m1,km2,k m1,km3,k

m2,km1,k m2,km2,k m2,km3,k

m3,km1,k m3,km2,k m3,km3,k

]

(4)
[

F
]

= 1

N

N
∑

k=1

[Fk]

(5)
{

I2 = (F11F22 − F12F12)+ (F22F33 − F23F23)+ (F11F33 − F13F13)
I3 = F11F22F33 + 2F12F23F13 − F22F13F13 − F11F23F23 − F33F12F12

Figure 4.  Correlation between descriptors on the whole dataset (600 virtual specimens).
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Deep learning approach
We developed two deep learning strategies to estimate all or part of the 27 fabric descriptors defined in “Principal 
component analysis (PCA)” section from sets of 2D images extracted from the 3D microstructure in orthogo-
nal planes. We used Convolutionnal Neural Networks (CNN) because they are particularly suitable for image 
datasets, and we worked with the VGG, because VGG networks are pre-trained to find interesting patterns in 
224× 224 RGB images. Pre-training allows better and faster convergence by transfer learning. The VGG appeared 
in 2014 and was used in classification tasks, notably in the ImageNet Large-Scale Visual Recognition Challenge, 
where it beat state-of-the-art models like  GoogleNet29. VGG models have also been used extensively for image 
style transfer and 2D micro-structure  analysis30–32. The first algorithm that we tested takes three 3D images (i.e., 
three stacks of 2D images) as input, whereas the second algorithm takes three channels of 2D images (i.e., three 
concatenated 2D images) as input. We assessed the performance of the deep neural networks when 1, 3, 5 or 
10 images are extracted along each spatial direction. In the following, we note p the number of 2D images per 
direction.

Model 1: three stacks of 2D images as input
Structure of the CNN
Model 1 is based on the pretrained VGG19  network29–31 and it is designed to calculate the 27 fabric descriptors 
defined in “Principal component analysis (PCA)” section, except: the invariants I2 and I3 ; the mean and standard 
deviation of the distribution of distances to nearest neighbor. In total, Model 1 was thus trained to estimate 23 
descriptors, which were concatenated into a vector of dimensions ( 1× 23 ). The original VGG19 model is com-
posed of 16 convolutional layers and 3 fully connected (FC) layers. We only kept the convolutional layers before 
the third max pooling layer, which are critical for 2D microstructure image  characterization31. The convolutional 
layers of the original VGG19 model comprise 20,024,384 trainable parameters, while the convolutional layers 
of the pruned VGG19 model comprise only 1,145,408 trainable parameters, which reduces the training time 
significantly and allows running the calculations on the open access platform Kaggle (see Table 1).

CNNs take 2D images as input. Axial-Coronal-Sagittal (ACS) convolutions are applied to the convolutional 
layers of the pruned VGG19 model in order to use 3D images as input. We used the ACSConv package, which 
was initially developed to handle 3D medical data sets. The ACS conversion makes it possible for a 2D CNN 
model to process a 3D data set without increasing the number of trainable parameters of the convolutional 
 layers33. Changing the number of images (p) extracted in each direction of the 3D microstructure only affects 
the number of parameters of the FC layers (see Table 2).

The structure of the pruned ACS-VGG19 model adopted here is illustrated in Fig. 5. The network is made 
of 20 layers, including:

Table 1.  Computational constraints of Kaggle platform (as of Fall 2022).

Session launch time Storage disk space CPU RAM GPU memory GPU quota

12 h at once 73 GB 13 GB 15.9 GB 30 h/week

Table 2.  Number of trainable parameters in the pruned ACS-VGG19 model, as a function of the number of 
images p extracted in each direction of the 3D microstructure.

p CNN FC The whole model

1 1,145,408 51,416,343 52,561,751

3 1,145,408 154,176,791 155,322,199

5 1,145,408 256,937,239 258,082,647

10 1,145,408 513,838,359 514,983,767

Figure 5.  The structure of the pruned ACS-VGG19 model (Model 1).
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• Fifteen convolutional layers, organized in three convolutional blocks that each contain a first convolutional 
layer followed by a ReLU layer, a second convolutional layer followed by a ReLU layer, and a max pooling 
layer;

• A FC block that contains three linear layers separated by ReLU activation layers (two ReLU activation layers 
total).

Format of the input data
Figure 6 illustrates how 2D images extracted in planes orthogonal to the x, y and z directions are assembled 
into a triplet of stacks of depth p, and how these triplets are then concatenated to form a unique input tensor 
of dimensions ( 3× p× w × h ) as input. The input tensor stores p stacked images in 3 orthogonal directions of 
space, and each image has a width w of 224 pixels and a height h of 224 pixels.

Data splitting
Each of the 600 virtual specimens provides two data sets: 23 ground truth fabric descriptors and 2D images 
extracted in three orthogonal directions of space. We use 60% of the specimen data for training, 20% for valida-
tion and 20% for testing. The training data set is used to update the parameters of the model to minimize the 
training loss at each iteration. The validation data set is used during training to calculate the loss for estimating 
unseen data and adjust hyperparameters so as to optimize the learning curve. The testing data set is used after 
training to assess the performance of the model in predicting unseen data. The assessment is based on a com-
parison between the fabric descriptors estimated during testing and the ground truth descriptors of the testing 
data set.

Pre‑processing, measure of error and hyperparameters
The loss functions measure the distance between estimated and ground-truth fabric descriptors. In order to 
use the same weight for each fabric descriptor, we applied a minimum-maximum normalization to each fabric 
descriptor. For a descriptor X, the normalized descriptor X  is (X − Xmin)/(Xmax − Xmin).

We assessed the performance of Model 1 with three different loss functions: the Mean Square Error (MSE), 
the Root-Mean-Square Error (RMSE) and the Mean Absolute Error (MAE) , which are defined as follows:

(6)MSE = 1

Ntot

∑

nd

(ynd − ŷnd)
2

(7)RMSE =
√
MSE

(8)MAE = 1

Ntot

∑

nd

|ynd − ŷnd |

Figure 6.  Format of the input data for Model 1: concatenated p-stacked arrangement of 2D images.
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in which ynd and ŷnd are the ground-truth and estimated values of the d th fabric descriptor (one of the 23 fabric 
descriptors under study) in the n th estimation.

A stochastic gradient descent (SGD) algorithm is employed. While the gradient descent algorithm updates 
model parameters after calculating the loss for the whole training set, the SGD updates the model parameters 
based on the loss of a single data point, picked randomly in the training set. The stochasticity of the SGD algo-
rithm accelerates convergence and avoids overfitting. The main equations of the SGD algorithm are:

The matrix w is the weight matrix to be updated, and v is coined as the velocity. The learning rate η controls the 
step size. The weight decay � is used to avoid overfitting. The momentum γ avoids locking the solution in a local 
optimum. The values of the hyperparameters are adjusted by trial and error to improve performance. Table 3 
summarizes the values of the hyperparameters used in this study.

Since the convolutional layers of the VGG19 model are pre-trained, we compared two strategies: (i) Only 
the parameters of the FC layers of Model 1 are trained with the input data set of this study. The convolutional 
layers are fixed, i.e., we are fixing all the parameters of the convolutional layers to the values obtained during pre-
training. (ii) The parameters of all the layers of Model 1 are trained with the input data set of this study. The con-
volutional layers are trainable, i.e., the parameters learned during pre-training are recalculated during training.

Model 2: Three channels of concatenated 2D images as input
Structure of the CNN
Model 2 is based on the pretrained VGG16  network34 and it is designed to estimate all 27 fabric descriptors 
defined in “Principal component analysis (PCA)” section. VGG16 is composed of five convolutionnal blocks 
and of three fully connected layers:

• The first two convolutional blocks are each composed of two 2D convolutional layers each followed by a 
ReLU activation layer, and a 2D max pooling layer that divides the width and height of the output by 2.

• The following three convolutional blocks are each composed of three 2D convolutional layers each followed 
by a ReLU activation layer, and a 2D max pooling layer.

• The two first fully connected layers have 512 neurons.
• The last fully connected layer has 27 neurons.

VGG16 was originally used for classification tasks. Its output is a vector of length 1,000, each entry representing 
the probability of the input image to belong to a certain class. In our study, the goal is to conduct a regression to 
predict 27 continuous values. Thus, we replaced the original fully connected layers in VGG16 by three fully con-
nected layers: the first two layers have 512 neurons while the third layer has 27 neurons. No further activation was 
applied. Two dropout layers were applied between the 3 fully connected layers, to avoid overfitting. The structure 
of the VGG model adopted here is illustrated in Fig. 7. The convolutional layers of VGG16 use filters with a very 
small receptive field: a 3× 3 kernel with a stride of 1 and a padding of 1. The number of filters increases up to 
512. We applied a batch normalization  layer35 between each 2D convolutional layer and its activation function 
to accelerate the training process.

Format of the input data
The input 2D images are arranged in stacks of p-concatenated images, as shown in Fig. 8. All the images extracted 
along the same axis are concatenated along the width, resulting in three images of shape (h, p× w) , which 

(9)w
k+1 = w

k − η(∇Lk − 2�||wk||22)

(10)
{

v
k = γ vk−1 + η∇Lk

w
k+1 = w

k − v
k

Table 3.  Hyper-parameters used in Model 1.

Batch size Termination error Learning rate, η Momentum, γ Weight decay, �

8 0.001 – 0.9 0.0005

Figure 7.  The structure of the custom VGG16 model (Model 2).
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represent three channels of input data. The three channels are stacked along a third dimension, the depth, such 
that the input image has dimensions (h, p× w, 3) . Each channel represents multiple images taken along the same 
axis and have a similar function as a RGB color channel. The p-concatenated arrangement has the advantage 
of being interpretable by any convolutional network. Figure 9 shows examples of concatenated arrangements 
stacked in 3 channels for p = 1 and p = 3.

Data splitting
Here, we adopt a 70-30% data splitting, which we obtained with the scikit-learn function train_test_
split. The 27 fabric descriptors defined in “Principal component analysis (PCA)” section are calculated sepa-
rately for the 420 microstructures that are in the training dataset and for 180 microstructures that are in the 
testing dataset. We checked that the test and train distributions were statistically equal by using a Kolmogorov-
Smirnov test.

Pre‑processing, measure of error and hyper‑parameters
Before training, we instantiated a pre-trained VGG16 model with 3-concatenated images as inputs. The cross-
sectional binary images extracted from the 3D microstructures have dimensions (64, 64), so the input images 
had dimensions (64, 192, 3). Although the original input size of VGG16 is (224, 224, 3), we can still apply it to 
images of size (64, 192, 3), by using smaller-sized fully connected layers. In each of the three stacked channels, 
the mean pixel value is subtracted from the image, and a Gaussian blur is applied before training the model. The 
27 target descriptors are all normalized so that they all fit in [0,  1]36.

The Mean Absolute Error (MAE) is used as a loss. We compute the MAE on every batch of the training data, 
to minimize it on every batch of pair (image, descriptors). The Mean Absolute Percentage Error (MAPE) is used 
as a complementary performance metric. We compute the MAPE on the whole test data. The MAE and MAPE 
are defined as follows:

in which yi,d and ŷi,d are the d-th target and predicted descriptor of the i-th microstructure, and Ntot is the size 
of the test dataset. We implemented a naive model, coined as mean algorithm, which simply computes the mean 
descriptors in the training dataset and outputs those mean descriptors for every microstructure in the test dataset. 
The predictions of the mean algorithm provide a baseline to which the performance of Model 2 can be compared.

(11)MAE = 1

Ntot

∑

i,d

|yi,d − ŷi,d |, MAPE = 100

Ntot
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∣

∣
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Figure 8.  Format of the input data for Model 2: stack of p-concatenated arrangement of 2D images.

Figure 9.  Examples of p-concatenated arrangements stacked in 3 channels.
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We used Adam optimizer with a learning rate of 1× 10−4 , trained for 700 epochs, with 64 samples per batch. 
The model was trained using the NVidia K80 GPU provided by Kaggle.

Results
Model 1: three stacks of 2D images as input
Performance based on computational cost
The number of trainable parameters in the convolutional layers is one to two orders of magnitude smaller than 
the number of trainable parameters in the fully connected layers (Table 2). One could wonder whether fixing 
the convolutional layer parameters to their pre-training values impacts the training time in the same order of 
magnitude. Table 4 shows that fixing the convolutional layers divides the required training time by two, regard-
less of the number of input images. This observation indicates that in comparison to the FC layer parameters, 
the convolutional layer parameters are more expensive to train. In the following, we evaluate whether there is a 
performance cost associated with the computational savings, by comparing the loss of Model 1 with trainable 
and fixed convolutional layers.

Performance based on loss (error)
The values of the loss functions for all the training settings are summarized in Table 5. First, we note that the 
variation of the loss with p is not monotonic in any of the training settings. Fixing the convolutional layers does 
not significantly lower the loss: in most settings, the loss increases by 5% to 12% when the convolutional layers 
are fixed, except for the MSE with p = 10 , the MAE with p = 3 and the MAE with p = 10 . From Table 4, training 
the model with fixed convolutional layers takes half the time required for training the fully trainable model. The 
trade-off is an increase in loss that, in most configurations, does not exceed 7%. We conclude that the training 
setting with fixed convolutional layers is the most advantageous for the purpose of this study. For fixed convolu-
tional layers, the best performance is achieved for p = 10 . For example, the MAE decreases by 6% when changing 
the input from p = 1 to p = 10 with fixed convolutional layers. However, the MSE and RMSE do not decrease 
monotonically as p increases. Since the computational time roughly increases linearly with p (see Table 4), we 
conclude that the best trade-off between minimization of loss and minimization of computational time is when 
the model is trained with fixed (pre-trained) convolutional layers, and one image taken in each plane ( p = 1).

The value of each microstructure descriptor predicted with Model 1 during testing is plotted against its ground 
truth value for all the number of slices considered in Fig. 10. Figure 11 shows the distributions of the target and 
predicted descriptors for trainable convolutional layers and different p values. The features have been converted to 
their actual values (instead of their normalized values) for a better physical understanding. The overlap between 
the target and predicted descriptors varies largely across descriptors. To better assess the large predictability 
discrepancy between features, we define a new metric of accuracy in “Performance based on accuracy” section.

Table 4.  Training time for ACS-VGG layers at termination epoch = 75, unit: seconds.

Loss function p = 1 p = 3 p = 5 p = 10

Trainable CNN

MSE 776.21 2346.01 3947.4 7843.29

RMSE 783.01 2348.79 3937.54 7850.41

MAE 786.26 2345.01 3949.63 7843.91

Fixed CNN

MSE 371.25 1122.96 1920.7 3754.45

RMSE 371.36 1127.22 1891.42 3757.84

MAE 370.76 1124.33 1890.63 3761.43

Table 5.  Model 1 loss values for the testing data set.

Loss function p = 1 p = 3 p = 5 p = 10

Trainable CNN

MSE 0.0415 0.0411 0.0392 0.0408

RMSE 0.1928 0.1916 0.1906 0.1912

MAE 0.1422 0.1453 0.1397 0.1437

Fixed CNN

MSE 0.0426 0.0465 0.0429 0.0393

RMSE 0.1978 0.1941 0.1955 0.1915

MAE 0.1489 0.1413 0.1414 0.1397
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Performance based on accuracy
Similar to the MAPE used as complementary performance metric in Model 2, we define a complementary meas-
ure of accuracy in Model 1. The accuracy of Model 1 for the i th fabric descriptor is defined as the ratio between 
the area intersected by the ground-truth and estimated distribution curves of the i th feature and the area under 
the ground-truth distribution curve of that feature, as illustrated in Fig. 12.

The accuracy of Model 1 averaged over all 23 features is presented in Fig. 6 for all the configurations tested: 1, 
3, 5 or 10 images per axis; MSE, RMSE or MAE loss function; trainable or fixed convolutional layers. The MAE 
is the loss that gives the most consistent predictions in that setting, since it decreases as p increases. However, 
overall, increasing the number of images per axis (p) increases the computational cost (Table 4) but does not 
improve the mean accuracy of the model significantly (Table 6). The highest mean accuracy that the model can 
reach during testing is 68.65% . It is obtained with the MSE loss function and for 1 image per axis. This somewhat 
surprising result may be attributed to an insufficient training data set and/or to the complexity of the prediction 
task, which consists in estimating 23 features simultaneously, and to the low values of the second-order moments 
of probability (i.e., standard deviations) of the fabric descriptors, which are difficult to predict because they are 
similar to noise.

Figure 10.  Microstructure descriptors predicted with Model 1 during testing versus ground truth.
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Figure 11.  Distributions of the target and predicted descriptors in the test dataset after training Model 1 with 
different p values. Microstructure descriptors are not normalized in these plots.

Figure 12.  Accuracy of Model 1 for estimating F11 from the training data set (MSE loss function, fixed 
convolutional layers, p = 1).
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Figure 13 provides the accuracy of the 23 estimated fabric descriptors for the two models that yield the 
highest mean accuracy: MSE loss with p = 1 for trainable convolutional layers, and for MSE loss with p = 3 for 
fixed convolutional layers. Features estimated with the highest and lowest accuracy are listed in Table 7 with 
the details of the models with which they were obtained. Figure 14 shows the MAE and MAPE of the features 
predicted from the testing data set, calculated by using Equation 11 for the model with highest mean ( 68.65% ). 
That model, which comprises trainable convolutional layers, uses the MSE loss function and takes 1 image per 
axis as input, yields a MAPE of 13.8% for the aggregate volume fraction, 5.25% for the mean aggregate size, less 
than 2% for the mean aspect ratios a/b and c/a and for the mean solidity, and 9.75% for the mean roundness. Most 
MAPEs for the standard deviations of those descriptors are in the range 5% - 20%. The means of the distributions 
of the components of the orientation matrix are predicted with a MAPE of the order of 100% or above, while 
the MAPEs of the standard deviations are mostly distributed between 20% and 50%. We conclude that Model 
1 cannot be used to predict orientation, but gives satisfactory results to predict mean geometric descriptors. 
Standard deviations are harder to predict because their low values makes them similar to noise. The aggregate 
volume fraction is the lowest order descriptor, and yet, the MAPE associated to that descriptor is higher than 
that associated with higher order descriptors such as size, aspect ratio, roundness and solidity. The somewhat 
low performance of Model 1 for estimating the aggregate volume fraction may be due to the loss that is used, 
which gives equal importance to all descriptors. Highly correlated descriptors have a better chance to be well 
predicted, hence the higher performance for correlated geometric descriptors such as aspect ratio and roundness 
over aggregate volume fraction (see Fig. 4).

Model 2: three channels of concatenated 2D images as input
Performance of the model trained and tested with 3 concatenated images per channel
Model 2 (based on VGG16) was first trained and tested only with inputs made of 3 concatenated images per 
channel. The MAE was 0.0276 on the test dataset. The value of each microstructure descriptor predicted with 
Model 2 during testing with three concatenated images per channel is plotted against its ground truth value in 
Fig. 15. Figure 16 shows the distributions of the target and predicted descriptors for the test dataset, in which 
the features have been converted to their actual values (instead of their normalized values) for a better physi-
cal understanding. The important overlap between the two suggests a high level of accuracy in the predictions. 
This high performance is confirmed by Fig. 17, which shows the prediction errors made for each of the 27 
fabric descriptors under study. The prediction error made by the model oscillates between 1.5 and 7% for most 
descriptors. In comparison, the prediction errors made by the mean algorithm are between 16 and 50% . Model 
2 accurately estimates the means of descriptors like solidity (MAPE: 0.654% ) and aggregate size (MAPE: 1.91% ). 
But the model does not perform as well when estimating the average values of the off-diagonal coefficients of the 
orientation tensor (MAPE: 96.9%-249% ). We attribute this lower performance to the fact that the coefficients 
Fij, i  =j have a low mean value and a low variance, which makes them difficult to estimate. We also notice that, 

Table 6.  Average accuracy of Model 1 ( a%).

Loss function p = 1 p = 3 p = 5 p = 10

Trainable CNN

MSE 68.65 66.19 62.90 52.78

RMSE 65.01 56.30 50.42 52.22

MAE 64.76 54.88 54.43 50.64

Fixed CNN

MSE 67.24 67.82 67.25 63.18

RMSE 64.24 57.76 54.89 55.39

MAE 63.46 60.38 55.27 56.90

Figure 13.  Accuracy of Model 1 with trainable and fixed convolutional layers. Results displayed by feature, for 
the two models that yield the highest mean accuracy across the features.
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Figure 14.  Model 1 performance to predict fabric descriptors from the test data set (MSE loss function, one 2D 
image per axis, trainable convolutional layers). Results are displayed in actual value (and not normalized value). 
The MAE is represented in colored bars, with its 95% confidence interval. Each descriptor is also annotated with 
its MAPE.

Table 7.  Features which have highest/lowest accuracy with Model 1.

Descriptor Estimator Accuracy Parameters

Features predicted with highest accuracy

Global volume fraction – 91.6% Trainable CNN, MSE, p = 1

Grain size Mean 82.5% Fixed CNN, MSE, p=3

Orientation, F13 Mean 92.3% Fixed CNN, MSE, p = 3

Orientation, F33 Mean 75.9% Trainable CNN, MSE, p = 1

Orientation, F22 Mean 77.7% Trainable CNN, MSE, p = 1

Features predicted with lowest accuracy

Orientation, F13 Standard deviation 49.9% Fixed CNN, MSE, p=3

Orientation, F33 Standard deviation 47.63% Fixed CNN, MSE, p=3

Orientation, F23 Mean 42.9% Fixed CNN, MSE, p=3
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except for the orientation tensor components, our model calculates means better than standard deviations in 
terms of MAPE. This is due to the fact that standard deviations of aggregate size, aspect ratio, roundness and 
solidity are often close to 0, resulting in higher MAPEs. Mathematically speaking, it is harder to predict second 
central moments (standard deviations) than first central moments (means). Overall, the invariants of the orien-
tation tensor ( I2 and I3 , respectively) are predicted with excellent or good accuracy (MAPE of 2.8% and 8.9%, 
respectively), which suggests that the model can recognize geometric features regardless of the orientation of 
the input images.

Effect of the number of input images on the model performance
We retrained the model over 700 epochs with inputs made of 1 image per channel only, 5 images per channel, and 
10 images per channel. The performance of Model 2 on the test datasets is summarized in Table 8. As expected, 
the MAE and MAPE decrease when the number of 2D images extracted in each direction of space increases. The 
increased performance comes with higher computational cost. For example, it takes about 13 hours to train the 
model with 10 images per channel as input. In average, the training time increases linearly with the number of 
images taken in each direction of space (p). The MAE decreases only marginally when p is increased beyond 3.

Figure 15.  Microstructure descriptors predicted with Model 2 during testing versus ground truth ( p = 3).
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Discussion
On the prediction of orientation descriptors
Model 1 contains 2 to 28 more trainable parameters than Model 2 (depending on the number of slices used as 
input). Model 1 likely requires a larger dataset than Model 2 to be properly trained. Switching to Model 2 signifi-
cantly improved the performance of the Visual Geometry Group (VGG) algorithm. Hence, the primary reason 
why orientation descriptors were not predicted with high accuracy with Model 1 was the lack of data available 
to train the deep neural network. Even with less parameters to train, Model 2 cannot predict the off-diagonal 
coefficients of the fabric tensor, for which the MAPE varies between 200% and 1,000%. The absolute mean values 
of F11 , F22 , F33 are about 10 times higher than those of F23 , F13 and F12 . Additionally, the off-the-diagonal coef-
ficients of the fabric tensor exhibit low variance. Distributions with low mean values and low variance require a 
high-precision model to be accurately predicted, which may explain why even Model 2 is not achieving a good 
performance for F23 , F13 and F12 . Model 2 performs well to predict the diagonal coefficients of the fabric tensor, 
since the MAPE for the means of F11 , F22 and F33 of is in the order of 4-6%. However, the MAPE obtained for 
the descriptors of shape, such as aspect ratio, roundness and sphericity, is 2-10 times lower. It may be possible 
to prune Model 2 further and achieve better performance. Another option is to train Model 2 several times 
to predict different sets of microstructure descriptors. For example, a set of VGG16 parameters could be used 
to predict shape descriptors only, and another set of VGG16 parameters could be used to predict orientation 
descriptors only. Besides the ratio number of parameters vs. number of predicted outputs, a possible explanation 
for the lower performance in predicting orientation descriptors is the choice of the loss function.

The Mean Squared Error (MSE) is widely used in vector regression for its simplicity, efficacy and versatility. 
But the MSE heavily penalizes larger errors, potentially leading to a model that is overfitted to the most common 
errors, at the expense of accurately predicting rarer or more complex cases. Experiments were conducted with 
the Mean Absolute Error (MAE), and generally yielded inferior outcomes. The Huber loss combines the benefits 
of the MSE and MAE, demonstrating reduced sensitivity to outliers compared to MSE. It could be interesting to 
finetune our models with this loss. The literature extensively investigates the impact of loss functions, particularly 

Figure 16.  Distributions of the target and predicted descriptors in the test dataset after training Model 2 with 
inputs made of 3 concatenated images per channel. Microstructure descriptors are not normalized in these plots.



17

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8957  | https://doi.org/10.1038/s41598-024-59554-x

www.nature.com/scientificreports/

in regression contexts, thereby guiding studies to understand the effects of different  losses37. For instance, the 
logCosh loss, akin to the Huber loss, often emerges as a viable compromise, though no loss function is guaranteed 
superior performance across all scenarios. Employing a custom loss function could enhance predictions of poorly 
predicted mechanical properties by focusing on specific data aspects. For example, for orientation descriptors, 
a loss function accounting for the cyclic nature of the orientation distribution could diminish prediction errors. 
Loss functions grounded in geometric distances or angular measures, such as the cosine loss, may more effectively 
capture the relationships between grain orientations in a biphasic structure. These approaches could offer an 
increased sensitivity to subtle orientation variations inadequately represented by the MSE.

Figure 17.  Model 2 performance to predict fabric descriptors from the test data set after training Model 2 with 
inputs made of 3 concatenated images per channel. Results are displayed in actual value (and not normalized 
value). The MAE is represented in colored bars, with its 95% confidence interval. Each descriptor is also 
annotated with its MAPE.

Table 8.  Performance of Model 2 trained and tested with different input sizes. MAE averaged over the 27 
fabric descriptors under study. MAPE averaged over 24 fabric descriptors: we excluded the off-diagonal 
coefficients of the orientation tensor, which have very low magnitude and low variance.

Type of model Time per epoch MAE MAPE

Mean algorithm 0 0.1863 30.1%

1 image per axis 7 s 0.0374 4.61%

3 image per axis 19 s 0.0276 3.59%

5 image per axis 41 s 0.0249 3.51%

10 image per axis 63 s 0.0227 3.38%
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Regardless, the second and third invariants of the fabric tensor are predicted with a MAPE of 2.8% and 8.9%, 
respectively, which indicates that despite a lower performance on orientation descriptors, Model 2 predicts 
well the relative orientation of microstructure features regardless of the orientation of the input image of the 
microstructure.

On the interpretability of the models
The proposed models are biased towards highly correlated descriptors. This is because the VGG algorithms 
presented here are trained to minimize a loss function that is the sum of the errors made on all the fabric 
descriptors. All the errors in the sum are assigned the same weight, such that two highly correlated descriptors 
are twice more likely to be predicted accurately than a descriptor that is correlated to no other. According to 
Fig. 4, volume fraction and grain size are highly correlated. So are roundness, sphericity and the c/a aspect ratio. 
The diagonal coefficients of the fabric tensor and the fabric invariants are also highly correlated (positively or 
negatively). As expected, the least correlated descriptors, mainly, the off-diagonal coefficients of the fabric tensor, 
are predicted with less accuracy than the other descriptors. Descriptors that are correlated are predicted with 
similar accuracy. For example with Model 2, the range of MAPE is 0.5%-3% for all shape descriptors. However, 
the fact that some descriptors are highly correlated does not imply high model performance. For example, as 
noted earlier, the performance of Models 1 and 2 is lower for F11 , F22 , F33 , I2 and I3 than for shape descriptors. 
Mathematically, it may be beneficial to weigh the importance of the predicted microstructure features as a func-
tion of their correlations, to avoid bias. However, in practical applications, off-diagonal coefficients of the fabric 
tensor are less important than the combination of the fabric diagonal coefficients and invariants, which suffice 
to predict the orientation of features independently from the orientation of the input images. As a result, bias 
towards correlated descriptors that are interesting to the user may be an advantage.

On the generalization performance of the models
Network pruning generally yields a good generalization performance for pre-trained networks like the VGG 
 networks38 and allows reducing the number of parameters of the model. Most network pruning techniques consist 
in removing redundant neurons or  connections39–41. For CNNs, network pruning either aims to remove redun-
dant connections or to delete channels. Channel pruning reduces the feature map width, which may transform 
significantly the format of the input to the next layer, and make it challenging to achieve the desired accuracy. 
Additionally, the training time for any type of pruned network can be as high or higher than the original  model38. 
Lastly, fine tuning pruned network remains a challenge because there is no theory to dictate which neuron or 
connection to prune. That is why knowledge interpretability is an active research  area38. Network quantiza-
tion is another network compression technique, in which the number of bits used to represent each weight is 
 reduced42,43. Network quantization is known to yield good accuracy, except for very large  CNNs38. Filters (also 
called structural matrices) can be applied to network layers to reduce the number of model  parameters44. The 
transformations are similar to non-linear projections. In practice, structural matrices are difficult to find and 
may introduce bias in the model, hence lowering its  performance38. Low-rank factorization is used to transform 
network layers into products of low-rank filters, which compresses the network and accelerates training and 
 inference45. High dimensional DCT (discrete cosine transform) and wavelet systems using tensor products were 
successfully employed in deep learning. However, factorization requires extensive model retraining to achieve 
convergence. Additionally, this method relies on decomposition operations that have a high computational 
 cost38. It is also possible to compress CNN models by applying transformations to a set of layers - a process 
called transferred convolutional filters. This method is known to achieve competitive performance for wide/
flat architectures such as the VGG nets, but requires imposing prior human knowledge to the model, which 
may affect the stability of the  models38. Lastly, parameter reduction can be achieved by knowledge distillation, 
which consists in training a deep learning model with thinner architecture to mimic the function learned by 
the original model with wide  architecture46. The main drawback of knowledge distillation is that it is limited to 
networks with a softmax loss function. Additionally, the performance gain is lower than with other approaches 
such as pruning, quantization or  factorization38.

Regardless of parameter reduction, generalization may be improved by training the deep learning model with 
smaller batches of data, because large-batch methods tend to converge to sharp minimizers of the training and 
testing  functions47. Using mini-batches mobilizes more parallel computing resources, but improves convergence 
and  accuracy48. It is also recommended to use an optimizer that partially adapts the learning rate as a function 
of a long history of the gradient of the loss function. In this study, the Adaptive momentum estimation method 
(Adam) was employed. Adam has demonstrated strong generalization capabilities. Once all the strategies above 
have been tested, generalization may be further enhanced by using the Partially adaptive momentum estimation 
method (Padam)49, which maintains a fast convergence rate, similar to the fully adaptive gradient method Adam, 
while achieving a generalization performance similar to that of the stochastic gradient descent (SGD) algorithm.

Conclusions
In this study, we compared the performance of two custom neural networks from the Visual Geometry Group 
(VGG) to predict 3D fabric descriptors from a set of 2D images that represent slices of a 3D biphase microstruc-
ture in three orthogonal planes. The data set used for training and testing is a set of 600 3D microstructures of 
cemented aggregate assemblies that are created numerically. Each of these 600 3D microstructures is used to 
calculate a ground-truth vector of fabric descriptors such as the mean and standard deviation of aggregate size, 
aspect ratio and orientation. The input data are 2D images obtained by slicing the 3D microstructures in each 
direction of space at regular intervals.
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The first model is a pruned version of VGG19 to which Axial Coronal Sagittal (ACS) convolutions are applied 
to allow formatting the input data as a single 3D image, i.e., as a concatenation of three objects. Each of those 
objects is the stack of 2D slices taken in the plane orthogonal to one direction of space, such that the input data 
set has a dimension 3× p× w × h , where p is the number of images taken in each of the planes of normal x, y 
and z, and w and h are the number of pixels of the 2D slices in the width and height directions. The custom ACS-
VGG19 model contains fifteen convolutional layers organized in three blocks, and five fully connected layers. 
The second model is a customized version of the VGG16 model that contains 31 convolutional layers organized 
in three blocks, and three fully connected layers. The input to the VGG16 model is a stack of concatenated 2D 
images of dimensions h× (p× w)× 3.

Overall, both models exhibit lower performance for orientation descriptors than for shape descriptors like 
aggregate size, aspect ratio, roundness and solidity. Both models perform better to predict the means than 
the standard deviations of shape descriptors. The ACS-VGG19 model that provides the best average accuracy 
across descriptors takes one image per direction as input, uses the MSE as a loss, and has fully trainable convo-
lutional layers. The computational cost to train the custom ACS-VGG19 model increases linearly with p (the 
number of images extracted in each direction of space), and increasing p does not improve the performance of 
the model - or only does so marginally. For p = 1 , using the MSE loss and trainable convolutional layers, the 
custom ACS-VGG19 model provides a MAPE of 2 to 5% for the means of aggregate size, aspect ratios a/b and 
c/a, and solidity. Surprisingly, the lowest order descriptor, the aggregate volume fraction, is estimated with a 
MAPE of 13.8%, which is attributed to the bias given by the loss function towards highly-correlated descriptors. 
While the pruned ACS-VGG19 model cannot be used for estimating orientations, the custom VGG16 provides 
satisfactory estimates for all descriptors across the board, except for the off-diagonal components of the average 
orientation matrix, which exhibit low mean values and low variance and thus require a high-precision model 
to be accurately predicted. As an example, the custom VGG16 yields a MAPE of 2% or less for the means of 
aggregate size, distance to nearest neighbor, aspect ratios and solidity. The MAPE is less than 3% for the mean 
roundness, and in the range of 5-7% for the aggregate volume fraction and the mean diagonal components of 
the orientation matrix. It is interesting to note that the custom VGG16 model predicts the second and third 
invariants of the orientation matrix with a MAPE of 2.8% and 8.9%, respectively, which suggests that the model 
can predict orientation descriptors regardless of the orientation of the input images. The performance of Model 
2 increases with the number of images taken as input in each direction of space. However, increasing p is h is 
not cost-effective beyond 3 images per axis because of the computational costs and the marginal loss reduction.

The custom VGG16 model (Model 2) performs better than the pruned version of ACS-VGG19 model (Model 
1), likely because it contains less parameters than the ACS-VGG19 model. For example, for p = 1, Model 2 con-
tains 16,048,729 parameters, compared to 52,561,751 parameters for Model 1. For p = 10, Model 2 contains 28 
times less trainable parameters than Model 1. Model 1 contains heavy fully connected layers, which represent 
more than 98% of the trainable parameters. In comparison, the majority of the trainable parameters in Model 2 
are found in the convolutional layers. Models with fewer parameters are able to converge better and faster, with 
less data. Intuitively, this is because finding the minimum of a loss function is easier when the loss depends on 
fewer parameters.

The independence of Model 2 to the orientation of the input impages implies that the proposed deep neural 
network could help optimize the number of slices acquired by computed tomography imaging for the characteri-
zation of anisotropic materials. The study reported in the manuscript indicates that using 3 slices per direction 
is optimal. The result may be extended to biphase materials with microstructures similar to those used in our 
dataset, mainly, cemented aggregates. However, for microstructures that exhibit very different geometric features, 
such as non-convex inclusions or fiber-like inclusions, it is necessary to re-train the models to optimize the 
number of input slices. The MAPE and the measure of accuracy proposed in the manuscript are useful tools to 
determine the optimum. We expect that the best trade-off between the quantity of input data (number of slices) 
and the number of microstructure descriptors predicted (model output) will partially depend on the quality of 
the input images. As a result, automating the selection of the number of input slices may not be feasible. A natural 
extension of this work is the adaptation of the proposed models for input data of variable format, which will 
allow training deep neural networks from inputs that contain various numbers of images per direction, different 
numbers of images in different directions, and unequally spaced slices.

Data availability
Accession codes: https:// github. com/ Matia sEtch eve/ micro struc ture- recon struc tion. Accession dataset: https:// 
github. com/ Matia sEtch eve/ micro struc ture- recon struc tion/ tree/ master/ REV1_ 600.
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