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Variable parameters memory‑type 
control charts for simultaneous 
monitoring of the mean 
and variability of multivariate 
multiple linear regression profiles
Hamed Sabahno * & Marie Eriksson 

Variable parameters (VP) schemes are the most effective adaptive schemes in increasing control 
charts’ sensitivity to detect small to moderate shift sizes. In this paper, we develop four VP adaptive 
memory-type control charts to monitor multivariate multiple linear regression profiles. All the 
proposed control charts are single-chart (single-statistic) control charts, two use a Max operator 
and two use an SS (squared sum) operator to create the final statistic.  Moreover, two of the charts 
monitor the regression parameters, and the other two monitor the residuals. After developing the VP 
control charts, we developed a computer algorithm with which the charts’ time-to-signal and run-
length-based performances can be measured. Then, we perform extensive numerical analysis and 
simulation studies to evaluate the charts’ performance and the result shows significant improvements 
by using  the VP schemes. Finally, we use real data from the national quality register for stroke care in 
Sweden, Riksstroke, to illustrate how the proposed control charts can be implemented in practice.

Keywords  Multivariate multiple linear regression profiles, Profile monitoring, Memory-type control 
charts, Max-type control charts, SS-type control charts, VP adaptive control charts, Monte Carlo simulation, 
Healthcare

Statistical process monitoring is a method utilized to monitor the variations in any process and to ensure the 
delivery of good quality outputs (products/services). Control charts are the main tools for this purpose. The first 
control chart was introduced by Shewhart in 1924. Since this control chart is memory-less, it is slow in detecting 
small and moderate shift sizes. To improve the sensitivity of the Shewhart control chart, different approaches are 
proposed. Two of the main approaches are using memory-type and adaptive schemes.

Although the statistic in the memory-less control charts is only related to the current sample, it is somehow 
related to the previous statistics as well (its value gets updated based on both current and previous samples) in 
the memory-type control charts. The main memory-type control charts are EWMA (exponentially weighted 
moving average) and CUSUM (cumulative sum) control charts.

On the other hand, in adaptive schemes, at least one of the chart’s parameters (sampling interval, sample size, 
and control limits) is allowed to vary from sample to sample (usually between two possible values). The main 
adaptive schemes are VSI (Variable Sampling Interval), VSS (Variable Sample Size), VSSI (Variable Sample Size 
and Sampling Interval), and VP (variable parameters). Studies such as Sabahno et al.1 have shown that the VP 
scheme, in which all the chart parameters are allowed to vary, is the best-performing scheme. For some notable 
works regarding adding different adaptive schemes to different control charts, we refer interested readers to 
Sabahno et al.1–4, Sabahno & Celano5, and Sabahno6.

Although adaptive schemes were initially developed to be used in memory-less control charts, studies such 
as Perdikis & Psarakis7 have shown that combining both approaches (using memory-type and adaptive control 
charts) further improves the chart’s sensitivity and performance. Nonetheless, there are also studies such as 
Amir et al.8 and Abbas et al.9 that have used auxiliary information to increase the sensitivity of memory-type 
control charts.
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Profile monitoring is a special case of statistical process monitoring in which instead of quality characteris-
tics, the relationship between some dependent and independent variables in the form of a regression model is 
monitored. Maintaining this relationship ensures the process quality, in this case. The idea of profile monitoring 
was raised by Kang & Albin10. They introduced simple linear profiles with two main applications in semiconduc-
tor and food manufacturing. They used the memory-less Hotelling´s T2 and the memory-type EWMA control 
charts. A significant development in monitoring simple linear profiles was made by Kim et al.11. They developed 
a monitoring scheme using three EWMA statistics. Other notable work has been proposed by Zou et al.12. They 
used a control chart based on a change-point model to monitor linear profiles. Some other notable works that 
have developed Kang & Albin10’s research are Yeh et al.13, Noorossana et al.14, Eyvazian et al.15, Hosseinifard 
et al.16, and Zou et al.17.

Simultaneous monitoring of the normal process parameters (the mean and variability) usually results in better 
overall performance. Although there are two main simultaneous monitoring schemes, one uses only one single 
chart and the other uses two charts, the former is preferred due to its simplicity of usage. Some notable works that 
have considered simultaneous monitoring of profiles parameters are Zhang et al.18, Eyvazian et al.15, Khedmati 
& Niaki19, Ghashghaei & Amiri20,21, Mahmood et al.22, Saeed et al.23, Ghashghaei et al.24, Malela-Majika et al.25, 
Abbasi et al.26, Sabahno & Amiri27, and Sherwani et al.28. Ghashghaei & Amiri20, developed two memory-type 
control charts by using a max-operator, namely Max-MEWMA (multivariate EWMA) and Max-MCUSUM 
(multivariate CUSUM) control charts for simultaneous monitoring of the mean vector and variance-covariance 
matrix of multivariate multiple linear profiles. Ghashghaei & Amiri21 did the same but this time by using an 
SS (squared sum) operator. They called their control charts SS-EWMA and SS-CUSUM. However, other than 
developing control charts to monitor the profile’s parameters (before-mentioned ones), they also developed con-
trol charts to monitor the residuals. Both these studies used simulation to compute the performance measures. 
Mahmood et al.22 developed SS and Max types EWMA control charts using three EWMA statistics and showed 
superior performance over using those three EWMA statistics separately (EWMA3), three separate Hotelling 
T2 charts, and EWMA-R charts. Saeed et al.23 developed a scheme using three progressive statistics which were 
monitored separately, and showed superior performance over the existing charts including EWMA3, EWMA-R, 
Hotelling T2, and a scheme with three separate Shewhart-type charts. Abbas et al.29 investigated the Bayesian 
EWMA and MEWMA control charts for  monitoring of the linear profiles when the explanatory variables are 
random. However, in most studies like ours, the explanatory variables are assumed fixed.

Moreover, the following studies have considered adaptive schemes in profile monitoring. Li & Wang30 devel-
oped an EWMA scheme with variable sampling intervals (VSI) for monitoring linear profiles. Abdella et al.31 
developed a Hotelling T2 scheme with varying sample sizes and sampling intervals (VSSI). Ershadi et al.32, 
investigated the economic-statistical design of an EWMA scheme with variable sampling interval (VSI) for 
linear profile monitoring. Magalhaes & Von Doellinger33 developed a variable sample size (VSS) χ2 scheme for 
linear profile monitoring. Kazemzadeh et al.34 developed the EWMA3 and MEWMA schemes with variable 
sample sizes. Ershadi et al.35 investigated the economic-statistical design of an EWMA scheme with variable 
sample size (VSS) for linear profile monitoring. Darbani & Shadman36, developed a generalized likelihood 
ratio control chart with variable sampling intervals for monitoring linear profiles. Yeganeh et al.37 developed an 
adaptive MEWMA control chart based on the ratio of samples. Haq38 developed adaptive MEWMA charts by 
varying the smoothing parameter for monitoring linear profiles. Sabahno & Amiri27 developed a VP memory-
less Max-type control chart for simultaneous monitoring of the mean vector and the variance-covariance matrix 
in multivariate multiple linear profiles. They evaluated the chart performance using a dedicated Markov chain 
model. Sabahno & Amiri39 developed memory-less machine-learning based control charts and compared them 
to the best available statistical control charts for monitoring generalized linear regression profiles’ parameters 
in both fixed and variable parameters schemes.

According to the literature and the review paper of Perdikis & Psarakis7, VP adaptive schemes have not so far 
been developed for  memory-type control charts. In this paper, we develop VP schemes for four memory-type 
control charts: the Max-MEWMA and Max-MCUSUM for monitoring the regression parameters (from Ghash-
ghaei & Amiri20), and two SS-type control charts for monitoring the residuals (from Ghashghaei & Amiri21). Note 
that we only use Ghashghaei & Amiri21’s SS-type control charts for the residual, because they discovered them 
to be more effective than the SS-type charts to monitor the regression parameters. We also develop a computer 
algorithm to compute different performance measures of the developed control charts, which can be used for any 
other memory-type VP control chart as well. Furthermore, we use a real case to show how the proposed control 
charts can be implemented in practice. To do so, we use a dataset from the national Swedish Stroke Register, 
Riksstroke. After estimating two correlated multiple profiles, we develop and implement the proposed control 
charts to monitor the stroke care-related relationships.

This paper is structured as follows. Multivariate multiple linear profiles are described in Section "Multivariate 
multiple linear profiles". The Max-type and SS-type memory-type control charts for simultaneous monitoring 
of multivariate multiple linear profiles are described in Section "Max-type and SS-type memory-type control 
charts". In Section "Design parameters in a variable parameters scheme", VP adaptive schemes are developed for 
control charts described in Section "Max-type and SS-type memory-type control charts". Section "Performance 
measures" contains the proposed algorithm to compute the performance measures of the proposed control 
charts. Section "Simulation studies" contains extensive simulation studies and numerical analyses to evaluate 
the proposed control charts’ performance using the proposed performance measure algorithm, under different 
shift types and sizes. Our real case illustrative example is presented in Section "A real case". Concluding remarks 
and suggestions for future developments of the paper are mentioned in Section "Conclusions".
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Multivariate multiple linear profiles
For the kth sample of size n, with p response variables (profiles), Yk is a n× p matrix. Yk is a linear function of 
some independent variables x, so that:

where X is a n×
(
q+ 1

)
 matrix of explanatory (independent) variables,q is the number of independent variables, 

B is a 
(
q+ 1

)
× p matrix of regression parameters, and Ek is a n× p matrix of correlated error terms ( ε) , which 

follows a multivariate normal distribution (0,�) , where � =





σ11 σ12 · · · σ1p
...

. . .
...

σp1 σp2 · · · σpp



 , and σgh denotes the covari-

ance between the error vector terms of gth and the hth response variables at each observation.
Therefore, we can write Eq. (1) as:

Max‑type and SS‑type memory‑type control charts
In this section, we describe two memory-type Max-type control charts, namely Max-MEWMA, and Max-MCU-
SUM charts, which form a single statistic by taking the maximum value between the absolute values of two 
statistics (one for the process mean vector and the other one for the process variability). We also describe two 
SS-type memory type control charts, namely SS-EWMAe and SS-CUSUMe charts, which form a single statistic 
by adding the squared values of two statistics (again, one for the process mean vector and the other one for the 
process variability). As previously mentioned in the Introduction section, these Max-type and SS-type control 
charts are proposed by Ghashghaei & Amiri20 and Ghashghaei & Amiri21, respectively.

Memory‑type control charts using a Max operator
In this section, we describe two memory type Max-type control charts for regression parameters, namely Max-
MEWMA and Max-MCUSUM charts, which were introduced by Ghashghaei & Amiri20.

Max‑MEWMA control chart
In this section, we detail a single control chart for simultaneously monitoring of the process mean vector and 
variability ( B and � matrices), by assuming that their values are known.

First, we need to develop a statistic to represent the process mean vector. To monitor the process mean, the 
Hotelling’s T2

k statistic can be used to monitor the changes in the B matrix. The sample estimate of the B matrix 
( ̂Bk ) is computed as:

By changing B̂k into a p(q+1)×1 vector, we have:

Next, we need to compute its average and variance-covariance matrix. For an in-control process, and since 
we assume that the parameters’ values are known, the expected value of B̂k is equal to B . Therefore, we have:

For its variance-covariance matrix, we have:

�gh is a 
(
q+ 1

)
×

(
q+ 1

)
 matrix equal to 

[
X
T
X
]−1

σgh.
Next, we define:

(1)Yk = XB+ Ek ,





y11k y12k · · · y1pk
...

. . .
...

yn1k yn2k · · · ynpk



 =





1 x11 · · · x1q
...

. . .
...

1 xn1 · · · xnq





n×(q+1)





β01 β02 · · · β0p
...

. . .
...

βq1 βq2 · · · βqp





(q+1)×p

+





ε11k ε12k · · · ε1pk
...

. . .
...

εn1k εn2k · · · εnpk





n×p

.

(2)B̂k =
[
X
T
X

]−1
X
T
Yk .

β̂k =

(
β̂01k , β̂11k , . . . , β̂q1k , . . . . . . , β̂0pk , β̂1pk , . . . , β̂qpk

)T
.

β = E(β̂k) =
(
β01,β11, . . . ,βq1, . . . . . . ,β0p,β1p, . . . ,βqp

)T
.

��βk
=





�11 �12 · · · �1p

...
. . .

...
�p1 �p2 · · · �pp





p(q+1)×p(q+1)

,

(3)zk = �

(
β̂k − βk

)
+ (1− �)zk−1,
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where z0 is the starting point and is equal to zero, � is the smoothing parameter and its value can vary between 
0 and 1. However, most commonly, � = 0.2 is used.

Then, the following statistic is defined for monitoring the process mean vector:

where H(q+1)p(.) is the chi-square cumulative distribution function with 
(
q+ 1

)
p degrees of freedom, and �(.) 

is the standard normal cumulative distribution function.
To construct the statistic for monitoring the process variability, first, we define Wk as:

So that Wk has a chi-square distribution with np degrees of freedom. Then, we define:

where g0 is the starting point and is equal to zero. The statistic for monitoring the variability is defined as:

Finally, the MEk statistic is formed by combining Ck and Sk:

Since this statistic only generates positive values, we only need an upper control limit (UCL) for this control 
chart, and its value is obtained using simulation to achieve any desired ARL performance.

Max‑MCUSUM control chart
The statistic for monitoring the process mean vector for the Max-MCUSUM control chart is defined as:

where Zk = a
(
β̂k − βg

)T
 , a =

(
βb−βg

)
�−1

β̂√(
βb−βg

)
�−1

β̂

(
βb−βg

)T  , βg is the good β (in-control mean vector), βb is the bad 

β (out-of-control mean vector), D=
√(

βb − βg

)
�−1

β̂

(
βb − βg

)T
 and U0 = 0.

The statistic for monitoring the process variability is:

where v = log(τ )
(

τ
τ−1

)
 , τ is the multiplier with which the variance-covariance matrix shifts ( � → τ�) , and 

similar to Ghashghaei and Amiri20 we assumed τ =1.1 and L0 = 0.
Finally, MCk is formed by combining Uk and Lk , as:

Again, since this statistic only generates positive values, we only need a UCL for this control chart, and its 
value is obtained using simulation to achieve any desired ARL performance.

Memory‑type control charts using a SS operator
In this section, we describe the SS-type control charts for the residuals introduced by Ghashghaei & Amiri21. 
They developed these kinds of control charts to monitor both regression parameters and residuals (four control 
charts). However, we only use the ones for monitoring the residuals, mostly because we already have our Max-
type ones for monitoring the regression parameters, and also, they concluded that in most situations their residual 
monitoring charts perform better than the other ones.

SS‑EWMAe control chart
To compute the statistic for monitoring the mean vector ( Pk) , we first define:

where Hp(.) is the chi-square cumulative distribution function with p degrees of freedom, �(.) is the standard 
normal cumulative distribution function, zk = �ek + (1− �)zk−1 , z0 = 0, ek =

(
e1k , e2k , . . . , epk

)
 is the average 

residual vector in the sample k, and � is the smoothing parameter.
Then, we have:

(4)Ck = �−1

[
H(q+1)p

{
2− �

�
z
T
k �

−1

β̂
zk

}]
,

(5)Wk =
∑n

i=1

(
yik − xiB

)
�−1(yik − xiB)

T .

(6)gk = (1− �)gk−1 + ��−1
[
Hnp{Wk}

]
,

(7)Sk =

√
2− �

�
gk ,

(8)MEk = max{|Ck|, |Sk|}.

(9)Uk = max
{
0,Uk−1 + Zk − 0.5D

}
,

(10)Lk = max

{
0, Lk−1 +

(
β̂k − βg

)
�−1

β̂

(
β̂k − βg

)T
− v

}
,

(11)MCk = max{Uk , Lk}.

(12)Tk = �−1
[
Hp

{
z
T
k �

−1

β̂
zk

}]
,
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where P0 is equal to zero.
To compute the statistic for monitoring the variability, we first have:

where fk =
∑n

i=1(eik)�
−1(eik)T, and � is the variance-covariance matrix of the error terms.

Then we have:

where V0 = 0.
Finally, the SS-type statistic in the EWMAe scheme is defined as:

The same as in the case of Max-type control charts, since this statistic only generates positive values, we 
only need a UCL for this control chart, and its value is obtained using simulation to achieve any desired ARL 
performance.

SS‑CUSUMe control chart
The statistic for monitoring the mean vector in this scheme is:

where D−
k = max

{
0,−Tk − k1 + D−

k−1

}
 , D+

k = max
{
0,Tk − k1 + D+

k−1

}
 , D−

0 = 0,D+
0 = 0, k1 is the reference 

value, and Tk was defined in the previous chart.
Similarly, the statistic for monitoring the process variability is:

where B−k = max
{
0,−Fk − k2 + B−k−1

}
 , B+k = max

{
0, Fk − k2 + B+k−1

}
 , B−0 = 0,B+0 = 0, k2 is the reference 

value, and Fk was defined in the previous chart.
Finally, the SS-type statistic in the CUSUMe scheme is defined as:

Note that following Ghashghaei & Amiri21, in this paper we choose k1 = 1 and k2 = 1.5.

Design parameters in a variable parameters scheme
The adaptive scheme in which all the control chart (design) parameters are allowed to vary from sample to sam-
ple, is called a VP (Variable Parameters) scheme. In this paper, we consider two types of sample sizes with n1<n2 , 
two types of sampling intervals with t2< t1 , and two types of Type-I error probabilities with α1<α2 . In addition to 
these parameters, we have to define two upper control limits UCL1 and UCL2 with UCL2 < UCL1 as well as two 
upper warning limits UWL1 and UWL2 , satisfying UWL1 < UCL1 and UWL2 < UCL2.

In a VP scheme, we should have the following three constraints (each one is related to one design parameter) 
satisfied:

By solving Eqs. (20)–(22) together, P0 , t1 and α2 are obtained as:

Note that P0 is the conditional probability of being in the safe zone while the process is in-control. After deter-
mining the values of the UCLs and UWLs, which we will later show how to determine by introducing algorithms 
1 and 2, we use the following sampling strategy in a VP scheme:

(13)Pk = �Tk + (1− �)Pk−1,

(14)Fk = �−1
[
Hnp

{
fk
}]
,

(15)Vk = �Fk + (1− �)Vk−1,

(16)EWek = P2k + V2
k .

(17)Mk = max
{
D−
k ,D

+
k

}
,

(18)Nk = max
{
B−k ,B

+
k

}
,

(19)CUek = M2
k + N2

k .

(20)E(n) = n1P0 + n2(1− P0),

(21)E(t) = t1P0 + t2(1− P0),

(22)E(α) = α1P0 + α2(1− P0).

(23)P0 =
E(n)− n2

n1 − n2
,

(24)t1 =
E(t)(n1 − n2)− t2(n1 − E(n))

E(n)− n2
,

(25)α2 =
E(α)(n1 − n2)− α1(E(n)− n2)

n1 − E(n)
.
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•	 If at sample k, the statistic’s output ∈
[
0,UWL(k)

]
 , then the process is declared as being in-control and the 

parameters for the next sample must be n1, t1,UCL1,UWL1.
•	 If at sample k, the statistic’s output ∈

(
UWL(k),UCL(k)

]
 , then the process is also declared as being in-control, 

but the parameters for the next sample must be n2, t2,UCL2,UWL2.
•	 If at sample k, the statistic’s output ∈

(
UCL(k),∞

)
 , then the process is declared as being out-of-control and 

the corrective actions might be required,

where UCL(k) ∈ {UCL1,UCL2} and UWL(k) ∈ {UWL1,UWL2} are the upper control and warning limits used 
for sample k=1,2,..., respectively.

For determining the UCL values, we assume that we have an FP scheme and set the values of each UCL sepa-
rately (UCL for an FP control chart, and UCL1 & UCL2 for a VP control chart). We use the following algorithm 
for determining the values of UCLs. First note that in all the following algorithms, it is assumed that the average 
sampling interval is equal to one time unit, which results in ARL=ATS. Otherwise, it would have been ATS=t × 
ARL. Also, all the algorithms in this section should be run in an in-control state. In fact, obtaining the values of 
all the control chart parameters should be performed while the process is in-control.

Algorithm 1: Adjusting the UCL values
Step 1-Choose a value for α (the probability of Type-I error) and the sample size n.

Note that for the FP schemes there is only one α and one n. However, for the VP schemes we have two α s and 
two ns, therefore we set UCL1 by using α1 and n1 , and UCL2 by using α2 and n2.

Step 2-Choose a statistic (ME, MC, EWe, or CUe).
Step 3-Obtain the initial value for the UCL by generating and increasingly sorting 10000 in-control samples 

by using the statistic and choosing the [10000(1-α)]th value in the range.
Step 4-Run 10000 simulations and adjust the UCL so that you get ARL=1

α
.

After determining the value of the UCLs, we should obtain the values of UWLs for the VP scheme (remember 
that the FP scheme has no UWL). For obtaining the UWL values, we can assume that we only have a variable 
sampling interval (VSI) scheme and compute each UWL separately with its corresponding parameters using the 
following algorithm (as is supposed to be done in a VSI scheme).

Algorithm 2: Adjusting the UWL values
Step 1-Choose the values of α , t2, E(t), the corresponding UCL value obtained via the previous algorithm, and 
the corresponding sample size ( n1&UCL1 if α = α1 , and n2&UCL2 if α = α2).

Step 2-Compute P0 using Eq. (23) and t1 using Eq. (24).
Step 3-Choose the same statistic used for determining the corresponding UCL value.
Step 4-Run 10000 simulations and adjust each UWL with its corresponding UCL so that you get P0 equal to 

the value you obtained in Step 3 and at the same time get ARL=1
α

 and ATS= E(t)ARL=E(t) 1
α

 (note that if E(t)=1, 
as in our case, then ARL= ATS=1

α
).

Performance measures
The Run length and time to signal based measures are the two most important control charts’ performance 
measures. In an FP scheme, computing the average run length based measures are enough, considering one 
can multiply the average run length by the sampling interval to obtain the average time to signal. However, in a 
VP scheme, the average time to signal should be computed separately. Both average and standard deviation of 
run length (ARL and SDRL) as well as time to signal (ATS and SDTS), are important to consider. Although the 
SDRL and SDTS are always expected to be low, the ARL and ATS are expected to be as high as possible when 
the process is in-control and as low as possible when the process is out-of-control.

To compute the performance measures for an FP scheme, algorithm 1 can still be used with the only differ-
ence that here we have obtained the UCL value, and we are now only interested in computing the values of the 
ARL and SDTS in an out-of-control situation.

To compute the performance measures for a VP control chart, the following computer algorithm is developed 
and can be used. Note that, to reduce the paper size, we only present the algorithm for the case of the Max-
MEWMA control chart, but it can easily be modified for the other proposed control charts as well.

Algorithm 3 Computing the performance measures in a memory-type VP scheme.
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As can be seen in the above-mentioned algorithm, the final statistic is differentiated with ‘ME1’ and ‘ME2’ 
depending on their zone (safe or warning zone). This happens in all the control charts whether they are memory-
type or memory-less. However, if we have a memory-type control chart, the memory-type statistics (g and z 
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statistics in Max-MEWMA) should also be divided into two categories as well and the previous statistic values 
obtained in region 1(2) cannot be used for the next sampling in region 2(1). In other words, region 1 values 
should only be used when we are in region 1 and the same applies to region 2 values. Otherwise, this will sig-
nificantly increase the false alarm rate.

Simulation studies
In this section, we perform numerical analyses and simulation studies to evaluate and compare our developed 
adaptive control charts to one another in adaptive and one-adaptive conditions. We evaluate the performance 
of the proposed control charts under different shift scenarios and in different dimensions.

Although we report the values of the ATS, SDTS, ARL, and SDRL in the following tables, the comparisons are 
mainly made using the ATS values. All the simulation environments and the chosen values for the process and 

Table 1.   ATS=ARL, SDTS=SDRL for FP and ATS, SDTS (ARL, SDRL) for VP schemes for shifts in the 
intercept vector ( β0 ) and the error variation ( τ ), when p=2 and q=2.

Shift in β0 = (β01,β02)

τ Control chart (0, 0) (0.1, 0.1) (0.2, 0) (0.2, 0.2) (0.5, 0.5) (1, 1)

FP scheme

 1

MAX-MEWMA 200, 200 181.43, 180.85 111.62, 108.78 112.51, 110.08 15.33, 9.94 4.68, 1.5

MAX-MCUSUM 200, 195 53.86, 46.46 53.26, 43.31 22.81, 15.27 7.48, 2.97 3.58, 0.95

SS-EWMAe 200, 190 99.3, 89.97 38.08, 30.1 38.78, 30.89 8.82, 3.62 4.19, 0.97

SS-CUSUMe 200, 200 99.59, 91.57 38.03, 30.92 38.07, 32.07 8.7, 3.54 4.23, 0.92

 1.1

MAX-MEWMA 108.71, 105.42 97.49, 95.82 63.6, 59.05 65.36, 60.28 13.31, 8.21 4.55, 1.52

MAX-MCUSUM 159.94, 152.48 48.49, 42.04 47.49, 40.18 22.29, 15.48 7.54, 3.19 3.57, 1.01

SS-EWMAe 143, 134.89 77.17, 72.95 32.72, 26.11 32.84, 26.98 8.55, 3.54 4.13, 1.02

SS-CUSUMe 148.21, 145.14 83.89, 73.29 34.6, 28.17 34.35, 28.07 8.61, 3.63 4.19, 1

 1.3

MAX-MEWMA 26.19, 22.23 24.63, 20.12 21.44, 17.28 21.66, 17.14 10.02, 5.92 4.23, 1.51

MAX-MCUSUM 106.76, 100.12 40.1, 33.42 41.04, 33.32 20.92, 14.24 7.42, 3.26 3.58, 1.09

SS-EWMAe 50.95, 45.33 37.88, 32.28 23.17, 17.13 23.15, 16.85 8.05, 3.63 4, 1.05

SS-CUSUMe 89.39, 81.7 58.23, 53.27 29.39, 23.88 28.67, 22.69 8.59, 4.08 4.13, 1.07

 2

MAX-MEWMA 5.18, 2.68 5.14, 2.56 5.09, 2.61 5.08, 2.59 4.39, 2.03 3.12, 1.22

MAX-MCUSUM 14.3, 9.32 12.95, 8.2 12.38, 7.64 11.03, 6.51 6.63, 3.15 3.53, 1.23

SS-EWMAe 7.91, 4.12 7.83, 4.03 7.38, 3.72 7.37, 3.75 5.45, 2.33 3.48, 1.1

SS-CUSUMe 14.17, 10.84 13.6, 10.03 11.74, 8.08 11.53, 7.9 6.76, 3.49 3.67, 1.26

VP scheme

 1

MAX-MEWMA 200, 205 (200, 205) 160.46, 166.95 (164.77, 
168.56)

65.49, 62.3 (74.51, 
68.26)

64.23, 61.05 (73.39, 
67.15) 9.093, 5.5 (12.11, 5.06) 3.66, 2.1 (5.1, 1.41)

MAX-MCUSUM 200, 200 (200, 195) 37.28, 30.53 (48.99, 
37.93)

35.62, 29.11 (48.13, 
36.74)

12.59, 9.69 (19.89, 
12.57) 3.22, 2.25 (6, 2.21) 1.42, 0.68 (3.04, 0.68)

SS-EWMAe 200, 180 (200, 180) 86.96, 71.93 (88.78, 
72.16)

31.6, 18.89 (32.31, 
18.24)

30.89, 18.45 (31.82, 
17.64) 11.52, 4.18 (10.92, 3.07) 5.1, 1.94 (5.58, 1.27)

SS-CUSUMe 200, 180 (200, 180) 79.46, 72.87 (83.41, 
72.34)

26.52, 19.67 (30.04, 
19.15) 26.94, 19.54 (30.41, 19) 7.914, 4.1 (9.75, 2.95) 3.38, 1.71 (5.05, 1.14)

 1.1

MAX-MEWMA 82, 81.93 (92.22, 88.33) 66.44, 61.71 (76.48, 
68.01)

35.6, 31.58 (44.68, 
37.03)

36.01, 31.85 (45.2, 
37.03) 7.95, 5.13 (11.11, 4.72) 3.4, 2 (4.91, 1.36)

MAX-MCUSUM 135.03, 126.13 (145.63, 
132.93) 31.71, 27 (43.79, 35.07) 29.54, 24.34 (42.01, 

32.42)
11.78, 8.94 (18.81, 
12.01) 3.17, 2.28 (5.91, 2.27) 1.43, 0.69 (3.03, 0.69)

SS-EWMAe 118.4, 104.8 (129.91, 
114.94) 57.3, 46.63 (62.8, 50.74) 26.86, 16.01 (28.73, 

15.88) 26.67, 15.9 (28.5, 15.81) 10.87, 4.34 (10.59, 3.21) 4.82, 1.99 (5.43, 1.28)

SS-CUSUMe 142.03, 132.15 (147.66, 
133.7)

64.17, 55.47 (69.71, 
56.27)

23.97, 17.09 (28.15, 
17.26)

24.57, 17.84 (28.32, 
17.49) 7.62, 4.12 (9.58, 3.01) 3.2, 1.76 (4.92, 1.2)

 1.3

MAX-MEWMA 12.14, 10.28 (19.32, 
13.66)

11.56, 9.63 (18.09, 
12.24)

10.16, 8.41 (16.21, 
10.48) 9.8, 7.81 (15.75, 9.9) 5.55, 3.82 (8.72, 3.66) 2.87, 1.78 (4.51, 1.29)

MAX-MCUSUM 57.59, 52.95 (73.54, 
65.29)

20.61, 17.03 (31.35, 
23.98) 19.14, 16.3 (30.2, 23.6) 9.78, 7.56 (16.66, 11) 3.06, 2.19 (5.79, 2.31) 1.46, 0.74 (3.03, 0.77)

SS-EWMAe 23.95, 16.3 (35.89, 
24.52) 21.11, 13.2 (29.41, 18) 15.88, 8.7 (19.77, 9.78) 16.01, 8.95 (19.9, 9.78) 8.88, 4 (9.46, 2.94) 4.33, 1.98 (5.09, 1.26)

SS-CUSUMe 65.35, 59.6 (81.19, 
71.57)

38.43, 32.75 (49.19, 
39.18)

17.85, 12.96 (23.87, 
14.69)

18.09, 13.09 (24.15, 
14.9) 6.41, 3.83 (8.88, 2.99) 2.93, 1.66 (4.69, 1.18)

 2

MAX-MEWMA 2.58, 1.77 (4.79, 1.78) 2.59, 1.83 (4.78, 1.77) 2.52, 1.77 (4.67, 1.71) 2.54, 1.76 (4.71, 1.68) 2.35, 1.57 (4.27, 1.48) 1.87, 1.14 (3.33, 0.99)

MAX-MCUSUM 5.34, 4.54 (9.47, 6.53) 4.58, 3.69 (8.53, 5.57) 4.33, 3.49 (8.18, 5.24) 3.92, 3.11 (7.65, 4.69) 2.43, 1.68 (4.7, 2.07) 1.46, 0.78 (2.81, 0.84)

SS-EWMAe 5.22, 2.78 (7.47, 2.52) 5.22, 2.75 (7.37, 2.44) 5.06, 2.68 (7.14, 2.35) 5.05, 2.65 (7.11, 2.36) 4.38, 2.32 (5.91, 1.84) 2.9, 1.65 (4.12, 1.11)

SS-CUSUMe 4, 3.16 (8.06, 4.18) 3.92, 3.02 (7.89, 3.81) 3.76, 2.81 (7.43, 3.47) 3.67, 2.79 (7.34, 3.46) 2.98, 2.12 (5.6, 2.06) 2.01, 1.26 (3.75, 1.09)
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chart parameters as well as the shift sizes are the same as in Sabahno & Amiri27. The in-control ARL and ATS for 
all the considered control charts are set to 200 runs and 200 hrs (α = 0.005), respectively. The analysis is conducted 
for the case of two and six response variables (p=2 and 6), i.e. two and six multiple linear profiles. The following 
multiple regression models are used for the case of p=2: y1 = 3+ 2x1 + x2 + ε1 and y2 = 2+ x1 + x2 + ε2.

The error’s variance-covariance matrix for this case is assumed to have the following elements: 

� =

[
σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
1

]
 , where σ1 and σ2 are the standard deviations of the first and second profiles, respectively, 

and ρ is their correlation. For its in-control value, we have: �0 =

[
1 0.5
0.5 1

]
.

The sample size for the non-adaptive (FP) scheme is 4 and the sampling interval is 1hr. For the adaptive VP 
control chart, in which we need two values for each chart parameter, the following parameters’ values are chosen: 

Table 2.   ATS=ARL, SDTS=SDRL for FP and ATS, SDTS (ARL, SDRL) for VP schemes for shifts in the first 
slope vector ( β1 ) and the error variation ( τÆ), when p=2 and q=2.

Shift in β1 = (β11,β12)

τ Control chart (0, 0) (0.02, 0.02) (0.05, 0) (0.05, 0.05) (0.1, 0.1) (0.2, 0.2)

FP scheme

 1

MAX-MEWMA 200, 200 173.1, 170.96 61.19, 57.67 63.91, 59.18 12.61, 7.34 4.13, 1.22

MAX-MCUSUM 200, 195 45.7, 35.91 35.4, 27.19 14.73, 8.15 6.38, 2.34 3.09, 0.76

SS-EWMAe 200, 190 103.66, 93.87 25.92, 18.27 25.78, 18.67 8.79, 3.59 4.12, 0.96

SS-CUSUMe 200, 200 100.58, 94.29 25.52, 18.94 25.68, 18.56 8.73, 3.44 4.21, 0.96

 1.1

MAX-MEWMA 108.71, 105.42 93.83, 92.41 41.97, 36.97 42.15, 36.15 11.3, 6.62 4.08, 1.28

MAX-MCUSUM 159.94, 152.48 42.33, 34.54 33.09, 25.37 14.31, 8.34 6.35, 2.49 3.12, 0.82

SS-EWMAe 143, 134.89 77.07, 67.98 23.37, 16.54 23.18, 16.55 8.53, 3.56 4.03, 1.01

SS-CUSUMe 148.21, 145.14 82.06, 74.78 24.45, 17.51 24.41, 17.5 8.65, 3.6 4.18, 1.02

 1.3

MAX-MEWMA 26.19, 22.23 25.05, 21.39 18.06, 13.37 18.03, 13.7 9.03, 5.08 3.82, 1.27

MAX-MCUSUM 106.76, 100.12 37.8, 31.47 29.04, 22.18 13.84, 8.35 6.41, 2.63 3.1, 0.88

SS-EWMAe 50.95, 45.33 38.28, 32.12 17.81, 12.53 18.23, 12.48 7.97, 3.54 3.88, 1.07

SS-CUSUMe 89.39, 81.7 58.53, 52.15 21.38, 15.86 21.37, 15.54 8.48, 3.91 4.07, 1.1

 2

MAX-MEWMA 5.18, 2.68 5.15, 2.63 4.96, 2.52 4.97, 2.46 4.31, 2.01 2.91, 1.08

MAX-MCUSUM 14.3, 9.32 12.75, 8.03 11.65, 7.31 9.61, 5.46 5.88, 2.66 3.13, 1.03

SS-EWMAe 7.91, 4.12 7.65, 3.98 6.97, 3.29 7.1, 3.54 5.38, 2.19 3.32, 1.02

SS-CUSUMe 14.17, 10.84 13.54, 10.02 10.73, 7.14 10.59, 7.03 6.62, 3.35 3.63, 1.31

VP scheme

 1

MAX-MEWMA 200, 205 (200, 205) 111.68, 113.05 (118.81, 
117)

14.64, 10.64 (18.82, 
10.69)

14.42, 10.7 (18.64, 
10.56) 5.74, 3.91 (7.16, 2.57) 2.36, 1.48 (3.52, 0.86)

MAX-MCUSUM 200, 200 (200, 195) 19.61, 15.74 (27.68, 
19.46)

12.63, 9.83 (19.33, 
12.07) 5.2, 3.97 (8.04, 3.45) 2.28, 1.62 (3.89, 1.12) 1.23, 0.46 (2.21, 0.43)

SS-EWMAe 200, 180 (200, 180) 54.33, 41.09 (55.18, 
39.98) 18.7, 9.32 (17.45, 6.48) 18.75, 9.47 (17.46, 6.54) 9.77, 4.04 (9.13, 2.46) 3.7, 1.74 (4.36, 0.98)

SS-CUSUMe 200, 180 (200, 180) 49.57, 41.26 (53.01, 
40.27) 12.92, 8.55 (14.67, 6.38) 13.06, 8.43 (14.74, 6.27) 6.06, 3.64 (7.34, 2.23) 2.49, 1.4 (3.68, 0.87)

 1.1

MAX-MEWMA 82, 81.93 (92.22, 88.33) 49.26, 45.75 (59.4, 
51.58) 12.18, 9.11 (16.45, 9.11) 11.87, 8.81 (16.2, 8.92) 5.32, 3.78 (6.91, 2.55) 2.25, 1.49 (3.43, 0.89)

MAX-MCUSUM 135.03, 126.13 (145.63, 
132.93)

17.95, 15.03 (25.99, 
18.42)

11.35, 9.01 (18.03, 
11.29) 4.95, 3.8 (7.88, 3.42) 2.33, 1.69 (3.92, 1.19) 1.25, 0.51 (2.21, 0.44)

SS-EWMAe 118.4, 104.8 (129.91, 
114.94)

42.25, 30.94 (45.83, 
31.58) 17.07, 9.11 (16.26, 6.36) 16.9, 8.88 (16.23, 6.31) 8.83, 3.89 (8.56, 2.41) 3.47, 1.71 (4.22, 0.96)

SS-CUSUMe 142.03, 132.15 (147.66, 
133.7)

42.7, 35.49 (47.37, 
35.52) 11.64, 7.8 (13.83, 5.97) 11.91, 8.02 (14.06, 6.11) 5.74, 3.53 (7.14, 2.2) 2.4, 1.4 (3.61, 0.88)

 1.3

MAX-MEWMA 12.14, 10.28 (19.32, 
13.66) 10.8, 8.96 (17.32, 11.45) 7.03, 5.43 (10.94, 5.56) 7.22, 5.5 (11.1, 5.66) 4.05, 3.04 (5.93, 2.20) 2.08, 1.36 (3.27, 0.88)

MAX-MCUSUM 57.59, 52.95 (73.54, 
65.29)

13.81, 11.21 (21.73, 
15.53) 8.53, 6.85 (14.63, 9.22) 4.69, 3.5 (7.68, 3.39) 2.3, 1.64 (3.9, 1.23) 1.27, 0.57 (2.23, 0.46)

SS-EWMAe 23.95, 16.3 (35.89, 
24.52)

19.03, 11.41 (25.04, 
14.06) 12.28, 6.52 (13.23, 4.98) 12.12, 6.29 (13.11, 4.83) 7.47, 3.69 (7.69, 2.3) 3.2, 1.67 (4.04, 0.96)

SS-CUSUMe 65.35, 59.6 (81.19, 
71.57)

27.45, 22.95 (35.52, 
26.67) 9.49, 6.52 (12.57, 5.5) 9.5, 6.63 (12.54, 5.68) 4.71, 3.25 (6.47, 2.13) 2.17, 1.34 (3.41, 0.87)

 2

MAX-MEWMA 2.58, 1.77 (4.79, 1.78) 2.55, 1.79 (4.74, 1.77) 2.46, 1.66 (4.53, 1.55) 2.45, 1.71 (4.46, 1.56) 2.17, 1.45 (3.84, 1.2) 1.58, 0.93 (2.69, 0.77)

MAX-MCUSUM 5.34, 4.54 (9.47, 6.53) 4.28, 3.43 (8.11, 5.17) 3.54, 2.78 (6.45, 3.63) 3.02, 2.25 (5.57, 2.67) 2.04, 1.43 (3.52, 1.23) 1.33, 0.67 (2.24, 0.49)

SS-EWMAe 5.22, 2.78 (7.47, 2.52) 5.15, 2.77 (7.29, 2.4) 4.82, 2.6 (6.57, 2.12) 4.88, 2.65 (6.6, 2.1) 3.89, 2.2 (5.11, 1.51) 2.3, 1.35 (3.4, 0.85)

SS-CUSUMe 4, 3.16 (8.06, 4.18) 3.79, 2.86 (7.59, 3.55) 3.32, 2.44 (6.31, 2.56) 3.37, 2.47 (6.39, 2.63) 2.6, 1.86 (4.6, 1.55) 1.72, 1.06 (2.92, 0.79)
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n1 = 4 , n2 = 8 , E(n) = 6 , E(α) = 0.005 , α1 = 0.004,E(t) = 1 hr,and t2 = 0.1 hr. t1 is computed by using Eq. 
(24) as 1.9 hrs, and the upper control and warning limits are computed using the algorithms outlined in Section 
"Design parameters in a variable parameters scheme".

Table 3.   ATS=ARL, SDTS=SDRL for FP and ATS, SDTS (ARL, SDRL) for VP schemes for shifts in the second 
slope vector ( β2 ) and the error variation ( τ ), when p=2 and q=2.

Shift in β2 = (β21,β22).

τ Control chart (0, 0) (0.05, 0.05) (0.1, 0) (0.1, 0.1) (0.2, 0.2) (1, 1)

FP scheme

 1

MAX-MEWMA 200, 200 176.07, 179.05 99.65, 97.07 99.9, 97.43 22.18, 16.59 4.32, 1.31

MAX-MCUSUM 200, 195 48.24, 38.8 47.99, 39.43 20.32, 13.32 8.68, 3.76 3.26, 0.83

SS-EWMAe 200, 190 103.07, 94.25 38.56, 30.78 37.35, 29.6 11.85, 5.78 4.17, 0.99

SS-CUSUMe 200, 200 101.41, 94.79 36.37, 30.04 37.97, 30.98 11.95, 6.18 4.22, 0.92

 1.1

MAX-MEWMA 108.71, 105.42 93.99, 91.65 59.3, 52.93 57.84, 53.42 18.44, 13.08 1.93, 0.47

MAX-MCUSUM 159.94, 152.48 44.69, 37.38 44.76, 36.36 20.03, 12.93 8.61, 3.81 1.88, 0.35

SS-EWMAe 143, 134.89 76.56, 69.1 32.34, 27.02 33.13, 26.01 11.63, 6.06 2.1, 0.37

SS-CUSUMe 148.21, 145.14 82.87, 74.61 33.72, 28.06 34.18, 27.6 11.49, 5.91 2.07, 0.47

 1.3

MAX-MEWMA 26.19, 22.23 25.36, 20.76 21.73, 17.37 21.21, 17.33 12.35, 8.4 1.88, 0.52

MAX-MCUSUM 106.76, 100.12 37.73, 30.83 37.41, 29.5 19.1, 12.85 8.59, 4.14 1.85, 0.39

SS-EWMAe 50.95, 45.33 38.08, 32 22.97, 17 23.1, 16.75 10.34, 5.42 2.1, 0.39

SS-CUSUMe 89.39, 81.7 57.96, 52.3 28.95, 23.12 28.18, 21.95 11.18, 5.81 2.04, 0.51

 2

MAX-MEWMA 5.18, 2.68 5.14, 2.6 5.05, 2.53 5.11, 2.6 4.61, 2.23 1.69, 0.56

MAX-MCUSUM 14.3, 9.32 13.05, 8.37 12.46, 7.82 10.77, 6.35 7.34, 3.75 1.82, 0.48

SS-EWMAe 7.91, 4.12 7.81, 3.93 7.3, 3.64 7.34, 3.61 5.99, 2.7 1.99, 0.45

SS-CUSUMe 14.17, 10.84 13.56, 9.72 11.69, 7.98 11.61, 7.95 7.99, 4.45 1.89, 0.58

VP scheme

 1

MAX-MEWMA 200, 205(200, 205) 162.32, 167.2(167.28, 
168.78)

62.75, 59.03(72.41, 
65.51)

63.63, 58.97(72.64, 
65.1) 12.2, 7.73(16.44, 8.23) 3.59, 1.99(4.97, 1.34)

MAX-MCUSUM 200, 200(200, 195) 37.02, 30.18(49.47, 
38.3)

35.86, 29.7(48.68, 
38.12)

12.68, 9.46(20.61, 
13.33) 4.14, 2.95(7.88, 3.39) 1.36, 0.56(3.05, 0.66)

SS-EWMAe 200, 180(200, 180) 87.14, 75.58(88.98, 
76.48)

33.35, 20.63(34.35, 
20.24)

32.59, 19.95(33.66, 
19.56) 14.79, 6.08(14.29, 4.96) 5.03, 1.95(5.62, 1.3)

SS-CUSUMe 200, 180(200, 180) 83.76, 74.21(86.74, 
73.3)

28.46, 20.79(32.18, 
20.54)

28.79, 21.17(32.49, 
20.61) 10.88, 6.04(13.08, 4.92) 3.37, 1.7(5.16, 1.19)

 1.1

MAX-MEWMA 82, 81.93(92.22, 88.33) 64.15, 63.51(74.71, 
70.89) 34.4, 31.03(43.6, 36.33) 34.12, 30.79(43.54, 

36.69) 10.41, 6.99(14.74, 7.48) 1.2, 0.38(2.29, 0.68)

MAX-MCUSUM 135.03, 126.13(145.63, 
132.93) 31.4, 25.19(43.22, 32.5) 29.66, 24.54(42.21, 

32.34)
11.65, 8.66(19.24, 
12.31) 4.12, 2.95(7.81, 3.49) 1.09, 0.02(1.93, 0.26)

SS-EWMAe 118.4, 104.8(129.91, 
114.94)

61.04, 50.78(67.35, 
54.42)

28.04, 17.19(30.37, 
17.68)

28.79, 17.47(30.99, 
17.88) 13.74, 5.94(13.63, 4.72) 1.36, 0.56(2.78, 0.54)

SS-CUSUMe 142.03, 132.15(147.66, 
133.7) 67.39, 59(72.87, 60.66) 25.9, 18.71(30.37, 

19.33)
26.24, 19.08(30.54, 
19.22) 10.06, 5.66(12.64, 4.69) 1.2, 0.34(2.42, 0.59)

 1.3

MAX-MEWMA 12.14, 10.28(19.32, 
13.66) 11.22, 9.51(17.9, 12.41) 9.79, 8.05(15.83, 10.13) 9.63, 7.94(15.55, 10.33) 6.43, 4.66(10.38, 5.06) 1.19, 0.38(2.16, 0.69)

MAX-MCUSUM 57.59, 52.95(73.54, 
65.29)

21.11, 17.48(32.54, 
24.96)

19.16, 16.44(30.66, 
24.53) 9.69, 7.27(16.89, 10.93) 3.85, 2.82(7.51, 3.47) 1.09, 0.041(1.92, 0.28)

SS-EWMAe 23.95, 16.3(35.89, 
24.52)

20.7, 12.68(29.3, 
18.063)

16.16, 9.06(20.46, 
10.39)

15.87, 8.82(20.21, 
10.23) 10.6, 4.89(11.65, 4.07) 1.34, 0.55(2.68, 0.59)

SS-CUSUMe 65.35, 59.6(81.19, 
71.57) 39.17, 33.13(50, 39.9) 19.44, 14.21(25.76, 

16.19)
19.06, 13.98(25.67, 
15.94) 8.32, 5.15(11.68, 4.77) 1.19, 0.34(2.32, 0.61)

 2

MAX-MEWMA 2.58, 1.77(4.79, 1.78) 2.55, 1.75(4.76, 1.74) 2.56, 1.77(4.73, 1.71) 2.45, 1.66(4.64, 1.66) 2.39, 1.61(4.4, 1.49) 1.14, 0.34(1.86, 0.69)

MAX-MCUSUM 5.34, 4.54(9.47, 6.53) 4.49, 3.62(8.6, 5.56) 4.35, 3.48(8.13, 5.18) 3.95, 3.17(7.65, 4.6) 2.71, 1.93(5.47, 2.64) 1.09, 0.11(1.86, 0.37)

SS-EWMAe 5.22, 2.78(7.47, 2.52) 5.13, 2.83(7.33, 2.53) 4.96, 2.67(7.07, 2.35) 5.18, 2.76(7.18, 2.38) 4.51, 2.38(6.27, 1.94) 1.28, 0.51(2.42, 0.68)

SS-CUSUMe 4, 3.16(8.06, 4.18) 3.94, 3.02(7.99, 3.85) 3.79, 2.79(7.53, 3.53) 3.74, 2.84(7.43, 3.52) 3.2, 2.32(6.22, 2.52) 1.15, 0.31(2.08, 0.63)
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For each sample size, a set of explanatory variables is required. The X matrix for n = 4 is assumed to be  

X =





1 2 1
1 4 2
1
1

6
8

3
2



  and for the sample size 8 (only needed for the VP chart) it is considered 

X =





1 2 1
1 4 2
1
1
1
1
1
1

6
8
9
10
9
11

3
2
3
1
2
1





.

Table 4.   ATS=ARL, SDTS=SDRL for FP and ATS, SDTS (ARL, SDRL) for VP schemes for shifts in the 
intercept vector ( β0 ) and the error variation ( τ ), when p=6 and q=6.

Shift in β0 = (β01,β02, ...,β06).

τ Control chart (0,.., 0) (0.1,.., 0.1) (0.2, 0,..., 0) (0.2,..., 0.2) (0.5,…, 0.5) (1,…, 1)

FP scheme

 1

MAX-MEWMA 200, 200 198.7, 209.82 189.91, 208.1 196.25, 210.76 190.14, 195.74 201.01, 209.45

MAX-MCUSUM 200, 195 212.9, 210.27 204.62, 196.48 222.39, 218.41 245.19, 230.01 344.87, 347.44

SS-EWMAe 200, 190 196.26, 185.62 192.67, 185.84 194.02, 187.84 167.71, 165.28 87.43, 81.78

SS-CUSUMe 200, 200 199.83, 192.25 187.01, 186.06 194.18, 188.72 161.62, 152.3 88.12, 81.36

 1.1

MAX-MEWMA 52.41, 50.68 53.74, 52.87 51.94, 50.26 51.92, 50.65 50.79, 49.25 49.82, 47.42

MAX-MCUSUM 106.25, 106.57 105.78, 101.91 103.86, 100.43 114.33, 111.36 118.02, 114.85 132.01, 128.21

SS-EWMAe 79.43, 72.4 80.01, 70.26 76.93, 70.92 76.07, 69 71.46, 61.13 47.98, 39.77

SS-CUSUMe 140.41, 136.78 141.71, 140.18 136.61, 128.99 135.7, 127.08 111.59, 110.47 66.34, 60.13

 1.3

MAX-MEWMA 6.72, 4.63 6.55, 4.61 6.63, 4.68 6.7, 4.8 6.52, 4.6 6.51, 4.53

MAX-MCUSUM 11.59, 7.95 11.41, 7.98 11.4, 7.9 11.62, 8.17 11.07, 7.96 11.25, 7.73

SS-EWMAe 11.29, 6.22 11.41, 6.1 11.25, 5.91 11.4, 6.24 10.94, 5.88 10.73, 5.72

SS-CUSUMe 32.58, 26.75 32.87, 26.28 32.54, 27.23 31.83, 26.04 31.73, 25.85 25.2, 18.74

 2

MAX-MEWMA 1.5, 0.59 1.47, 0.57 1.46, 0.58 1.49, 0.61 1.46, 0.59 1.46, 0.58

MAX-MCUSUM 2.07, 0.73 2.05, 0.74 2.05, 0.72 2.06, 0.73 2.07, 0.73 2.02, 0.7

SS-EWMAe 2.64, 0.71 2.63, 0.7 2.62, 0.68 2.66, 0.69 2.63, 0.68 2.62, 0.68

SS-CUSUMe 2.73, 0.89 2.69, 0.85 2.68, 0.85 2.66, 0.85 2.65, 0.82 2.66, 0.85

VP scheme

 1

MAX-MEWMA 200, 220 (200, 220) 192.27, 216.33 (191.95, 
213.77)

192.64, 213.75 (192.67, 
211.55)

200.23, 216.32 (200.09, 
214.78)

197.94, 220.07 (198.21, 
218.28)

191.63, 208.64 (192.78, 
207.18)

MAX-MCUSUM 200, 185 (200, 185) 196.78, 195.27 (195.03, 
191.37)

203.53, 200.71 (203.81, 
197.33)

211.34, 200.76 (209.04, 
196.11)

243.15, 241.55 (237.17, 
232.53)

291.31, 297.39 (277.41, 
280.02)

SS-EWMAe 200, 190 (200, 190) 202.05, 189.51 (202.67, 
186.45)

197.88, 193 (198.82, 
190.08)

186.08, 180.82 (186.82, 
176.56)

150.29, 140.32 (153.22, 
136.78)

66.35, 53.37 (70.27, 
53.34)

SS-CUSUMe 200, 200 (200, 200) 202.18, 207.68 (202.18, 
200.11)

193.65, 203.87 (194.69, 
196.8)

192.76, 196.34 (193.3, 
189.04)

146.54, 140.94 (149.93, 
136.46)

63.83, 57.74 (69.68, 
56.69)

 1.1

MAX-MEWMA 25.89, 27.64 (35.5, 
35.05)

24.85, 25.63 (34.17, 
32.37) 26.3, 26.3 (35.51, 32.79) 25.61, 25.78 (35.14, 

32.89) 24.57, 25.25 (33.71, 32) 22.3, 22.37 (31.26, 
29.11)

MAX-MCUSUM 63.2, 62.19 (82.07, 
78.58)

63.73, 60.05 (82.23, 
74.55)

64.71, 62.97 (84.1, 
79.78)

64.76, 60.38 (83.34, 
75.54)

70.64, 69.05 (89.28, 
84.56)

69.51, 70.32 (87.58, 
85.92)

SS-EWMAe 34.05, 27.77 (54.82, 
43.52)

33.05, 26.36 (52.07, 
40.18)

31.9, 24.62 (50.61, 
38.11)

32.27, 27.03 (53.4, 
42.11)

28.88, 21.45 (45.07, 
31.81)

23.07, 15.62 (33.79, 
21.15)

SS-CUSUMe 122.73, 120.67 (141.29, 
132.13)

119.31, 112.98 (137.93, 
124.94)

115.48, 114.29 (132.96, 
124.96)

114.3, 113.67 (132.06, 
124.32)

86.34, 81.8 (102.48, 
90.76)

41.25, 35.42 (52.38, 
39.17)

 1.3

MAX-MEWMA 2.2, 1.64 (4.88, 2.4) 2.17, 1.52 (4.83, 2.28) 2.19, 1.64 (4.85, 2.36) 2.24, 1.66 (4.89, 2.33) 2.22, 1.65 (4.78, 2.41) 2.22, 1.67 (4.86, 2.35)

MAX-MCUSUM 4.42, 3.83 (9.52, 6.95) 4.5, 3.93 (9.63, 6.84) 4.63, 3.85 (9.68, 6.69) 4.35, 3.6 (9.53, 6.53) 4.51, 3.74 (9.53, 6.65) 4.47, 3.72 (9.43, 6.8)

SS-EWMAe 5.56, 2.85 (9.05, 3.01) 5.67, 2.94 (9.04, 3.05) 5.63, 2.97 (8.95, 2.89) 5.54, 2.86 (8.93, 2.96) 5.62, 2.95 (9.08, 2.97) 5.54, 2.84 (8.88, 2.89)

SS-CUSUMe 4.74, 4.41 (12.42, 6.83) 4.54, 4.1 (12.47, 7.24) 4.48, 3.91 (12.07, 6.59) 4.67, 4.05 (12.63, 7.06) 4.39, 3.85 (11.88, 6.49) 4.59, 4.08 (11.79, 6.28)

 2

MAX-MEWMA 1.06, 0.18 (1.51, 0.56) 1.05, 0.16 (1.47, 0.56) 1.07, 0.2 (1.5, 0.56) 1.06, 0.17 (1.48, 0.55) 1.06, 0.19 (1.5, 0.57) 1.07, 0.2 (1.5, 0.56)

MAX-MCUSUM 1.13, 0.28 (1.99, 0.56) 1.13, 0.28 (2.01, 0.57) 1.14, 0.29 (1.97, 0.58) 1.14, 0.3 (2, 0.59) 1.14, 0.3 (1.97, 0.56) 1.14, 0.31 (1.99, 0.59)

SS-EWMAe 1.42, 0.65 (3.01, 0.52) 1.43, 0.63 (3.01, 0.52) 1.43, 0.64 (3, 0.54) 1.42, 0.61 (3.01, 0.53) 1.43, 0.65 (3.02, 0.52) 1.43, 0.65 (2.99, 0.53)

SS-CUSUMe 1.2, 0.29 (2.66, 0.57) 1.21, 0.3 (2.69, 0.56) 1.2, 0.28 (2.7, 0.56) 1.2, 0.26 (2.67, 0.56) 1.2, 0.28 (2.68, 0.58) 1.19, 0.24 (2.67, 0.56)
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We also assume that each element in the error’s variance-covariance matrix shifts with the same multiplier 
(τ ). In addition, the correlations between the responses in this section are assumed to be equal (regarding the 
p=6 case) and are fixed at ρ = 0.5.

The results for the p=2 case are presented in Table 1 (which contains separate and simultaneous shifts in the 
variability and the intercepts), Table 2 (which contains separate and simultaneous shifts in the variability and 
the first slopes), and Table 3 (which contains separate and simultaneous shifts in the variability and the second 
slopes).

The results in all these three tables show that in all the FP and VP control charts, as the intercept/slope or 
variability shift increases, the charts signal faster. Moreover, if the number of profiles whose intercepts/slopes 
shift increases from one to two, i.e. from (0.2, 0) to (0.2, 0.2) in Table 1, only the Max-MCUSUM chart shows 
a significant increase in the performance (decrease in the ATS value), and the performance of the other charts 
remains more or less the same. In addition, by comparing the charts’ FP and VP schemes, we realize that all the 
charts show significant performance improvements if the VP scheme is used (with more than a 70% performance 
increase in some cases), and by comparing different control charts, it is clear that the Max-type control charts 

Table 5.   ATS=ARL, SDTS=SDRL for FP and ATS, SDTS (ARL, SDRL) for VP schemes for shifts in the first 
slope vector ( β1 ) and the error variation ( τ ), when p=6 and q=6.

Shift in β1 = (β11,β12, ...,β16)

τ Control chart (0,.., 0) (0.02,.., 0.02) (0.05, 0,..., 0) (0.05,..., 0.05) (0.1, …, 0.1) (0.2, …, 0.2)

FP scheme

 1

MAX-MEWMA 200, 200 183.99, 199.62 109.4, 111.28 105.5, 106.2 14.55, 11.18 2.7, 0.89

MAX-MCUSUM 200, 195 33.65, 28.5 85.39, 81.8 8.7, 5.24 3.4, 1.27 1.71, 0.5

SS-EWMAe 200, 190 196.65, 201.05 158.36, 156.68 166.79, 157.38 64.11, 54.94 6.56, 2.66

SS-CUSUMe 200, 200 193.81, 193.56 166.35, 163 164.36, 168.25 109.92, 108.61 11.5, 6.7

 1.1

MAX-MEWMA 52.41, 50.68 47.41, 45.84 30.25, 27.76 28.5, 26.5 8.57, 6.08 2.44, 0.86

MAX-MCUSUM 106.25, 106.57 29.68, 24.8 50.59, 47.21 8.26, 4.95 3.43, 1.32 1.73, 0.52

SS-EWMAe 79.43, 72.4 72.76, 66.04 55.95, 49.06 54.42, 48.39 21.9, 15.33 5.05, 1.79

SS-CUSUMe 140.41, 136.78 133.1, 129.57 118.49, 110.63 119.68, 115.57 69.77, 60.86 7.17, 3.37

 1.3

MAX-MEWMA 6.72, 4.63 6.6, 4.73 5.86, 4.04 5.65, 3.79 3.87, 2.15 1.89, 0.72

MAX-MCUSUM 11.59, 7.95 9.81, 6.43 9.12, 5.75 6.1, 3.39 3.26, 1.31 1.71, 0.54

SS-EWMAe 11.29, 6.22 10.99, 5.83 9.65, 4.94 9.78, 5.04 7.12, 3.1 3.5, 0.98

SS-CUSUMe 32.58, 26.75 31.72, 25.67 25.37, 20.48 24.63, 19.23 12.98, 8.21 4.05, 1.53

 2

MAX-MEWMA 1.5, 0.59 1.46, 0.58 1.44, 0.58 1.45, 0.58 1.34, 0.52 1.15, 0.37

MAX-MCUSUM 2.07, 0.73 2.02, 0.73 1.99, 0.7 1.98, 0.68 1.81, 0.61 1.37, 0.49

SS-EWMAe 2.64, 0.71 2.63, 0.68 2.59, 0.67 2.57, 0.65 2.45, 0.6 2.06, 0.41

SS-CUSUMe 2.73, 0.89 2.68, 0.86 2.6, 0.82 2.64, 0.81 2.44, 0.73 1.95, 0.54

VP scheme

 1

MAX-MEWMA 200, 220 (200, 220) 182.94, 201.13 (184.08, 
199.41)

54.85, 53.17 (63.35, 
59.32)

53.81, 56.13 (62.35, 
62.57) 4.71, 3.25 (7.65, 3.49) 1.64, 0.89 (2.91, 0.72)

MAX-MCUSUM 200, 185 (200, 185) 55.19, 49.22 (67.95, 
59.9)

88.45, 82.75 (106.36, 
98.49) 14.73, 9.39 (23.22, 15.5) 3.97, 2.38 (10.2, 6.72) 1.12, 0.13 (2.18, 0.86)

SS-EWMAe 200, 190 (200, 190) 192.5, 184.75 (193.85, 
182.43)

141.78, 136.54 (149.85, 
142.13)

143.7, 139.44 (152.49, 
142.76)

25.06, 18.17 (39.8, 
26.84) 3.39, 1.85 (5.93, 1.64)

SS-CUSUMe 200, 200 (200, 200) 193.05, 196.23 (193.4, 
189.23)

155.75, 156.31 (158.54, 
151.08)

154.83, 156.47 (158.36, 
152.7)

67.44, 63.75 (81.38, 
70.13) 2.01, 1.39 (6.13, 2.14)

 1.1

MAX-MEWMA 25.89, 27.64 (35.5, 
35.05)

22.8, 23.56 (31.98, 
30.12) 10.67, 10 (17.21, 13.82) 10.54, 9.89 (16.98, 

13.94) 3.03, 2.26 (5.71, 2.38) 1.43, 0.73 (2.58, 0.76)

MAX-MCUSUM 63.2, 62.19 (82.07, 
78.58)

29.55, 25.82 (45.35, 
38.55)

23.25, 21.62 (37.22, 
33.55)

10.14, 7.64 (20.38, 
15.38) 2.57, 1.6 (7.09, 4.01) 1.1, 0.13 (1.99, 0.75)

SS-EWMAe 34.05, 27.77 (54.82, 
43.52)

30.56, 23.08 (49.35, 
36.02)

19.18, 13.51 (33.55, 
22.11)

19.76, 13.83 (33.81, 
22.13) 8.49, 4.96 (14.36, 6.2) 2.62, 1.44 (4.83, 1.24)

SS-CUSUMe 122.73, 120.67 (141.29, 
132.13)

118.73, 119.2 (138.76, 
131.78)

79.98, 75.66 (101.7, 
89.85)

83.14, 78.12 (105.01, 
92.08)

18.63, 17.53 (36.22, 
27.58) 1.62, 0.85 (4.56, 1.35)

 1.3

MAX-MEWMA 2.2, 1.64 (4.88, 2.4) 2.18, 1.59 (4.75, 2.2) 1.94, 1.38 (4.3, 1.97) 2, 1.36 (4.34, 1.89) 1.65, 0.97 (3.38, 1.23) 1.17, 0.38 (2.03, 0.73)

MAX-MCUSUM 4.42, 3.83 (9.52, 6.95) 3.93, 3.22 (8.95, 6.16) 3.12, 2.51 (6.8, 4.4) 2.72, 1.99 (6.79, 4.24) 1.58, 0.84 (3.89, 1.8) 1.08, 0.11 (1.81, 0.58)

SS-EWMAe 5.56, 2.85 (9.05, 3.01) 5.42, 2.8 (8.71, 2.75) 5.04, 2.59 (8.09, 2.53) 5.06, 2.6 (8.14, 2.55) 3.84, 1.99 (6.34, 1.79) 1.86, 1.02 (3.66, 0.78)

SS-CUSUMe 4.74, 4.41 (12.42, 6.83) 4.49, 4.16 (11.86, 6.74) 3.71, 3.13 (10.09, 5.26) 3.65, 3.15 (10.17, 5.15) 2.33, 1.68 (6.52, 2.48) 1.33, 0.5 (3.33, 0.71)

 2

MAX-MEWMA 1.06, 0.18 (1.51, 0.56) 1.05, 0.19 (1.47, 0.55) 1.05, 0.14 (1.46, 0.54) 1.05, 0.13 (1.46, 0.55) 1.04, 0.15 (1.37, 0.51) 1.01, 0.071 (1.15, 0.36)

MAX-MCUSUM 1.13, 0.28 (1.99, 0.56) 1.12, 0.24 (1.98, 0.55) 1.13, 0.29 (1.94, 0.55) 1.12, 0.23 (1.95, 0.55) 1.09, 0.16 (1.81, 0.51) 1.04, 0.04 (1.42, 0.49)

SS-EWMAe 1.42, 0.65 (3.01, 0.52) 1.42, 0.63 (3, 0.5) 1.41, 0.62 (2.98, 0.52) 1.39, 0.59 (2.97, 0.51) 1.34, 0.54 (2.84, 0.52) 1.16, 0.25 (2.34, 0.57)

SS-CUSUMe 1.2, 0.29 (2.66, 0.57) 1.19, 0.26 (2.67, 0.58) 1.19, 0.25 (2.64, 0.57) 1.18, 0.22 (2.63, 0.56) 1.17, 0.21 (2.49, 0.56) 1.11, 0.09 (2.06, 0.52)
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mostly perform better than the SS-type control charts (only if one profile shifts, the SS-type control charts per-
form better and that also only in some cases of no or low variability shifts). As for the Max-type control charts, 
the Max-MEWMA chart mostly performs better as the variability shift increases and the Max-MCUSUM chart 
mostly performs better as the mean shift increases.

For the case of p=6, the real case adopted in Sabahno & Amiri27 with the following model is used:

y1 = −0.05+ 10x1 − 0.01x2 − 0.03x3 + 0.26x4 + 0x5 + 0.03x6 + ε1,

y2 = 0.48+ 0.24x1 + 21.01x2 − 0.09x3 + 0.03x4 − 0.12x5 + 0.01x6 + ε2,

y3 = 0.37+ 0.09x1 + 0.01x2 + 6.81x3 + 0.04x4 + 0.02x5 − 0.03x6 + ε3,

Table 6.   ATS=ARL, SDTS=SDRL for FP and ATS, SDTS (ARL, SDRL) for VP schemes for shifts in the second 
slope vector ( β2 ) and the error variation ( τ ), when p=6 and q=6.

Shift in β2 = (β21,β22, ...,β26)

τ Control chart (0,.., 0) (0.05,.., 0.05) (0.1, 0,..., 0) (0.1,..., 0.1) (0.2, …, 0.2) (1, …, 1)

FP scheme

 1

MAX-MEWMA 200, 200 200.3, 209.01 170.8, 173.78 173.62, 179.37 68.9, 70.27 1.37, 0.48

MAX-MCUSUM 200, 195 242.54, 243.19 209.27, 203.62 298.75, 300.15 386.36, 385.9 1.75, 0.53

SS-EWMAe 200, 190 208.63, 208.66 187.3, 177.75 181.68, 169.56 134.9, 125.82 2.51, 0.6

SS-CUSUMe 200, 200 194.29, 189.69 187.73, 186.07 186.84, 182.78 147.99, 139.26 2.54, 0.69

 1.1

MAX-MEWMA 52.41, 50.68 49.22, 48.82 39.28, 37.91 41.05, 40.06 21.37, 19 1.28, 0.45

MAX-MCUSUM 106.25, 106.57 114.6, 112.92 97.79, 96.7 120.25, 113.07 78.36, 76.98 1.64, 0.55

SS-EWMAe 79.43, 72.4 79.77, 70.82 68.09, 59.28 69.63, 61.41 44.19, 36.94 2.35, 0.52

SS-CUSUMe 140.41, 136.78 138.98, 133.04 132.54, 125.77 131.12, 126.44 99.87, 94.57 2.33, 0.61

 1.3

MAX-MEWMA 6.72, 4.63 6.6, 4.89 6.22, 4.42 6.32, 4.37 5.32, 3.6 1.15, 0.36

MAX-MCUSUM 11.59, 7.95 11.23, 7.89 10.58, 7.43 10.37, 7.11 8.52, 5.38 1.43, 0.51

SS-EWMAe 11.29, 6.22 11.07, 6.22 10.73, 5.69 10.79, 5.9 9.06, 4.53 2.1, 0.41

SS-CUSUMe 32.58, 26.75 32.2, 27.2 30.02, 24.28 29.52, 23.28 21.57, 16.11 2.03, 0.51

 2

MAX-MEWMA 1.5, 0.59 1.47, 0.59 1.46, 0.59 1.43, 0.57 1.41, 0.55 1.01, 0.12

MAX-MCUSUM 2.07, 0.73 2.04, 0.7 2, 0.72 2.04, 0.72 1.94, 0.66 1.09, 0.29

SS-EWMAe 2.64, 0.71 2.65, 0.69 2.64, 0.69 2.63, 0.664 2.58, 0.66 1.63, 0.49

SS-CUSUMe 2.73, 0.89 2.68, 0.84 2.64, 0.83 2.66, 0.87 2.57, 0.82 1.4, 0.49

VP scheme

 1

MAX-MEWMA 200, 220 (200, 220) 186.6, 208.69 (187.91, 
207.79)

138.04, 146.15 (143.22, 
149.32)

139.52, 151.44 (143.99, 
154.09)

20.95, 19.69 (28.02, 
24.61) 1.05, 0.15 (1.41, 0.5)

MAX-MCUSUM 200, 185 (200, 185) 178.28, 176.02 (180.83, 
174.48)

176.04, 167.89 (183.6, 
173.13)

147.22, 142.12 (153.26, 
144.95) 59.7, 56.39 (71.71, 64.1) 1.08, 0.13 (1.77, 0.42)

SS-EWMAe 200, 190 (200, 190) 193.97, 190.46 (195.15, 
187.73)

181.5, 180.51 (183.86, 
179.64)

178.87, 167.22 (182.17, 
167.09)

103.02, 96.09 (117.21, 
106.09) 1.27, 0.4 (2.88, 0.43)

SS-CUSUMe 200, 200 (200, 200) 190.95, 204.73 (191.6, 
195.02)

173.59, 168.9 (175.59, 
163.07)

189.28, 192.12 (190.61, 
186.71)

135.92, 136.48 (141.04, 
134.66) 1.16, 0.11 2.59, 0.52

 1.1

MAX-MEWMA 25.89, 27.64 (35.5, 
35.05)

23.11, 24.01 (32.13, 
30.39)

17.72, 17.18 (25.97, 
22.87)

18.08, 18.4 (26.18, 
23.49) 7.01, 6.14 (12.05, 8.36) 1.03, 0.09 (1.31, 0.46)

MAX-MCUSUM 63.2, 62.19 (82.07, 
78.58)

55.17, 52.53 (72.3, 
66.92)

45.47, 43.85 (62.43, 
57.44)

40.62, 39.34 (56.56, 
52.16)

14.33, 13.71 (23.47, 
20.27) 1.07, 0.12 (1.68, 0.46)

SS-EWMAe 34.05, 27.77 (54.82, 
43.52)

32.67, 25.32 (52.73, 
40.38) 25.87, 20 (43.73, 32.8) 26.64, 19.37 (44.93, 

32.27)
14.78, 9.41 (26.63, 
15.61) 1.24, 0.37 (2.76, 0.48)

SS-CUSUMe 122.73, 120.67 (141.29, 
132.13)

113.62, 112.21 (132.43, 
124.38)

105.25, 104.66 (125.12, 
116.78)

104.8, 100.98 (124.88, 
114.99)

65.21, 59.74 (88.79, 
75.18) 1.14, 0.13 (2.4, 0.53)

 1.3

MAX-MEWMA 2.2, 1.64 (4.88, 2.4) 2.24, 1.61 (4.88, 2.34) 2.08, 1.42 (4.57, 2.07) 2.07, 1.49 (4.63, 2.21) 1.92, 1.24 (4.13, 1.71) 1.01, 0.05 (1.18, 0.38)

MAX-MCUSUM 4.42, 3.83 (9.52, 6.95) 4.22, 3.52 (8.96, 6.25) 3.86, 3.14 (8.32, 5.55) 3.75, 3.1 (8.16, 5.5) 2.79, 2.14 (5.85, 3.33) 1.05, 0.06 (1.49, 0.5)

SS-EWMAe 5.56, 2.85 (9.05, 3.01) 5.66, 2.76 (9.06, 2.91) 5.32, 2.73 (8.56, 2.77) , 5.33, 2.75 (8.52, 2.69) 4.7, 2.42 (7.63, 2.29) 1.16, 0.21 (2.45, 0.53)

SS-CUSUMe 4.74, 4.41 (12.42, 6.83) 4.53, 3.94 (12.23, 6.67) 4.13, 3.66 (11.18, 6.09) 4.12, 3.61 (11.11, 5.95) 3.29, 2.66 (9.14, 4.39) 1.11, 0.04 (2.13, 0.49)

 2

MAX-MEWMA 1.06, 0.18 (1.51, 0.56) 1.06, 0.17 (1.49, 0.55) 1.06, 0.17 (1.49, 0.56) 1.06, 0.19 (1.49, 0.56) 1.06, 0.2 (1.46, 0.55) 1, 0.01 (1.01, 0.12)

MAX-MCUSUM 1.13, 0.28 (1.99, 0.56) 1.13, 0.29 (1.99, 0.55) 1.12, 0.23 (1.97, 0.56) 1.14, 0.3 (2, 0.56) 1.12, 0.27 (1.92, 0.54) 1.01, 0.03 (1.12, 0.33)

SS-EWMAe 1.42, 0.65 (3.01, 0.52) 1.43, 0.63 (3.01, 0.51) 1.4, 0.61 (2.99, 0.51) 1.41, 0.63 (2.99, 0.53) 1.41, 0.63 (2.96, 0.53) 1.07, 0.09 (1.72, 0.49)

SS-CUSUMe 1.2, 0.29 (2.66, 0.57) 1.21, 0.31 (2.66, 0.58) 1.21, 0.29 (2.68, 0.59) 1.2, 0.28 (2.68, 0.58) 1.19, 0.24 (2.61, 0.58) 1.05, 0.05 (1.51, 0.5)
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Table 7.   Details of process monitoring from Jan 2018 to the end of 2020 in the real case for the Max-
MEWMA control chart. Significant values are in bold.

k nk ∑nk tk ∑tk yk1. yk2 Ci Si MEi UWLk UCLk Status

1 4 4 0 0 2.026 1.6126 − 2.370 − 0.544 2.3709 1.015 3.02 In-control

2 8 12 1 1 1.9795 1.3841 − 1.3818 0.4899 1.3818 1.027 2.88 In-control

3 8 20 1 2 2.0025 1.6123 − 0.9026 0.3047 0.9026 1.027 2.88 In-control

4 4 24 3 5 2.1742 1.5832 − 1.6976 − 0.5666 1.6976 1.015 3.02 In-control

5 8 32 1 6 2.1556 1.5356 − 0.8181 − 0.4981 0.8181 1.027 2.88 In-control

6 4 36 3 9 2.2056 1.5118 0.5411 0.0312 0.5411 1.015 3.02 In-control

7 4 40 3 12 2.1488 1.8032 − 0.372 − 0.1467 0.3720 1.015 3.02 In-control

8 4 44 3 15 2.034 1.5701 0.7043 0.0895 0.7043 1.015 3.02 In-control

9 4 48 3 18 1.8667 1.439 2.654 1.9659 2.654 1.015 3.02 In-control

10 8 56 1 19 1.9888 1.4648 0.5034 − 0.6222 0.6222 1.027 2.88 In-control

11 4 60 3 22 2.0069 10.53 1.7444 10.53 1.015 3.02 Out-of-control

12 8 68 1 23 2.1511 1.6276 6.0024 − 0.39284 6.0024 1.027 2.88 Out-of-control

Table 8.   Details of process monitoring from Jan 2018 to the end of 2020 in the real case for the Max-
MCUSUM control chart. Significant values are in bold.

k nk ∑nk tk ∑tk yk1. yk2 Ui Li MCi UWLk UCLk Status

1 4 4 0 0 2.026 1.6126 1.8698 0 1.8698 4 21.1 In-control

2 4 8 3 3 2.011 1.3841 0.7745 0 0.7745 4 21.1 In-control

3 4 12 3 6 2.0992 1.5923 0 0 0 4 21.1 In-control

4 4 16 3 9 2.2056 1.5118 9.455 0 9.455 4 21.1 In-control

5 8 24 1 10 2.0926 1.6137 8.4685 0 0 1.25 8.5 In-control

6 4 28 3 13 1.7671 1.548 6.533843 0.6072 6.5338 4 21.1 In-control

7 8 36 1 14 2.205 1.5931 0 0 0 1.25 8.5 In-control

8 4 40 3 17 2.1538 1.5321 0 0 0 4 21.1 In-control

9 4 44 3 20 2.2077 1.4511 21.3979 0 21.3979 4 21.1 Out-of-control

10 8 52 1 21 2.1674 1.394 0 0.7704 0.7704 1.25 8.5 In-control

11 4 56 3 24 2.0492 1.5049 28.7707 0 28.7707 4 21.1 Out-of-control

Table 9.   Details of process monitoring from Jan 2018 to the end of 2020 in the real case for the SS-EWMAe 
control chart. Significant values are in bold.

k nk ∑nk tk ∑tk yk1 yk2 Pi Vi EWei UWLk UCLk Status

1 4 4 0 0 2.026 1.6126 − 0.3005 − 0.18152 0.12330 0.252 2.04 In-control

2 4 8 3 3 2.011 1.567 − 0.4886 − 0.4779 0.4671 0.252 2.04 In-control

3 8 16 1 4 2.1213 1.7809 − 0.3756 − 0.4298 0.3258 0.2521 1.8359 In-control

4 8 24 1 5 2.1245 1.6451 − 0.3074 − 0.1069 0.1059 0.2521 1.8359 In-control

5 4 28 3 8 2.115 1.611 − 0.4153 − 0.1285 0.189 0.252 2.04 In-control

6 4 32 3 11 2.1121 1.3769 − 0.3941 0.302 0.2466 0.252 2.04 In-control

7 4 36 3 14 2.3107 1.6291 − 0.0781 0.5422 0.3001 0.252 2.04 In-control

8 8 44 1 15 2.0615 1.5852 0.2096 0.5602 0.3578 0.2521 1.8359 In-control

9 8 52 1 16 2.0718 1.5599 0.4177 0.7012 0.6662 0.2521 1.8359 In-control

10 8 60 1 17 2.0818 1.5522 0.5384 0.1824 0.3232 0.2521 1.8359 In-control

11 8 68 1 18 2.0011 1.3946 0.7016 0.6836 0.9596 0.2521 1.8359 In-control

12 8 76 1 19 2.1128 1.5361 0.8698 0.6515 1.1811 0.2521 1.8359 In-control

13 8 84 1 20 2.0701 1.5125 1.0042 0.7787 1.6149 0.2521 1.8359 In-control

14 8 92 1 21 2.1674 1.394 1.4368 0.9083 2.8897 0.2521 1.8359 Out-of-control

15 8 100 1 22 2.1047 1.5665 1.715 0.9593 3.8616 0.2521 1.8359 Out-of-control

16 8 108 1 23 2.1511 1.6276 1.8704 0.8024 4.1426 0.2521 1.8359 Out-of-control
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Since there are two sampling strategies in our adaptive scheme, we use n1 = 8 and n2 = 16 , and E(n) = 12 . 
Therefore, since we have two sets of sample sizes, we need two value sets for the explanatory variables as well. 
Again, we use the same value sets used by Sabahno & Amiri27, which we don’t include in this paper to save space.

The results of this case are presented in Tables 4, 5 and 6, for separate and simultaneous shifts in the vari-
ability and the intercepts, separate and simultaneous shifts in the variability and the first slopes, and separate 
and simultaneous shifts in the variability and the second slopes, respectively.

The results in the p=6 problem show that while in the cases of slope shifts (Tables 5 and 6) the conclusions are 
almost the same as in the previous case (p = 2), the same does not completely apply to the case of the intercept 
shift (Table 4). The Max-type control charts’ performance mostly gets worse (or their performance remains 
rather unchanged) as the shift in the intercept increases (with the Max-MCUSUM chart being the worst between 
the two). On the contrary, The SS-type charts’ performance mostly gets better (or their performance remains 
rather unchanged) under a similar situation. In addition, except for some cases of no/low variation shifts, the 

y4 = 0.04+ 0x1 + 0x2 + 0x3 + 10.53x4 − 0.47x5 + 0.21x6 + ε4,

y5 = 0.09− 0.021x1 + 0x2 + 0.01x3 + 0.02x4 + 7x5 − 0.34x6 + ε5,

y6 = 0.09+ 0.04x1 + 0x2 − 0.01x3 + 0.18x4 − 0.34x5 + 11.46x6 + ε6.

Table 10.   Details of process monitoring from Jan 2018 to the end of 2020 in the real case for the SS-CUSUMe 
control chart. Significant values are in bold.

k nk ∑nk tk ∑tk yk1 yk2 Mi Ni CUei UWLk UCLk Status

1 4 4 0 0 2.026 1.6126 0.5029 0 0.2529 0.0043 23 In-control

2 8 12 1 1 1.9805 1.5844 0 0 0 0.003 16 In-control

3 4 16 3 4 2.1689 1.4409 0 0 0 0.0043 23 In-control

4 4 20 3 7 2.1764 1.6922 0 0 0 0.0043 23 In-control

5 4 24 3 10 2.0327 1.6042 0.9359 0 0.876 0.0043 23 In-control

6 8 32 1 11 1.9531 1.4321 0.1228 0.3603 0.1449 0.003 16 In-control

7 8 40 1 12 2.0403 1.6441 0 0 0 0.003 16 In-control

8 4 44 3 15 2.034 1.5701 0 0 0 0.0043 23 In-control

9 4 48 3 18 1.882 1.2385 0.3239 1.5975 2.657 0.0043 23 In-control

10 8 56 1 19 2.1128 1.5361 0.8717 0.6011 1.1213 0.003 16 In-control

11 8 64 1 20 2.0701 1.5125 1.3873 0.389 2.0762 0.003 16 In-control

12 8 72 1 21 2.1674 1.3940 3.1299 0.3157 9.896373 0.003 16 In-control

13 8 80 1 22 2.1047 1.5665 4.5538 0 20.7379 0.003 16 Out-of-control

14 8 88 1 23 2.1511 1.6276 5.5828 0 31.1685 0.003 16 Out-of-control

Sample

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Max-MEWMA VP Chart

UCL

UWL

MEk 

Figure 1.   Max-MEWMA VP control chart in the illustrative example.
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Max-MEWMA control charts perform better than the other control charts. Moreover, the VP adaptive control 
charts are still mostly much faster than the FP charts.

By comparing the p = 6 case with the p = 2 case, we realize that in the case of no variation shift ( τ = 1), all the 
charts perform worse when the mean shift is in the intercept. However, if the mean shift is in the slopes, and also 
in the case of low variation shift ( τ = 1.1) when there is no mean (intercept/slops) shift, all the charts perform 
better, but as the mean shift increases, the charts mostly tend to perform worse when the process dimension 
increases. Furthermore, in the cases of moderate/large variation shifts ( τ = 1.3 and 2), all the charts perform 
better in the case of p=6 compared to the case of p = 2.

A real case
To illustrate how one can implement the proposed control charts in practice, we study a real healthcare-related 
case. Stroke is one of the most common causes of death and disability in the world. In addition to severe conse-
quences for individuals, stroke causes a high financial burden on societies. Intravenous thrombolysis within 4.5 
hours from the stroke onset is an established treatment for ischemic stroke. The benefit of treatment reduces for 
every minute’s delay (Darehed et al.40), and thrombolysis delay times are key quality indicators of stroke care, 
and essential to monitor and maintain a good quality of stroke care.
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Figure 2.   Max-MCUSUM VP control chart in the illustrative example.
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Figure 3.   SS-EWMAe VP control chart in the illustrative example.
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We study a dataset containing all the stroke patients who received thrombolysis in Sweden from 2016 until 
the year 2020 and were registered in the national quality register for stroke care in Sweden (Riksstroke; Asplund 
et al.41). The study has been performed in accordance with the relevant guidelines/regulations. The Declaration of 
Helsinki was followed. Patients were informed about registration in Riksstroke, that their registered data could be 
used for research purposes, and their right to remove themselves from the registry at any time (opt-out consent). 
According to the Swedish Patient Data Act, data from national quality registers may be processed for research 
purposes without additional individual consent, if processing has been approved by an Ethics Review Board 
in accordance with the Ethical Review Act. The use of data from Riksstroke for this study was approved by the 
Swedish Ethical Review Authority (reference no. 2021-06152-01).

The objective of this study is to monitor the efficiency of the stroke care process in terms of thrombolysis 
treatment delays. Therefore, we investigate whether the relationship between two correlated responses, y1 = the 
time from stroke onset until getting the treatment (onset-to-needle time, ONT) and y2 = the time from admis-
sion to the hospital until getting the treatment (door-to-needle time, DNT) in relation to three crucial covariates 
(patient characteristics) of x1=Age, x2=Sex, and x3=Stroke Severity (as measured by NIH stroke score, i.e. NIHSS) 
is being kept constant over time or not. x1 and x3 are modeled as continuous variables and x2 as a binary variable 
(0 for male and 1 for female).

We used the data from two recent years 2016 and 2017 (which were considered to be stable years in the stroke 
system), from all the hospitals in Sweden to estimate this relationship (profile).

After cleaning the dataset by removing the missing data (the proportion of missing data was relatively low 
compared to the overall dataset) and the erroneous entries (times more than 4.5 hours, which showed they had 
been entered wrongly), our first analysis was to see if ONT and DNT were normally distributed or not. The 
analysis revealed that their distributions were skewed, indicating that they deviated from a normal distribution 
and appeared more like Lognormal distributions. This outcome is commonly expected for time-related variables 
with many factors influencing them. Consequently, we applied a logarithmic transformation (base 10) to the 
data in order to approximate a normal distribution. The variance-covariance matrix of these response variables 

was estimated as: � =

[
0.0399 0.0207
0.0207 0.0743

]
.

Then, we estimated the multivariate multiple regression model using R. The results were as follows.

We used the VP adaptive control charts (Max-MEWMA, Max-MCUSUM, SS-EWMAe, and SS-CUSUMe) to 
monitor these regression models over time. The design parameters for our control charts are the same as in our 
simulation study section (except for the sampling intervals) are set to n1 = 4 , n2 = 8 , E(n) = 6 , E(α) = 0.005 , 
α1 = 0.004 , E(t) = 2 months and, t2 = 1 month. The other chart parameters are computed using Equations (23)-
(25) and the proposed algorithms in Sect. "Design parameters in a variable parameters scheme" and can be seen 
in Tables 7, 8, 9 and 10 for each control chart.

After designing the control charts, we first checked whether the process was really under control in Phase-
I or not (during the years 2016 and 2017). Otherwise, the estimated regression models and consequently the 
developed control charts would not be valid to be used in Phase -II. Researchers usually use non-adaptive (FP) 

log
(
y1
)
= 2.0457+ 0.00084x1 + 0.01597x2 − 0.0045x3,

log
(
y2
)
= 1.6797− 0.00079x1 + 0.01558x2 − 0.0032x3.
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Figure 4.   Max-CUSUMe VP control chart in the illustrative example.
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schemes to do so. The result showed that the process was in-control according to all the control charts (the details 
of this analysis are not included in this paper but can be requested from the corresponding author).

For Phase-II, we employed the developed control charts for the years 2018 and 2019 to see if any assignable 
causes could be detected in those years. The control charts for the Max-MEWMA, Max-MCUSUM, SS-EWMAe, 
and SS-CUSUMe schemes can be seen in Figs. 1, 2, 3 and 4, respectively. More details regarding each sample can 
be seen in Tables 7, 8, 9 and 10.

Tables 7, 8, 9 and 10, from left to right, show the sample number (k), the sample size (the number of patients 
investigated in the sample), the cumulative number of samples up to the current sample, the sampling interval 
(in months) used to reach the current sample, the cumulative number of the sampling intervals up to the current 
sample (the time from the start of the process monitoring up to the current sample), the mean of the current 
sample’s first and second response variables, the values of the sample statistics for the mean and variability, the 
value of the final statistic, the UWL and UCL values used for the current sample, and the status of the process 
based on the current sample, respectively. Remember that each control chart has two statistics, one for monitor-
ing the mean vector and the other one for monitoring the variability. However, by using a Max or SS operator, a 
single final statistic will be formed and plotted in each control chart, i.e. the statistic in column ten.

As can be seen in Figs. 1, 2, 3 and 4 as well as Tables 7, 8, 9 and 10, the Max-MEWMA control chart was able 
to detect the out-of-control situations at samples eleventh (November 2019) and twelfth (December 2019). This 
control chart was able to signal first after 22 months and after observing 60 patients. The Max-MCUSUM control 
chart was able to detect the out-of-control situations in samples ninth (September 2019) and 11th (December 
2019). This control chart was able to signal first after 20 months and after observing 44 patients. The SS-EWMAe 
control chart signaled at samples 14th (October 2019), 15th (November 2019), and 16th (December 2019). This 
chart was able to first signal after 21 months and after investigating 90 patients. Finally, the SS-CUSUMe control 
chart signaled at samples 13th (November 2019) and 14th (December 2019). This chart was able to first signal 
after 22 months and after investigating 80 patients.

One thing that is clear based on the obtained result is that in all the control charts, the statistic responsible 
for the mean vector monitoring (column eight) has caused the signal, meaning the shift has happened in the 
coefficient values and not the responses’ variability.

Further investigation is required to discover the reasons for these signals and to see which ones are real assign-
able causes and which ones are outliers that can be ignored. Then, these assignable causes should be removed if 
they are undesirable. We might even need to update the profile’s parameters if we discover that those assignable 
causes are desirable and should be kept.

Conclusions
In this paper, we improved the performance of four memory-type control charts for monitoring multivariate 
multiple linear profiles. These control charts are Max-MEWMA, and Max-MCUSUM control charts that use a 
single Max-type statistic and monitor the regression parameters, and SS-EWMAe and Max-CUSUMe control 
charts that use an SS-type statistic and monitor the residuals. We designed a VP adaptive scheme for all these 
control charts, in which all the design parameters can be varied throughout the process monitoring to increase 
their capability in detecting shifts. After that, we developed an algorithm with which the time to signal and run 
length-based performance measures of these charts could be measured. Then, we performed extensive simu-
lations to evaluate these charts’ performance under different shift sizes and types as well as different process 
dimensions. Two different cases of two profiles (p = 2)-two covariates (q = 2), and also, six profiles (p = 6)-six 
covariates (q = 6) were studied in this paper.

The results in the p = 2 and q = 2 case showed that: (i) as the intercept/slope or variability shift increases, all 
the FP and VP charts signal faster, (ii) if the number of profiles whose intercepts/slopes shift increases, only the 
Max-MCUSUM chart shows a significant performance improvement, (iii) all the charts show significant perfor-
mance improvements if the VP scheme is utilized, (iv) the Max-type control charts mostly perform better than 
the SS-type control, and (v) the Max-MEWMA chart mostly performs better as the variability shift increases and 
the Max-MCUSUM chart mostly performs better as the mean shift increases. The results in the p = 6 and q = 6 
case show that, in the case of slope shifts, the conclusions are more or less the same as in the case of p = 2 and q 
= 2. However, in the case of intercept shift, the main difference is that the Max-type control charts’ performance 
mostly gets worse (or their performance remains rather unchanged) as the shift in the intercept increases (with 
the Max-MCUSUM chart being the worst between the two) and the SS-type charts’ performance mostly gets 
better (or their performance remain rather unchanged).

Finally, we used a real dataset to estimate two profiles in a stroke care process and then developed and utilized 
the VP control charts to monitor those profiles over time to show how these charts can be implemented in real 
practice.

For future studies, implementing similar adaptive strategies for more advanced profiles such as non-paramet-
ric and nonlinear profiles can be suggested. Furthermore, developing and implementing other control charts to 
improve the healthcare-related processes in general, and the stroke care process in particular, could be a great 
contribution considering the availability of very few studies in this regard.

Data availability
The data that supports the findings of this study are available from Riksstroke, but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 
Data are however available from Marie Eriksson (marie.eriksson@umu.se) upon reasonable request and with 
the permission of Riksstroke.



19

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9288  | https://doi.org/10.1038/s41598-024-59549-8

www.nature.com/scientificreports/

Received: 29 November 2023; Accepted: 11 April 2024

References
	 1.	 Sabahno, H., Amiri, A. & Castagliola, P. A new adaptive control chart for the simultaneous monitoring of the mean and variability 

of multivariate normal processes. Comput. Ind. Eng. 151, 1–16 (2021).
	 2.	 Sabahno, H., Amiri, A. & Castagliola, P. Optimal performance of the variable sample sizes Hotelling’s T2 control chart in the pres-

ence of measurement errors. Qual. Technol. Quant. Manag. 16(5), 588–612 (2018).
	 3.	 Sabahno, H., Castagliola, P. & Amiri, A. A variable parameters multivariate control chart for simultaneous monitoring of the 

process mean and variability with measurement errors. Qual. Reliab. Eng. Int. 36(4), 1161–1196 (2020).
	 4.	 Sabahno, H., Castagliola, P. & Amiri, A. An adaptive variable-parameters scheme for the simultaneous monitoring of the mean 

and variability of an autocorrelated multivariate normal process. J. Stat. Comput. Simul. 90(8), 1430–1465 (2020).
	 5.	 Sabahno, H. & Celano, G. Monitoring the multivariate coefficient of variation in presence of autocorrelation with variable param-

eters control charts. Qual. Technol. Quant. Manag. https://​doi.​org/​10.​1080/​16843​703.​2022.​20751​93 (2023).
	 6.	 Sabahno, H. An adaptive max-type multivariate control chart by considering measurement errors and autocorrelation. J. Stat. 

Comput. Simul. https://​doi.​org/​10.​1080/​00949​655.​2023.​22148​30 (2023).
	 7.	 Perdikis, T. & Psarakis, S. A survey on multivariate adaptive control charts: Recent developments and extensions. Qual. Reliab. 

Eng. Int. 35(5), 1342–1362. https://​doi.​org/​10.​1002/​qre.​2521 (2019).
	 8.	 Amir, M. W. et al. On increasing the sensitivity of moving average control chart using auxiliary variable. Qual. Reliab. Eng. Int. 

37(3), 1198–1209 (2021).
	 9.	 Abbas, Z., Nazir, H. Z., Abbasi, S. A., Riaz, M. & Xiang, D. On designing efficient memory-type charts using multiple auxiliary-

information. J. Stat. Comput. Simul. 93(4), 646–670 (2023).
	10.	 Kang, L. & Albin, S. L. On-line monitoring when the process yields a linear profile. J. Qual. Technol. 32, 418–426 (2000).
	11.	 Kim, K., Mahmoud, M. A. & Woodall, W. H. On the monitoring of linear profiles. J. Qual. Technol 35(3), 317–328 (2003).
	12.	 Zou, Ch., Zhang, Y. & Wang, Z. A control chart based on a change-point model for monitoring linear profiles. IIE Trans. 38, 

1093–1103. https://​doi.​org/​10.​1080/​07408​17060​07289​13 (2006).
	13.	 Yeh, A. B., Huwang, L. & Li, Y. M. Profile monitoring for a binary response. IIE Trans. 41(11), 931–94 (2009).
	14.	 Noorossana, R., Eyvazian, M. & Vaghefi, A. Phase II monitoring of multivariate simple linear profiles. Comput. Ind. Eng. 58(4), 

563–570 (2010).
	15.	 Eyvazian, M., Noorossana, R., Saghaei, A. & Amiri, A. Phase II monitoring of multivariate multiple linear regression profiles. Qual. 

Reliab. Eng. Int. 27(3), 281–296 (2011).
	16.	 Hosseinifard, S. Z., Abdollahian, M. & Zeephongsekul, P. Application of artificial neural networks in linear profile monitoring. 

Expert Syst. Appl. 38(5), 4920–4928 (2011).
	17.	 Zou, C., Ning, X. & Tsung, F. LASSO-based multivariate linear profile monitoring. Ann. Oper. Res. 192(1), 3–19 (2012).
	18.	 Zhang, J., Li, Z. & Wang, Z. Control chart based on likelihood ratio for monitoring linear profiles. Comput. Stat. Data Anal. 53(4), 

1440–1448 (2009).
	19.	 Khedmati, M. & Niaki, S. T. A. A new control scheme for phase II monitoring of simple linear profiles in multistage processes. 

Qual. Reliab. Eng. Int. 32(2), 443–452 (2016).
	20.	 Ghashghaei, R. & Amiri, A. Maximum multivariate exponentially weighted moving average and maximum multivariate cumula-

tive sum control charts for simultaneous monitoring of mean and variability of multivariate multiple linear regression profiles. 
Sci. Iran. 24(5), 2605–2622 (2017).

	21.	 Ghashghaei, R. & Amiri, A. Sum of squares control charts for monitoring of multivariate multiple linear regression profiles in 
Phase II. Qual. Reliab. Eng. Int. 33(4), 767–784 (2017).

	22.	 Mahmood, T., Riaz, M., Omar, M. H. & Xie, M. Alternative methods for the simultaneous monitoring of simple linear profile 
parameters. Int. J. Adv. Manuf. Technol. 97(5), 2851–2871 (2018).

	23.	 Saeed, U., Mahmood, T., Riaz, M. & Abbas, N. Simultaneous monitoring of linear profile parameters under progressive setup. 
Comput. Ind. Eng. 125, 434–450 (2018).

	24.	 Ghashghaei, R., Amiri, A. & Khosravi, P. New control charts for simultaneous monitoring of the mean vector and covariance 
matrix of multivariate multiple linear profile. Commun. Stat. Simul. Comput. 48(5), 1382–1405 (2019).

	25.	 Malela-Majika, J. C., Chatterjee, K. & Koukouvinos, C. Univariate and multivariate linear profiles using max-type extended expo-
nentially weighted moving average schemes. IEEE Access 10, 6126–6146 (2022).

	26.	 Abbasi, S. A., Yeganeh, A. & Shongwe, S. C. Monitoring non-parametric profiles using adaptive EWMA control chart. Sci. Rep. 
12, 14336. https://​doi.​org/​10.​1038/​s41598-​022-​18381-8 (2022).

	27.	 Sabahno, H. & Amiri, A. Simultaneous monitoring of the mean vector and covariance matrix of multivariate multiple linear profiles 
with a new adaptive Shewhart-type control chart. Qual. Eng. https://​doi.​org/​10.​1080/​08982​112.​2022.​21647​25 (2023).

	28.	 Sherwani, R. A. K., Qasim, H., Abbas, S., Abbas, T. & Aslam, M. Performance evaluation of DEWMA3 in phase-II for capturing 
changes in simple linear profiles based on run rule mechanism. Sci. Rep. 13, 8609. https://​doi.​org/​10.​1038/​s41598-​023-​35779-0 
(2023).

	29.	 Abbas, T., Abbasi, S. A., Riaz, M. & Qian, Z. Phase II monitoring of linear profiles with random explanatory variable under Bayes-
ian framework. Comput. Ind. Eng. 127, 1115–1129 (2019).

	30.	 Li, Z. & Wang, Z. An exponentially weighted moving average scheme with variable sampling intervals for monitoring linear profiles. 
Comput. Ind. Eng. 59(4), 630–637 (2010).

	31.	 Abdella, G., Yang, K. & Alaeddini, A. Multivariate adaptive approach for monitoring simple linear profiles. Int. J. Data Anal. Tech. 
Strat. 6(1), 2–14 (2014).

	32.	 Ershadi, M. J., Noorossana, R. & Niaki, S. T. A. Economic-statistical design of simple linear profiles with variable sampling interval. 
J. Appl. Stat. 43(8), 1400–1418 (2015).

	33.	 Magalhaes, M. S. & Von Doellinger, R. Monitoring linear profiles using an adaptive control chart. Int. J. Adv. Manuf. Technol. 82, 
1433–1445 (2016).

	34.	 Kazemzadeh, R., Amiri, A. & Kouhestani, B. Monitoring simple linear profiles using variable sample size schemes. J. Stat. Comput. 
Simul. 86(15), 2923–2945 (2016).

	35.	 Ershadi, M. J., Noorossana, R. & Niaki, S. T. A. Economic design of phase II simple linear profiles with variable sample size. Int. J. 
Prod. Qual. Manag. 18(4), 537–555 (2016).

	36.	 Darbani, F. H. & Shadman, A. Monitoring of linear profiles using generalized likelihood ratio control chart with variable sampling 
interval. Qual. Reliab. Eng. Int. 34(8), 1828–1835 (2018).

	37.	 Yeganeh, A., Abbasi, S. A. & Shongwe, S. C. A novel simulation-based adaptive MEWMA approach for monitoring linear and 
logistic profiles. IEEE Access 9, 124268–124280 (2021).

	38.	 Haq, A. Adaptive MEWMA charts for univariate and multivariate simple linear profiles. Commun. Stat. Theory Methods 51(16), 
5383–5411 (2022).

	39.	 Sabahno, H. & Amiri, A. New statistical and machine learning based control charts with variable parameters for monitoring 
generalized linear model profiles. Comput. Ind. Eng. 184, 1–18 (2023).

https://doi.org/10.1080/16843703.2022.2075193
https://doi.org/10.1080/00949655.2023.2214830
https://doi.org/10.1002/qre.2521
https://doi.org/10.1080/07408170600728913
https://doi.org/10.1038/s41598-022-18381-8
https://doi.org/10.1080/08982112.2022.2164725
https://doi.org/10.1038/s41598-023-35779-0


20

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9288  | https://doi.org/10.1038/s41598-024-59549-8

www.nature.com/scientificreports/

	40.	 Darehed, D. et al. In-hospital delays in stroke thrombolysis: Every minute counts. Stroke 51(8), 2536–2539. https://​doi.​org/​10.​
1161/​STROK​EAHA.​120.​029468 (2020).

	41.	 Asplund, K. et al. The Riks-Stroke story: Building a sustainable national register for quality assessment of stroke care. Int. J. Stroke 
6(2), 99–108. https://​doi.​org/​10.​1111/j.​1747-​4949.​2010.​00557.x (2011).

Acknowledgements
The authors thank the journal’s editorial board and appreciate the esteemed reviewers for their constructive 
comments, which led to significant improvements in the quality of the paper. The authors are also grateful to 
Riksstroke for providing the dataset.

Author contributions
HS and ME worked on the conceptualization of the study. HS performed statistical methods development and 
statistical analyses. ME worked on data collection. HS and ME worked on data interpretation. HS drafted the 
manuscript. HS and ME contributed with reviewing and editing.

Funding
Open access funding provided by Umea University.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to H.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1161/STROKEAHA.120.029468
https://doi.org/10.1161/STROKEAHA.120.029468
https://doi.org/10.1111/j.1747-4949.2010.00557.x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Variable parameters memory-type control charts for simultaneous monitoring of the mean and variability of multivariate multiple linear regression profiles
	Multivariate multiple linear profiles
	Max-type and SS-type memory-type control charts
	Memory-type control charts using a Max operator
	Max-MEWMA control chart
	Max-MCUSUM control chart

	Memory-type control charts using a SS operator
	SS-EWMAe control chart
	SS-CUSUMe control chart


	Design parameters in a variable parameters scheme
	Algorithm 1: Adjusting the UCL values
	Algorithm 2: Adjusting the UWL values

	Performance measures
	Simulation studies
	A real case
	Conclusions
	References
	Acknowledgements


