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The use of residual analysis 
to improve the error rate accuracy 
of machine translation
Ľubomír Benko  1*, Dasa Munkova 1, Michal Munk 1,2, Lucia Benkova 1 & Petr Hajek 2

The aim of the study is to compare two different approaches to machine translation—statistical and 
neural—using automatic MT metrics of error rate and residuals. We examined four available online MT 
systems (statistical Google Translate, neural Google Translate, and two European commission’s MT 
tools—statistical mt@ec and neural eTranslation) through their products (MT outputs). We propose 
using residual analysis to improve the accuracy of machine translation error rate. Residuals represent 
a new approach to comparing the quality of statistical and neural MT outputs. The study provides new 
insights into evaluating machine translation quality from English and German into Slovak through 
automatic error rate metrics. In the category of prediction and syntactic-semantic correlativeness, 
statistical MT showed a significantly higher error rate than neural MT. Conversely, in the category of 
lexical semantics, neural MT showed a significantly higher error rate than statistical MT. The results 
indicate that relying solely on the reference when determining MT quality is insufficient. However, 
when combined with residuals, it offers a more objective view of MT quality and facilitates the 
comparison of statistical MT and neural MT.

Although relying on human translation offers more accuracy and fluency, human translation is of limited effi-
ciency and it is challenging for it to meet the needs of long text translation1. This limitation stimulates the 
search for new approaches to translation. One such approach is the implementation of intelligent algorithms 
within machine translation (MT) system. Various algorithms address the issues of MT system such as RNN 
encoding–decoding in existing log-linear SMT, transfer learning method, self-attention mechanism, unsuper-
vised training algorithm, the adversarial augmentation method, reinforcement learning, neural MT (LSTM and 
transformer), hybrid (neural MT + statistical MT), rule-based MT, phrase-based MT, and others2. Currently, 
machine translation employs deep neural network (NN) learning, which initially learns rules and then auto-
matically produces translations. This approach has yielded very good results for tasks with sufficiently labelled 
data for learning. However, if there is little tagged data, machine translation produces poor performance3. The 
primary obstacle for market-oriented neural MT systems or applications lies in its weak translation quality that 
fails to meet users’ needs4. MT evaluation is a fundamental step in improving the performance of MT systems. 
The continuous enhancement of the performance of current neural MT systems is closely tied to research on 
evaluating the quality of MT output based on sentence comparison4. This comparison involves two inseparable 
aspects—qualitative/human and quantitative/automatic evaluation. The first serves as the foundation and guiding 
principle for the second, while the latter represents the digital outcome of the former.

Two main approaches exist for evaluating MT systems—human/manual and automatic evaluation. Blur 
criteria and scales for manual translation quality, along with different human evaluator sensitivity to transla-
tion errors may result in the judge subjectivity, which can be reflected in the poor consistency and instability of 
the evaluation results5. Human evaluation is an effective way to assess translation quality, but is challenging to 
find reliable bilingual annotators6. In addition to poor consistency and subjectivity, manual evaluation is both 
financially and time-consuming; however, unlike automatic evaluation, it does not require a reference transla-
tion. The advantages of automatic evaluation lie in its objectivity, consistency, stability, speed, reusability, and 
language independence. It is cost-effective and easy to use for comparing multiply systems, but at the expense 
of quality6. Furthermore, automatic evaluation requires reference—human translation (gold standard)—since 
the evaluation is based on comparing MT output with reference translation. Automatic MT evaluation metrics 
compare overlapping words between MT output and reference (e.g.7–9 and others). Automatic metrics of MT 
evaluation only capture lexical similarity and correctly measure neither semantic and grammatical diversity, 
nor syntactic structures6,10.
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The automatic evaluation metrics applied in MT evaluation can be divided into untrained—lexical metrics 
and trained—supervised and unsupervised metrics6. The untrained metrics measure lexical similarity/distance 
(overlap with a reference) using a mathematical formula or heuristic methods at the word-level (N-gram-based 
metrics such as BLEU, METEOR or NIST; or edit distance-based metrics such as TER or WER) or at the char-
acter-level (such as characTER). Within the trained metrics, we can distinguish embedding-based metrics from 
supervised metrics. The embedding-based metric measures lexical similarity using machine learning techniques 
or deep learning algorithms (automatic metrics such as MEANT or BEER). The supervised metric trains regres-
sion models using labelled data, annotated by humans such as the COMET metric6.

The BLEU (Bilingual Evaluation Understudy) evaluation index is the standard method used in the automatic 
evaluation of the quality of the MT system through its product. The BLEU index is calculated through three 
components that require minimal human intervention: (1) n-gram-based precision of the MT output and the 
reference, (2) brevity penalty to prevent overfitting of sentence length, and (3) clipping for calibration of continu-
ous word appearance6. The BLEU index ranges from 0 to 1, with a higher value indicating more accurate matching 
(overlap) with the reference translation. On the other hand, the closer to zero, the more machine translation 
deviates (differs) from reference translation11. However, this index does not reflect the degree of this deviation 
and its gravity. Its poor performance at sentence-level and inadequate handling of recall are its main limitations12.

Moreover, many studies have shown that BLEU has a low correlation with human evaluation, especially in 
cases of inflectional languages, which has led to the development of various BLEU variants13–15. Additionally, 
BLEU is not always reported consistently due to divergences in the tokenization and normalization schemes 
used16.

The BLEU index only determines accuracy with the reference (similarity), which is neither helpful in improv-
ing nor in optimizing the MT system. To know or understand what needs to be improved, we need to know 
the error rate. For this reason, in our paper, we focused on the error rate (edit distance) and not on the lexical 
similarities (accuracy) of MT systems.

Word error rate (WER) measures Levenshtein edit distance, i.e., it computes the minimum edit distance to 
transform a MT output into a reference through edit operations such as insertions, substitutions, and deletions 
of words necessary to transform one string into another without allowing the words reordering17:

The limitation of the WER metric lies in penalizing word changes within a sentence. Several variants overcome 
this limitation, such as position-independent word error rate metric18 or translation edit rate metric8.

Position-independent word error rate (PER) is based on the WER metric but ignores the word order in both 
MT output and reference translation18.

Translation edit rate (TER) is defined as the minimum number of edit operations, including shift (a moving 
action or block movement), required to change a MT output to an exact match with a reference8:

In comparison with WER, which focuses on word operations only, TER considers shifts as part of edit opera-
tions. The higher the score of the error rate metrics, the worse the translation quality, and vice versa. The main 
motivation for using character-based metrics is their improved performance in evaluating morphologically rich 
languages like Slovak or other Slavic languages19,20.

CharacTER is a character-level metric inspired by the TER metric21. It is defined as the minimum number 
of character edit operations required to match a MT output with a reference, normalized by the length of the 
MT output:

CharacTER first performs shift edits at the word-level; then, the shifted MT output sequence and the reference 
are split into characters, and the Levenshtein distance between them is computed.

Cross-lingual optimized metric for the evaluation of translation (COMET) is a PyTorch-based framework 
for training highly multilingual and adaptable MT evaluation models that can function as metrics22. It sup-
ports both architectures: the estimator model (trained to regress directly on a quality score) and the translation 
ranking model (trained to minimize the distance between “good” MT output and its corresponding reference/
original source).

The most commonly used approach to determine the ability of automatic metrics to substitute human evalu-
ation metrics is to compare the correlations between human evaluation metrics and the scores of automatic 
metrics6. However, it is still only a score (a number from the < 0, 1 > interval) that does not indicate the level 
of translation error rate at the segment/sentence/text level within the corpus. Additionally, automated metrics 
provide varying results and varying degrees of correlation with human evaluations, which are often inconsistent 
themselves. The translation quality of a pair of MT systems often relies on the differences between automatic 
scores (BLEU index) to draw conclusions without performing any further assessment23,24.

This motivated us to search for other techniques that would be suitable for comparing translation quality and 
help us to identify segments/sentences/texts within a corpus that vary extremely (significantly) in translation 
quality, but with minimal human intervention. The advantage of using residuals when comparing translations 

WER =
# of insertions+ deletions + substitutions

reference lenght
.

TER =
# of insertions+ deletions + substitutions + shifts

reference lenght
.

CharacTER =
# of insertions+ deletions + substitutions + shifts

MT output lenght
.
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is the ability to detect specific segments/sentences/texts within the corpus that deviate significantly from the 
golden-standard translation.

Residual analysis and error analysis are closely related analyses; both measure a distance (deviation or error). 
Residual analysis evaluates a regression model’s validity by examining the differences between observed values 
and predicted values by the model; in our case, the model is the MT model.

The deviation or error is the distance of the observed value from the predicted/expected value, i.e., residuals 
represent the distance of observed values from predicated values:

where, in our research, N represents the number of examined texts in the data set, observed value is repre-
sented by the neural MT error rate and the predicted/expected value by the statistical MT error rate of a given 
text.

Extreme distances between the examined models (MT systems in our research) are identified based on the 
±2sigma rule, similar to outliers in residual analysis:

 where the residual values represent the differences in the error rate of the examined MT models, neural MT 
system and statistical MT system in our case.

Residuals allow us to identify patterns, better understand and interpret model errors, and subsequently 
eliminate, correct, or analyze them, as well as their influence on MT quality25.The aim of the study is to compare 
two different approaches to machine translation—statistical and neural—using automatic MT metrics of error 
rate and residuals. We examined four available online MT systems (statistical Google Translate, neural Google 
Translate, and two European commission’s MT tools—statistical mt@ec and neural eTranslation) through their 
products (MT outputs).

The statistical MT (SMT) systems are represented by Google Translate (GT_SMT)26 and mt@ec (the European 
Commission’s MT tool)27 and their transformations into neural MT (NMT) systems, which are represented by 
Google Translate (GT_NMT)28 and eTranslation (the European Commission MT tool)29. The shift from mt@
ec to eTranslation improved the translation quality, speed, and security of the interface. Google team made 
the same transformation in September 2016; it switched to Google neural machine translation, focusing on an 
end-to-end learning framework that learns from millions of examples and provides significant improvements 
in translation quality30.

The main objective consists of three partial objectives:

•	 The first objective lies in the comparison of statistical MT systems and neural MT systems based on the 
automatic MT metrics of error rate (WER, PER, and TER).

•	 The second objective aims to identify or detect machine-translated segments/sentences/texts that deviate 
significantly from human translations based on the score of error rate metrics and residuals. This includes 
identifying texts in which statistical MT was closer to human translation than neural MT or vice versa.

•	 The third objective involves verifying the validity of the obtained results through metrics such as BLEU 
and COMET, as well as the characTER metric, which correlates better with human evaluation in the case of 
morphologically richer languages19,20.

The translation directions were from English and German into an inflectional and a low-resourced Slovak. 
Moreover, Slovak belongs to one of the official languages of the European Union.

The structure of the paper is as follows. The second section contains related work in the field of automated 
MT evaluation and a comparison of various MT systems. The third section describes the used data set and the 
applied research methodology. The subsequent section focuses on the research results based on the evaluation 
of error rate metrics and residuals. The fifth section offers a discussion of the results. The last section comprises 
research conclusions.

Related work
Statistical MT and neural MT are the most extensively used architectures within the MT systems31.

Pinnis et al.32 compared the NMT and phrase-based SMT systems for highly inflected and low-resourced 
languages. They compared large and small bilingual corpora, focusing on six language pairs: [Latvian, Estonian]-
English, Estonian-Russian, and vice versa. MT evaluation was conducted using the automatic evaluation metrics 
(BLEU, NIST, and ChrF2) and manual error analysis. The error analysis was focused on identification morpho-
logical, syntactical, and lexical errors. The results showed that the NMT system produced twice as many errors 
in lexical choice (wrong or incorrect lexical choice) as the phrase-based SMT system. On the other hand, the 
NMT system demonstrated much better grammatical accuracy (forms and structure of words, and word order) 
than the SMT system.

Yang et al.33 examined translation quality from ancient Chinese to modern Chinese. They proposed a novel 
automatic evaluation model—dual-based translation evaluation, without multiple references. To compare the 
results, BLEU and the Levenshtein distance were used as baselines. They proved that dual-based translation 
evaluation achieved better agreement, and/or concordance with human evaluation (human judgements).

Fomicheva and Specia34 conducted a broad meta-evaluation study of automatic evaluation metrics. They 
evaluated more than 20 automatic evaluation metrics on multiple data sets (WMT16 data set, MTSummit17 
English–Latvian data set, Multiple-Translation Chinese data set, WMT17 Quality Estimation German–English 

Residual valuei = Observed valuei − Predicted valuei , i = 1, 2, . . . ,N ,

Mean(Residual valuei)± StdDev(Residual valuei), i = 1, 2, . . . ,N ,
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data set, GALE Arabic–English data set, and EAMT11 French–English data set). Data sets also contained manual 
assessments based on different quality criteria (adequacy, fluency, or PE effort) collected using several different 
methods. The meta-evaluation was conducted based on three aspects: MT quality, MT system types, and manual 
evaluation type. They showed that the accuracy of automatic MT evaluation varies depending on the overall MT 
quality. They showed that the automatic metrics perform poorly when faced with low-quality translations, but 
additionally that evaluating low-quality translations is also more challenging for humans. They also showed that 
metrics are more reliable when evaluating neural MT than statistical MT systems. Metric performance can be 
affected by various factors, such as text-domain, language-pair, or type of MT system.

Moghe et al.35 evaluated nine metrics consisting of string overlap metrics, embedding-based metrics, and met-
rics trained using scores from human MT evaluation on three extrinsic tasks (dialogue state tracking, question 
answering, and semantic parsing) covering 39 unique language pairs. They showed that interpreting the quality of 
the produced MT translation based on a number is unreliable and difficult. They also showed that scores provided 
by neural metrics (e.g. COMET) are not interpretable, in large part due to having undefined ranges, and also 
that it is unclear if automatic metrics can reliably distinguish good translations from bad at the sentence level.

Alvarez-Vidal and Olivier23 found that automatic metrics such as BLEU were intended to be used as a devel-
opment tool and cannot be blindly used to assess MT systems without taking into account the final use of the 
translated text. They recommend a two-step MT evaluation which can ensure the quality of the MT output. 
They compared two different NMT engines—the commercial online available DeepL NMT system and a system 
trained on news-domain by the authors for the English–Spanish language pair. They showed that automatic 
metrics used (BLEU, NIST, WER, TER, EdDist, and COMET) yield better results for the NMT system trained 
by the authors, except for COMET.

Almahasees36 compared the MT outputs of Google Translate and Microsoft Bing Translator (both based on 
SMT). The used data contained political news in English and were translated into Arabic. The data were evaluated 
using the automatic evaluation metrics, and the results showed better results for MT outputs produced by Google 
Translate. Later, Almahasees37 conducted similar research with journalistic texts for the language pair English-
Arabic, but with MT systems operating on neural networks. He compared the MT outputs based on automatic 
MT evaluation metrics of error rate. The results showed similar results for both MT systems in orthography and 
grammatical accuracy. The difference was found in the case of lexis, where the neural MT (Google Translate) 
achieved better results than the statistical MT (Bing).

Marzouk and Hansen-Schirra38 focused on controlled languages (CLs) to improve the quality of NMT output. 
They compare the impact of applying nine CL rules on the quality of MT output produced by five MT systems 
(Google, Bing, Lucy, SDL, and Systran, i.e., neural, rule-based, statistical, and two hybrid MT systems) by apply-
ing three methods: error annotation, human evaluation, and automatic evaluation (TERbase and hLEPOR). 
The data set consisted of 216 source sentences of technical-domain translated from German into English. They 
showed that the NMT does not require CL rules; i.e., before and after applying the CL rules, NMT system showed 
the lowest number of errors.

Li and Wang39 focused on the optimization of automatic MT evaluation. They applied representative ‘list-
wise learning to rank’ approach, ListMLE. The selection of features was motivated by the BLEU-n metrics, 
phrase-based SMT, and NMT. They used the data sets released for WMT’2014 and WMT’2015 metrics tasks. 
To evaluate the results of the experiment, they compared the list-wise approach with the most used metrics, 
such as BLEU-n, METEOR, TER, etc. The results showed that the novel approach achieved better results than 
the above-mentioned metrics.

Singh and Singh40 focused on MT quality for low-resource languages. They aimed at an NMT system 
that should improve the translation quality for the English-Manipuri language pair. They compared multiple 
approaches such as SMT, RNN, and transformer architecture. The results showed a higher quality translation in 
terms of statistically significant automatic scores and manual evaluation compared to the statistical and neural 
supervised baselines, as well as the pretrained mBART and existing semi-supervised models.

Shterionov et al.41 compared phrase-based SMT and NMT systems based on lexical similarities. They applied 
automatic evaluation metrics (BLEU, TER, and F-measure) to assess the performance of MT systems. Based on 
the same data set, they built five NMT and phrase-based SMT engines for various language pairs. They showed 
that the quality evaluation scores indicated better performance for the PBSMT engines, contrary to human evalu-
ation. They suggested that automatic evaluation metrics (BLEU, TER, and F-measure) are not always convenient 
for evaluation and do not correspond with NMT quality.

Tryhubyshyn et al.42 examined the relationship between MT system quality and QE system performance. 
They showed that QE systems trained on lower-quality MT translations (a mix of translations from different 
MT models) tended to perform better than those trained on higher-quality MT outputs (translations from one 
MT system).

As mentioned in the introduction, automated metrics (such as BLEU) yield varying results depending on the 
reference translation, text domain and languages. They draw conclusions without performing further evaluation 
or analysis, such as error analysis. Moreover, when the results of automatic evaluation were compared with those 
of manual evaluation, their correlation reached different degrees of agreement. Additionally, evaluators in the 
manual evaluations were often inconsistent regarding the error rate of the machine translation. These findings 
are also supported by the studies focused on Slavic languages or low-resource languages.

The aforementioned studies (as well as ours in the first objective) found that, on average, NMT is better 
than SMT. However, our proposed approach through residual analysis (regardless of which automatic metric is 
used) identifies segments that, on the contrary, show higher SMT quality. We have shown that our approach is 
suitable not only for automatic metrics of accuracy, but also for automatic metrics of error rate, which distin-
guishes us from all previous studies focused on Slovak so far. Moreover, it turns out that it is more appropriate 
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not to consider the raw score of automatic metrics within the MT quality evaluation and comparison of NMT 
and SMT, but their distance (difference). Analyzing differences will enable us to evaluate the MT quality of 
individual segments.

Materials and methods
This study focuses on comparing NMT systems (represented by Google Translate and eTranslation) and SMT 
systems (represented by Google Translate and mt@ec, the European Commission’s MT tool, which has later 
transformed into neural MT- eTranslation).

The statistical machine translated articles were obtained in 2016 from both, Google Translate (GT_SMT) 
and the European Commission’s DGT tool (mt@ec). Later, in 2021, the same articles were machine-translated 
by the NMT engines Google Translate (GT_NMT) and the European Commission’s DGT tool (eTranslation).
The translation directions were from English and German into Slovak, where Slovak is a synthetic language 
containing inflected morphology and with loose word order43. Human translation and post-editing of machine 
translation were conducted in interactive online system OSTEPERE25,44–47.

The examined articles were tokenized and aligned using the Hunalign tool48 in the following order: source 
sentence with one human translation (HT), four machine translations (MTs), and one post-edited machine 
translation (PEMT).

The evaluation of the two different MT systems was conducted through automatic metrics of error rate 
(WER, PER, and TER). We aimed to identify the errors produced by the examined MT systems and determine 
whether changing the architecture of the MT systems resulted in decreasing to produce the same errors or, on 
the contrary, whether they start to create new ones. To verify the validity of the obtained results of the error rate, 
we used the metrics of accuracy—BLEU and COMET, and also character-based metric of error rate—characTER.

Dataset
The data set comprises articles published by the British online newspaper The Guardian and the German online 
newspaper Der Spiegel, along with their machine and human translations. The corpus consists of eight data sets, 
and/or two English-Slovak and German-Slovak corpora: (1) articles written in English and German as source 
texts, (2) articles machine-translated from English and German into Slovak by four different MT engines (by SMT 
in 2016 and by NMT 2021), (3) human-translated articles from English and German into Slovak by professional 
translators (both in 2016), and (4) post-edited machine-translated articles by professional translators (in 2016).

The lexico-grammatical structure of the dataset49 was obtained using Stanza50, an automatic morphological 
annotator tool (Table 1).

Due to the fact that the created corpora are composed of articles with the features of newspaper writing 
(own register), the examined corpora mainly consist of nouns, followed by verbs and adjectives. Regarding the 
readability of the examined translations (from EN to SK and also from DE to SK), there are unequal propor-
tions of short (n < 10) and long (n >  = 10) sentences among MTs. The reduction in words within the sentence 
occurs frequently in statistical MT (mt@ec), which indicates word omission and a shift in meaning, and/or a 
certain loss of meaning (e.g., short sentences (n < 10) for EN: GT_SMT = 18.13%; GT_NMT = 18.75%; mt@
ec_SMT = 21.88%; eTranslation_NMT = 15.63%; and for DE: GT_SMT = 36.14%; GT_NMT = 36.49%; mt@
ec_SMT = 41.86%; eTranslation_NMT = 37.39%).

The readability results are also confirmed by corpus statistics (Table 1), where only adjectives are approxi-
mately equally distributed in all four MT outputs in both language directions (e.g., adjectives for EN: GT_
SMT = 10.84%; GT_NMT = 10.96%; mt@ec_SMT = 11.81%; eTranslation_NMT = 10.85%; and for DE: GT_
SMT = 9.98%; GT_NMT = 10.36%; mt@ec_SMT = 10.61%; eTranslation_NMT = 10.43%), compared to verbs 
or nouns (Table 1). This motivated us to investigate the differences between individual MT outputs, whether 
these differences are statistically significant and whether these differences cause grammatical or lexical errors 
in translation.

Applied Methodology
The applied methodology, inspired by other studies51–53, consists of these stages (Fig. 1):

(1)	 Acquisition of unstructured textual data source text (journalistic texts). We focused on journalistic texts 
(newspaper writing) as they belong to the most read and translated texts by people. We chose the two most 
popular journals, from which we obtained all freely available texts from various fields (politics, sports, show 
business, and technology) published in the given year 2016.

(2)	 Data preparation consisting of following tasks:

(a)	 Text pre-processing removing text formatting, which can influence the MT quality (images or tables 
can divide the text inappropriately and produce bad translation).

(b)	 Human translation the translation process was realized in the tailored system OSTEPERE, which 
offers user-friendly interface for human translators and post-editors. The system saved the human 
translations and post-edited machine translations into a database for further processing.

(c)	 Machine translation automatic translation of the source text by MT engines (Google Translate [SMT 
| NMT], mt@ec [SMT], and eTranslation [NMT].

(d)	 Sentence alignment the generated MT outputs and human translations are aligned with the source 
texts using Hunalign tool (based on the 1-to-1 principle).
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(3)	 Automatic MT evaluation using automatic metrics of error rate at the segment level. We applied automatic 
MT metrics based on the Levenshtein distance, which computes the minimum edit distance to transform 
a MT output into a reference through edit operations (insertions, substitutions, deletions, and shift of 
words necessary to transform one string into another). WER(h, r) = min#(I+D+S)

|r|  , where r is a reference of 
a hypothesis/MT output h, I—insertion, D—deletion, and S—substitution.

	   The minimum number of edit operations is divided by the number of words in the reference54. 
PER(h, r) = 1− n−max(0,|h|−|r|)

|r|  , where r is a reference of a hypothesis/MT output h, n is the number of 
similar words18. 

Table 1.   Dataset composition of (a) English MT outputs/HT and (b) German MT outputs/HT.

Feature name GT_SMT GT_NMT mt@ec_SMT eTransla-tion_NMT Human translation

(a) Feature type

 Readability

  Average sentence length (words) 19.39 19.12 17.91 19.09 19.84

  Average word length (characters) 5.43 5.59 5.75 5.55 5.69

  Number of short sentences (n < 10) 18.13% 18.75% 21.88% 18.13% 15.63%

  Number of long sentences (n ≥ 10) 81.88% 81.25% 78.13% 81.88% 84.38%

 Lexico-grammatical

  Frequency of nouns 22.65% 22.06% 23.80% 21.90% 21.99%

  Frequency of adjectives 10.84% 10.96% 11.81% 10.85% 10.59%

  Frequency of verbs 9.30% 9.88% 8.79% 9.74% 10.78%

  Frequency of determiners 4.44% 4.48% 4.52% 4.41% 5.17%

  Frequency of adpositions 9.63% 9.68% 9.42% 9.46% 9.35%

  Frequency of proper nouns 4.77% 4.45% 4.67% 4.88% 4.23%

  Frequency of coordinating conjunctions 3.31% 3.14% 3.56% 3.26% 3.40%

  Frequency of subordinating conjunctions 3.34% 3.53% 2.69% 3.65% 2.75%

  Frequency of interjections 0.17% 0.17% 0.03% 0.11% 0.13%

  Frequency of adverbs 3.50% 3.37% 3.29% 3.46% 3.56%

  Frequency of pronouns 2.48% 3.26% 2.09% 3.21% 3.99%

  Frequency of auxiliaries 4.42% 3.51% 3.95% 3.99% 2.94%

  Frequency of numerals 3.75% 3.90% 4.16% 3.77% 3.61%

  Frequency of particles 1.46% 1.70% 1.53% 1.59% 1.97%

  Frequency of punctuations 14.62% 15.14% 14.44% 14.92% 14.42%

  Frequency of others 1.30% 0.78% 1.26% 0.81% 1.13%

(b) Feature type

 Readability

  Average sentence length (words) 14.22 14.20 12.81 13.74 14.63

  Average word length (characters) 5.44 5.54 5.90 5.60 5.65

  Number of short sentences (n < 10) 36.14% 36.49% 41.86% 37.39% 33.09%

  Number of long sentences (n ≥ 10) 63.86% 63.51% 58.14% 62.61% 66.91%

 Lexico-grammatical

  Frequency of nouns 22.00% 22.88% 25.22% 22.79% 23.02%

  Frequency of adjectives 9.98% 10.36% 10.61% 10.43% 10.53%

  Frequency of verbs 9.11% 9.74% 7.94% 9.55% 9.79%

  Frequency of determiners 4.23% 4.50% 3.59% 4.37% 4.57%

  Frequency of adpositions 9.38% 9.74% 9.33% 9.80% 9.57%

  Frequency of proper nouns 5.50% 5.40% 4.76% 5.59% 5.24%

  Frequency of coordinating conjunctions 3.14% 2.90% 2.95% 2.84% 3.00%

  Frequency of subordinating conjunctions 2.90% 2.63% 2.57% 2.78% 2.50%

  Frequency of interjections 0.06% 0.04% 0.01% 0.03% 0.01%

  Frequency of adverbs 4.83% 4.36% 3.95% 3.91% 4.47%

  Frequency of pronouns 2.28% 2.95% 2.03% 2.84% 3.32%

  Frequency of auxiliaries 3.68% 3.04% 3.33% 3.25% 2.72%

  Frequency of numerals 3.09% 3.05% 3.27% 3.24% 2.97%

  Frequency of particles 2.68% 2.70% 2.92% 2.61% 3.69%

  Frequency of punctuations 16.04% 14.99% 16.42% 15.28% 13.85%

  Frequency of others 1.11% 0.72% 1.09% 0.69% 0.74%
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	   TER(h, r) =
min#(I+D+S+shift)

|r|  , where r is a reference of a hypothesis/MT output h, I—insertion, D—dele-
tion, S – substitution, and shift (a number of changes in word order). Compared to WER, TER considers 
shifts as a part of edit operations. TER deals with more edit operations, allowing it to capture various dif-
ferences in word order.

	   The higher the score of error rate metrics, the worse the translation quality, and vice versa.
(4)	 Comparison of MT quality based on (1) MT system used (Google Translate or European Commission’s 

DGT system) and (2) artificial intelligence approach to MT (statistical approach to MT or neural approach 
to MT).

	 (i)	 We test the differences in the score of automatic MT metrics between two MT systems (Google 
Translate (GT) and the European Commission’s MT tool (EC)), separately for WER, PER, and TER.

	 (ii)	 We test the differences in the score of automatic MT metrics between artificial intelligence 
approached to MT (statistical vs neural), separately for WER, PER, and TER.

		    To test the differences between dependent samples (WER/PER/TER: EC_SMT, GT_SMT, EC_
NMT, and GT_NMT), we use adjusted univariate tests for repeated measure due to the failure 
of the sphericity assumption (Mauchley sphericity test – WER: W = 0.849, Chi-Square = 25.886, 
df = 5, p < 0.001; PER: W = 0.916, Chi-Square = 13.795, df = 5, p = 0.017; TER: W = 0.846, Chi-
Square = 26.336, df = 5, p < 0.001).

(5)	 I d e n t i f i c a t i o n  o f  e x t r e m e  d i f f e r e n c e s  b e t w e e n  s t a t i s t i c a l  a n d  n e u -
r a l  M T.  To  i d e nt i f y  e x t re me  v a lu e s ,  we  apply  t he  re s i du a l  ana ly s i s ,  i . e . , 

Figure 1.   Methodology workflow diagram.
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(residual value)i =
(

WER/PER/TER score of NMT text
)

i
−

(

WER/PER/TER score of SMT text
)

i
 

i = 1, 2, . . . ,N , where N is the number of examined texts in the dataset.
(6)	 Validation of the obtained results –using automatic metrics BLEU, COMET, and characTER.
	   We used one of the main models of COMET: wmt22-comet-da. This model uses a reference-based regres-

sion approach and has been trained on direct assessments from WMT17 to WMT20. It provides scores 
ranging from 0 to 1, where 1 represents a perfect translation. CharacTER(h, r) = min#(I+D+S+shift)

|h(characters)|  , where 
h is a hypothesis/MT output, I—insertion, D—deletion, S – substitution, and shift.

BLEU-n7 is a geometric mean of n-gram precisions with a brevity penalty (BP), i.e. penalty to prevent very 
short sentences:

where wn is weights for different pn,

where r is a reference of a hypothesis h.

Results
Automatic MT evaluation based on metrics of error rate
For all automatic metrics (WER, PER, and TER), the Mauchley sphericity test is significant (p < 0.05), i.e., the 
assumption is violated. We adjusted the degrees of freedom using the Greenhouse–Geisser adjustment. Based on 
the results of adjusted univariate tests for repeated measure (Greenhouse–Geisser adjustment) among GT_SMT, 
GT_NMT, mt@ec_SMT, and eTranslation_NMT, there are significant differences in MT quality concerning the 

BLEU(n) = exp

N
∑

n=1

wn log pn × BP,

BP =

{

1, if h > r

e1−
r
h , if h ≤ r

,

Table 2.   Bonferroni (adjustment) post-hoc test for multiple comparisons of the metric WER between different 
MT systems (GT tools or EC tools) and approaches (statistical or neural) in the English–Slovak language pair. 
****Homogenous groups p > 0.05.

English = 1 Mean 1 2 3

WER_GT_NMT 0.679 ****

WER_EC_NMT 0.715 ****

WER_GT_SMT 0.778 ****

WER_EC_SMT 0.800 ****

Table 3.   Bonferroni (adjustment) post-hoc test for multiple comparisons of the metric PER between different 
MT systems (GT tools or EC tools) and approaches (statistical or neural) in the English–Slovak language pair. 
****Homogenous groups p > 0.05.

English = 1 Mean 1 2 3

PER_GT_NMT 0.548 ****

PER_EC_NMT 0.575 ****

PER_GT_SMT 0.642 ****

PER_EC_SMT 0.683 ****

Table 4.   Bonferroni (adjustment) post-hoc test for multiple comparisons of TER metrics between different 
MT systems (GT tools or EC tools) and approaches (statistical or neural) in the English–Slovak language pair. 
****Homogenous groups p > 0.05.

English = 1 Mean 1 2 3

TER_GT_NMT 0.674 ****

TER_EC_NMT 0.711 ****

TER_GT_SMT 0.774 ****

TER_EC_SMT 0.796 ****
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scores of metrics of error rate (WER, PER, and TER: G-G Epsilon < 0.944, G-G Adj. p < 0.001). NMTs were of 
statistically significantly better quality than SMTs regardless of which MT tool (GT or the European Commis-
sion’s MT tool) was used. NMTs were lexically more similar to the references than SMTs.

Based on multiple comparisons (Table 2), there are significant differences in the score of metric WER between 
NMT (GT) and the others, as well as between NMT (eTranslation_NMT) and the others, but there is no differ-
ence between SMT (GT) and SMT (EC). Were identified three homogeneous groups (****p > 0.05) in terms of 
the agreement/concordance of the examined texts. NMT produced by GT achieved the lowest error rate (0.679) 
compared to other MTs. On the other hand, SMT produced by mt@ec achieved the highest error rate (0.800), 
but is very close to SMT produced by GT (0.778).

In terms of lexical similarity, regardless of word order (PER metric), there is a difference between SMT, 
produced by GT tool or EC tool and neural MT, but there is no difference between neural MT produced by GT 
tool and EC tool (Table 3). Based on multiple comparisons (Table 3), were identified three homogeneous groups 
(****p > 0.05) in terms of the agreement/text similarity of the examined texts. Moreover, three out of four MTs 
achieved lower PER scores of error rate (PER ≤ 0.642) than all MTs evaluated by metric WER (WER ≥ 0.679).

The TER values copy the WER values (Tables 2, 4). Based on multiple comparisons (Table 4), were identified 
three homogeneous groups (****p > 0.05) in terms of the agreement/text similarity of the examined texts. There 
are significant differences in the score of the metric TER between GT_NMT (neural GT) and the others, as well 
as between EC_NMT (eTranslation_NMT) and the others (Table 4), but there is no difference between GT_SMT 
(statistical GT) and EC_SMT (mt@ec_SMT). Neural MT produced by GT achieved the lowest error rate (0.674) 
compared to other MTs. On the other hand, statistical MT produced by mt@ec achieved the highest error rate 
(0.796), but is very close to statistical MT produced by GT (0.774).

We applied the same analysis to machine-translated texts from German into Slovak. Due to the violation of 
the assumption of sphericity of the covariance matrix, we used modified tests for repeated measurements (Green-
house–Geisser adjustment) to test the differences in MT quality among GT_SMT, GT_NMT, mt@ec_SMT, and 
eTranslation_NMT represented by the metrics of error rate (PER: W = 0.868, Chi-sqr. = 78.816, df = 5, p < 0.001; 
WER: W = 0.873, Chi-sqr. = 75.826, df = 5, p < 0.001; TER: W = 0.889, Chi-sqr. = 65.643, df = 5, p < 0.001). The high-
est rate of violation of the assumption was identified in the case of the metric WER (G-G Epsilon = 0.912), followed 
by PER (G-G Epsilon = 0.919), on the contrary, the lowest for the metric TER (G-G Epsilon = 0.923). Overall, the 
rate of violation of the assumption of sphericity of the covariance matrix was low for all applied metrics, we used 
adjusted significance tests (WER, PER, and TER: G-G Epsilon < 0.923, G-G Adj. p < 0.001) and subsequently, we 
compared them with unadjusted univariate tests for repeated measure (F > 211.214, p < 0.001).

Based on the results, we reject the global H0 at the 0.001 significance level in the case of all metrics, which 
claims that there is no statistically significant difference in the quality of MT when translating from German to 
Slovak, represented by the error rate metrics PER, WER, and TER, among GT_SMT, GT_NMT, mt@ec_SMT, 
and eTranslation_NMT. NMTs were of statistically significantly better quality than SMTs regardless of which 
MT tool was used (Tables 5, 6). NMT produced by GT tool (Tables 5, 6) achieved statistically significant the 
lowest error rate (PER = 0.495, WER = 0.609, TER = 0.607). On the other hand, SMT produced by mt@ec, a EC 
tool (Tables 5, 6) achieved statistically significant the highest error rate (PER = 0.720, WER = 0.821, TER = 0.820).

We conclude that the assumption regarding better NMT quality compared to SMT has been confirmed, 
regardless of the language pair. We showed statistically significant differences between SMT and NMT in favor 

Table 5.   Bonferroni (adjustment) post-hoc test for multiple comparisons of (a) the PER and (b) WER metrics 
between different MT systems (GT tools or EC tools) and approaches (statistical or neural) in the German–
Slovak language pair. ****Homogenous groups p > 0.05.

(a) English = 0 Mean 1 2 3 4 (b) English = 0 Mean 1 2 3 4

PER_GT_NMT 0.495 **** WER_GT_NMT 0.609 ****

PER_EC_NMT 0.548 **** WER_EC_NMT 0.664 ****

PER_GT_SMT 0.649 **** WER_GT_SMT 0.765 ****

PER_EC_SMT 0.720 **** WER_EC_SMT 0.821 ****

Table 6.   Bonferroni (adjustment) post-hoc test for multiple comparisons of TER metrics between different 
MT systems (GT tools or EC tools) and approaches (statistical or neural) in the German–Slovak language pair. 
****Homogenous groups p > 0.05.

English = 0 Mean 1 2 3 4

TER_GT_NMT 0.607 ****

TER_EC_NMT 0.662 ****

TER_GT_SMT 0.763 ****

TER_EC_SMT 0.820 ****
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of NMT based on all metrics of error rate (WER, PER, and TER), regardless of MT tool used (Google Translate 
tool or the European Commission’s MT tool).

These findings indicate that the error rate in the examined texts is probably related to recall (lexical accuracy). 
Considering the reference, the error rate of the examined MTs is more associated with lexical accuracy, i.e., 
vocabulary and word omission, than grammatical accuracy, i.e., forms and structure of words and word order. 
This motivated us to apply residual analysis to identify and specify in more detail MT errors that occurred in 
individual machine translations.

Figure 2.   Visualization of NMT-SMT residuals for WER metric and the European Commission’s MT tool.

Figure 3.   Visualization of NMT-SMT residuals for WER metric and Google translate.
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Identification of extreme differences based on the score of error rate metrics between SMT 
and NMT—English‑Slovak machine translations
We used residuals to identify texts with extreme values of error rate metrics (WER, PER, and TER) between SMT 
and NMT for each MT tool separately. We applied the rule ± 2sigma, i.e., values outside the interval are considered 
extremes. The mean of NMT—SMT differences for all metric values (WER/PER/TER) is negative (Figs. 2, 3, 4, 
5, 6, 7), which confirms our finding (previous subsection) that in terms of error rate, NMT achieved a statisti-
cally significantly lower error rate, i.e., better translation quality. The neural MT outputs were more similar to 
the references than the statistical MT outputs.

Figure 4.   Visualization of NMT-SMT residuals for PER metric and the European Commission’s MT tool.

Figure 5.   Visualization of NMT-SMT residuals for PER metric and Google translate.
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In the case of the European Commission’s MT tool (Fig. 2), we identified 8 texts (ID_142, ID_156, ID_180, 
ID_205, ID_258, ID_267, ID_279, and ID_280), that showed a statistically significantly better WER score of NMT 
against SMT (residuals ≈ − 0.5). Only 2 texts (ID_259 and ID_298) achieved a significantly better WER score 
of SMT against NMT (residuals ≈ 0.33), but both texts consist of short sentences (less than 7 words, including 
articles), which could have had an impact on the results.

In the case of Google translate (Fig. 3), we identified 5 texts (ID_142, ID_156, ID_180, ID_205, ID_258, 
ID_267, ID_279, and ID_280), that showed a statistically significantly better WER score of NMT against SMT 
(residuals ≈ -0.5) and 4 texts (ID_155, ID_156, ID_192, and ID_221) with a significantly better WER score of 

Figure 6.   Visualization of NMT-SMT residuals for TER metric and the European Commission’s MT tool.

Figure 7.   Visualization of NMT-SMT residuals for TER metric and Google translate.
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SMT against NMT (residuals ≈ 0.35). These texts were more similar to the reference than NMT (NMT was cor-
rect, but used synonyms, which could have had an impact on the results).

In the case of the European Commission’s MT tool (Fig. 4), we identified 5 texts (ID_156, ID_163, ID_180, 
ID_267, and ID_280), that showed a statistically significantly better PER score of NMT against SMT (residuals 
≈ -0.55). Only 4 texts (ID_183, ID_223, ID_224, and ID_298) achieved a significantly better PER score of SMT 
against NMT (residuals ≈ 0.3). Again, they were texts with short sentences, and NMT added extra words com-
pared to the reference, which could have had an impact on the results.

In the case of Google translate (Fig. 5), we identified 8 texts (ID_162, ID_163, ID_183, ID_232, ID_244, 
ID_267, ID_283, and ID_286), that showed a statistically significantly better PER score of NMT against SMT 
(residuals ≈ -0.45) and 4 texts (ID_156, ID_161, ID_221, and ID_247) with a significantly better PER score of 
SMT against NMT (residuals ≈ 0.25). These texts were more similar to the reference than NMT.

In the case of the European Commission’s MT tool (Fig. 6), we identified 8 texts (ID_142, ID_154, ID_156, 
ID_180, ID_258, ID_267, ID_297, and ID_280), that showed a statistically significantly better TER score of NMT 
against SMT (residuals ≈ − 0.6). Only 3 texts (ID_161, ID_259, and ID_298) achieved a significantly better TER 
score of SMT against NMT (residuals ≈ 0.33).

In the case of Google translate (Fig. 7), we identified 5 texts (ID_145, ID_165, ID_183, ID_244, and ID_283), 
that showed a statistically significantly better TER score of NMT against SMT (residuals ≈ − 0.5) and 3 texts 
(ID_155, ID_192, and ID_221) with a significantly better score of SMT against NMT (residuals ≈ 0.35). These 
texts were more similar to the reference than NMT.

Based on our results, we can infer that the issue in MT systems lies in lexical semantics rather than in word 
order in the case of neural machine translation.

Discussion
The applied automatic metrics are based on a comparison with a reference, which, in our case, was created inde-
pendently (pure human translation, not affected by MT output). This could cause a distortion of MT quality, but 
it did not affect the comparison of SMT and NMT because we used the same reference in both cases.

Based on corpus statistics (Table 1), we assumed that NMT outperforms SMT with respect to the lexico-
grammatical features of the examined texts (frequency of nouns, adjectives, and verbs).

Based on analysis results, we can conclude that NMT demonstrated higher quality than SMT in terms of error 
rate. All automatic metrics achieved lower scores for neural MT compared to statistical MT, i.e., NMT outper-
formed SMT. The most serious issues of SMT include a shift in part-of-speech, omission or addition of words, 
and inflection. The word order was not such a serious issue for neural MT, which we explain by the fact that it 
was a translation into Slovak, which has a loose word order, unlike English, which has a strict word order (SWO).

Regarding the accuracy of the strings (represented by metrics WER and TER), SMT produced approximately 
the same error rate, whether it was SMT produced by GT or produced by mt@ec, EC tool (Tables 2, 5b), which is 
noteworthy. Both MT tools performed at a very similar level. On the contrary, due to the similarity of the strings 
(represented by metric PER), NMT produced approximately the same error rate, whether it was NMT produced 
by GT or produced by mt@ec, EC tool (Tables 3, 5a). We explain this fact by the character of the examined texts. 
They were of the journalistic style (newspaper writing) with no specific vocabulary or complex syntax, so MT 
tools did not require training on a specific text-domain. SMT showed similar error rates whether it was trained 
on a general text-domain (GT) or a specialized text-domain, such as administrative texts (EC). In the case of 
the metric PER, which only focuses on word similarity (independent of word position) and does not take into 

Table 7.   Bonferroni (adjustment) post-hoc test for multiple comparisons of (a) the CharacTER, (b) COMET, 
(c) BLEU_1, (d) BLEU_2, (e) BLEU_3, and (f) BLEU_4 metrics between different MT systems (GT tools or EC 
tools) and approaches (statistical and neural). ****Homogenous groups p > 0.05.

(a) All groups Mean 1 2 3 4 (b) All groups Mean 1 2 3 4

CharacTER_GT_NMT 0.481 **** COMET_EC_SMT 0.662 ****

CharacTER_EC_NMT 0.544 **** COMET_GT_SMT 0.739 ****

CharacTER_GT_SMT 0.594 **** COMET_EC_NMT 0.857 ****

CharacTER_EC_SMT 0.688 **** COMET_GT_NMT 0.887 ****

(c) All groups Mean 1 2 3 4 (d) All groups Mean 1 2 3 4

BLEU_1_EC_SMT 0.303 **** BLEU_2_EC_SMT 0.115 ****

BLEU_1_GT_SMT 0.382 **** BLEU_2_GT_SMT 0.153 ****

BLEU_1_EC_NMT 0.463 **** BLEU_2_EC_NMT 0.220 ****

BLEU_1_GT_NMT 0.514 **** BLEU_2_GT_NMT 0.277 ****

(e) All groups Mean 1 2 3 4 (f) All groups Mean 1 2 3

BLEU_3_EC_SMT 0.044 **** BLEU_4_EC_SMT 0.017 ****

BLEU_3_GT_SMT 0.072 **** BLEU_4_GT_SMT 0.032 ****

BLEU_3_EC_NMT 0.119 **** BLEU_4_EC_NMT 0.062 ****

BLEU_3_GT_SMT 0.164 **** BLEU_4_GT_NMT 0.097 ****
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Table 8.   Non-parametric correlations for SMT: (a) PER × valid criterion (BLEU_1-4, CharacTER, COMET), 
(b) WER × valid criterion (BLEU_1-4, CharacTER, COMET), (c) TER × valid criterion (BLEU_1-4, 
CharacTER, COMET).

(a) PER_GT_SMT PER_EC_SMT

GT_SMT R t(N − 2) p value EC_SMT R t(N − 2) p value

BLEU_1 − 0.92 − 65.107 < 0.001 BLEU_1 − 0.93 − 66.824 < 0.001

BLEU_2 − 0.75 − 30.742 < 0.001 BLEU_2 − 0.74 − 29.891 < 0.001

BLUE_3 − 0.58 − 19.152 < 0.001 BLUE_3 − 0.55 − 17.712 < 0.001

BLEU_4 − 0.39 − 11.369 < 0.001 BLEU_4 − 0.35 − 10.164 < 0.001

CharacTER 0.49 15.083 < 0.001 CharacTER 0.48 14.793 < 0.001

COMET − 0.37 − 10.659 < 0.001 COMET − 0.34 − 9.720 < 0.001

(b) WER_GT_SMT WER_EC_SMT

GT_SMT R t(N − 2) p value EC_SMT R t(N − 2) p value

BLEU_1 − 0.73 − 28.521 < 0.001 BLEU_1 − 0.71 − 27.205 < 0.001

BLEU_2 − 0.67 − 24.155 < 0.001 BLEU_2 − 0.65 − 22.877 < 0.001

BLUE_3 − 0.54 − 17.097 < 0.001 BLUE_3 − 0.50 − 15.345 < 0.001

BLEU_4 − 0.36 − 10.441 < 0.001 BLEU_4 − 0.33 − 9.312 < 0.001

CharacTER 0.60 20.005 < 0.001 CharacTER 0.52 16.469 < 0.001

COMET − 0.35 − 10.124 < 0.001 COMET − 0.30 − 8.100 < 0.001

(c) TER_GT_SMT TER_EC_SMT

GT_SMT R t(N − 2) p value EC_SMT R t(N − 2) p value

BLEU_1 − 0.73 − 28.720 < 0.001 BLEU_1 − 0.71 − 27.214 < 0.001

BLEU_2 − 0.67 − 24.288 < 0.001 BLEU_2 − 0.65 − 22.886 < 0.001

BLUE_3 − 0.54 − 17.116 < 0.001 BLUE_3 − 0.50 − 15.355 < 0.001

BLEU_4 − 0.36 − 10.402 < 0.001 BLEU_4 − 0.33 − 9.354 < 0.001

CharacTER 0.59 19.801 < 0.001 CharacTER 0.52 16.480 < 0.001

COMET − 0.35 − 10.157 < 0.001 COMET − 0.30 − 8.095 < 0.001

Table 9.   Non-parametric correlations for NMT: (a) PER × valid criterion (BLEU_1-4, CharacTER, COMET), 
(b) WER × valid criterion (BLEU_1-4, CharacTER, COMET), (c) TER × valid criterion (BLEU_1-4, 
CharacTER, COMET).

(a) PER_GT_NMT PER_EC_NMT

GT_SMT R t(N − 2) p value EC_SMT R t(N − 2) p value

BLEU_1 − 0.96 − 91.080 < 0.001 BLEU_1 − 0.95 − 81.806 < 0.001

BLEU_2 − 0.85 − 43.190 < 0.001 BLEU_2 − 0.78 − 33.459 < 0.001

BLUE_3 − 0.72 − 27.440 < 0.001 BLUE_3 − 0.67 − 24.399 < 0.001

BLEU_4 − 0.57 − 18.339 < 0.001 BLEU_4 − 0.48 − 14.652 < 0.001

CharacTER 0.68 24.687 < 0.001 CharacTER 0.62 20.922 < 0.001

COMET − 0.51 − 15.980 < 0.001 COMET − 0.49 − 14.986 < 0.001

(b) WER_GT_NMT WER_EC_NMT

GT_SMT R t(N − 2) p value EC_SMT R t(N − 2) p value

BLEU_1 − 0.79 − 34.741 < 0.001 BLEU_1 − 0.76 − 30.891 < 0.001

BLEU_2 − 0.80 − 35.190 < 0.001 BLEU_2 − 0.70 − 26.229 < 0.001

BLUE_3 − 0.69 − 25.411 < 0.001 BLUE_3 − 0.62 − 20.887 < 0.001

BLEU_4 − 0.56 − 18.204 < 0.001 BLEU_4 − 0.47 − 14.101 < 0.001

CharacTER 0.79 34.311 < 0.001 CharacTER 0.75 30.335 < 0.001

COMET − 0.48 − 14.494 < 0.001 COMET − 0.44 − 12.941 < 0.001

(c) TER_GT_NMT TER_EC_NMT

GT_SMT R t(N − 2) p value EC_SMT R t(N − 2) p value

BLEU_1 − 0.79 − 34.716 < 0.001 BLEU_1 − 0.75 − 30.828 < 0.001

BLEU_2 − 0.79 − 34.597 < 0.001 BLEU_2 − 0.70 − 26.140 < 0.001

BLUE_3 − 0.68 − 24.863 < 0.001 BLUE_3 − 0.61 − 20.624 < 0.001

BLEU_4 − 0.55 − 17.835 < 0.001 BLEU_4 − 0.46 − 13.881 < 0.001

CharacTER 0.78 33.488 < 0.001 CharacTER 0.75 30.019 < 0.001

COMET − 0.47 − 14.446 < 0.001 COMET − 0.43 − 12.902 < 0.001
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account word order and extra words, NMT achieved approximately the same error rate, whether it was NMT 
produced by GT or produced by mt@ec (Tables 3, 5b).

To validate the obtained results, we employed automatic metrics such as BLEU, COMET, and CharacTER 
to ensure the reliability of error rate metrics for both language directions (BLEU: G-G Epsilon < 0.940, G-G 
Adj. p < 0.001; COMET: G-G Epsilon = 0.812, G-G Adj. p < 0.001, and characTER: G-G Epsilon = 0.932, G-G Adj. 
p < 0.001). The results (Table 7) nearly fully correspond with the results for the metrics PER, WER, and TER 
for English-Slovak machine translation (Tables 2, 3, 4) as well as German-Slovak machine translation (Tables 5, 
6). NMTs were of statistically significantly better quality than SMTs regardless of which MT tool and language 
direction were used (Table 7). NMT produced by GT (Table 7) achieved statistically significantly the lowest error 
rate (CharacTER = 0.481) and statistically significantly the highest accuracy (COMET = 0.887, BLEU_1 = 0.514, 
BLEU_2 = 0.227, BLEU_3 = 0.164, BLEU_4 = 0.097). On the other hand, SMT produced by mt@ec, EC tool 
(Table 7) achieved statistically significantly the highest error rate (CharacTER = 0.688) and statistically signifi-
cantly the lowest accuracy (COMET = 0.662, BLEU_1 = 0.303, BLEU_2 = 0.115, BLEU_3 = 0.044). According to 
the metric BLEU_4 (Table 7f), both SMT systems (mt@ec and GT) form one homogeneous group, i.e., they 
achieved the same lowest quality (p > 0.05).

To analyze the relationships between the automatic metrics of error rate (PER, WER, and TER) and the met-
rics we chose as a baseline—valid criteria (BLEU_1-4, CharacTER, and COMET), we employed non-parametric 
correlations. Due to deviations from the normality of the automatic metrics (PER, WER, TER, BLEU_1-4, Char-
acTER, and COMET), we applied non-parametric Spearman rank order correlations to both language directions 
(W < 0.993, p < 0.001), but separately for statistical MT (Table 8) and for neural MT (Table 9).

In the case of SMT (Table 8), similar results were achieved for both MT systems (GT and EC). The examined 
metrics of error rate (PER, WER, and TER) positively correlate with the CharacTER metric (Table 8), indicating 
a moderate (> 0.3) to high (> 0.5) degree of statistically significant direct proportional dependency (p < 0.001). 
On the contrary, in the case of the metrics of accuracy (BLEU_1-4 and COMET), a negative correlation was 
identified (Table 8), revealing a moderate (< − 0.3) degree of dependency between the automatic metrics (PER, 
WER, and TER) and the metric COMET/BLEU_4. A high (< − 0.5) to very high (< − 0.7) degree of statistically 
significant inverse-related dependency was observed between them and the metrics BLEU_1-3 (p < 0.001).

Similar results were achieved in the case of NMT (Table 9). The automatic error rate metrics (PER, WER, 
and TER) positively correlate with the characTER error rate metric (Table 9), showing a high (> 0.5) to very high 
(> 0.7) degree of statistically significant direct proportional dependency (p < 0.001). On the contrary, in the case 
of the metrics of accuracy (BLEU_1-4 and COMET), a negative correlation was identified (Table 9). Between 
the automatic metrics (PER, WER, and TER) and the metric COMET/ BLEU_4 a moderate (< − 0.3) to a high 
(< − 0.5) degree of dependency was observed, and between the metrics BLEU_1-3 and automatic metrics (PER, 
WER, and TER), a high (< − 0.5) to very high (< − 0.7) degree of statistically significant inverse-related depend-
ency was found (p < 0.001).

In the case of NMT (Table 9), higher dependencies were identified compared to SMT (Table 8), but in both 
cases, they reached at least a medium level of statistically significant dependency.

These results motivated us to conduct a manual error analysis for both SMT and NMT. We restricted the 
analysis to only 5 MT texts produced by GT tools (SMT_GT vs NMT_GT) due to its labour- and time-intensive 
nature. We divided the occurred errors into the following 4 categories that cover the text complexity of inflec-
tional languages55: (1) predication, (2) syntactic-semantic correlativeness, (3) compound/complex sentences, 
and (4) lexical semantics.

SMT produced 184 errors in the category of predication, 279 errors in syntactic-semantic correlativeness, 76 
errors in compound/complex sentences, and 370 errors in the category of lexical semantics. The results obtained 
for NMT were significantly different. In the sphere of predication 27 errors were identified, in syntactic-semantic 
correlativeness 106 errors, in compound/complex sentences 12 errors, and in the sphere of lexical semantics 442 
errors were identified.

Our results correspond with the findings of similar studies56,57 which showed that SMT is more accurate in 
meaning (lexical accuracy), but less fluent in grammar (grammatical accuracy), and vice versa, NMT is gram-
matically more fluent, but less accurate in meaning (lexical semantics).

Using residual analysis, we can reveal which errors persist and, conversely, which have been eliminated or 
have arisen.

In the case of the European Commission’s DGT tools, when we compared SMT and NMT based on the WER 
metric, which takes into account not only lexical accuracy, but also grammatical correctness and word order, we 
found that errors most often occurred within the lexical semantics, either in (1) part of speech transformation, 
e.g. a noun becomes an adjective after translation with a shift in meaning, or in (2) a shift of gender, most often 
from masculine to feminine, or in (3) omission of commas.

Example,

SS: The other is the opposite: adaptable, empathetic, flexible. (noun).
SMT: Druhou je opačná. prispôsobiteľné empatický pružný. (adjective)
NMT: Druhý je opak: Prispôsobivý, empatický, flexibilný. (noun)
HT: Druhý je presným opakom: prispôsobivý, empatický, flexibilný. (noun)

Another (4) frequent issue was word omission and word order, e.g.

SS: Among their number were Belgian students, French schoolchildren and British lawyers.
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SMT: Spomedzi nich boli belgické, francúzske a britské študentov, advokátov. (omission of word students or 
schoolchildren)
NMT: Medzi ich počet boli belgickí študenti, francúzski žiaci a britskí právnici.
HT: Nachádzajú sa medzi nimi belgickí študenti, francúzski školáci a britskí právnici.

We achieved similar results for Google Translate, but we also identified four texts in which SMT achieved a 
better WER score than NMT. However, after a deeper analysis we found that it was caused by using synonyms 
(different words with the same meaning) or by expanding the information with respect to the reference, e.g.

SS: That equates to 5am GMT back in the United Kingdom.
SMT: To sa rovná 5 hodín ráno GMT vzadu v Spojenom kráľovstve. (United Kingdom)
NMT: To predstavuje vo Veľkej Británii 5:00 GMT. (Great Britain)
HT: To je presne 5:00 ráno západoeurópskeho času v Spojenom kráľovstve (GMT).

Our findings are in line with the other studies58–63 that focused on comparing SMT and NMT quality across 
various text genres. Benkova et al.63 conducted similar research, using residual analysis and the automatic metric 
BLEU-n to compare quality between neural and statistical MT systems. They came to the conclusion that neural 
MT is more accurate or closer to reference than statistical MT in the translation of journalistic texts from Eng-
lish into Slovak. However, their focus was solely on the standard automatic metric of accuracy (BLEU), which 
does not always correlate with human evaluation in the case of machine translation into inflectional languages.

Our study provides new insights into the evaluation of MT quality from English and German into Slovak 
through automatic evaluation metrics of error rate and residuals. Residuals, combined with automatic metrics 
of error rate, represent, and/or indicate a new approach to quality evaluation and comparison between statistical 
and neural machine translation. To our knowledge, no study has applied residuals to identify extreme differences 
in the error rate of SMT and NMT. This approach is universal, independent of the languages, text-domains, or 
the MT tools used, which makes it original. Moreover, the issue related to reference translation is removed, and/
or eliminated, as it is only a parameter when comparing two MT outputs.

The study has certain limitations, which are mainly related to the size of the dataset. We plan to expand our 
corpus size with more texts of the newspaper writing style, as well as of other styles.

Conclusions
In our study, we demonstrated that through automatic evaluation metrics, neural machine translation achieved a 
lower error rate than statistical machine translation, regardless of the MT tool used. The manual error analysis of 
the selected smaller sub-corpus indicates that in the category of prediction (consisting of predicative categories, 
non-finite verb or other word class instead of finite verb functioning as a predicate, missing verb in predication, 
sentence with or without subject, sentence with or without agent, descriptive and reflexive passive verb forms, 
incorrectly identified subject in the sentence, incorrectly identified predicate in a sentence, incorrect form of a 
complex verb phrase, and others) and syntactic-semantic correlativeness (consisting of nominal morphosyntax, 
pronominal morphosyntax, numeral morphosyntax, verbal morphosyntax, word order, and other morphosyntac-
tic phenomena), SMT showed a significantly higher error rate than NMT. Conversely, in the category of lexical 
semantics (adequate transfer of the words’ meaning, polysemy, homonymy, semantic and stylistic compatibility, 
derivation, omission, literal translation, explication, and other), NMT showed a significantly higher error rate 
than SMT.

Remarkably, the research also revealed considerable diversity in translation quality. As mentioned in the 
methodology, the MT outputs were post-edited by professional translators. We assumed that human transla-
tions and post-edited MT outputs would be at least 80% similar, therefore, we included a calculation of the text 
similarity through the cosine similarity into our analysis. We found that in the case of SMT, PEMT_SMT and 
HT there is only about 50% similarity, and in the case of NMT, PEMT_NMT and HT, there is only about 54% 
similarity, as expected since these were two different translation techniques (post-editing of MT output and 
human translation). However, in the case of post-editing, a much higher agreement and/or text similarity was 
assumed, which was not confirmed. In the case of PEMT_SMT and PEMT_NMT, only about 61% text similarity 
was observed. Even the text similarity between two post-edited MT outputs was not high; it achieved only 75% 
in the case of post-editing of NMT produced by GT. However, the NMT error rate dropped from about 69% to 
about 58% when the post-edited SMT was used as a reference.

Relying solely on the reference when determining MT quality turns out to be insufficient, but in combination 
with residuals, it provides more reliable results, and/or a more objective view of MT quality and the comparison 
of SMT and NMT.

A significant contribution of residual analysis is the identification of specific segments, in our case short texts, 
in which neural MT achieved a significantly lower error rate, but mainly in the identification of segments in 
which, on the contrary, statistical MT achieved better results, regardless of MT systems and language directions, 
with a focus on machine translation into inflectional and low-resourced Slovak.

Data availability
The dataset analysed during the current study is available in the Mendely Data repository under https://​doi.​org/​
10.​17632/​yrft7​c64z6.1.

https://doi.org/10.17632/yrft7c64z6.1
https://doi.org/10.17632/yrft7c64z6.1
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