
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8692  | https://doi.org/10.1038/s41598-024-59499-1

www.nature.com/scientificreports

Radical electron‑induced 
cellulose‑semiconductors
Mikio Fukuhara 1*, Tomonori Yokotsuka 1, Tetsuo Samoto 1, Masahiko Kumadaki 2, 
Mitsuhiro Takeda 3 & Toshiyuki Hashida 1

Bio‑semiconductors are expected to be similar to organic semiconductors; however, they have not 
been utilized in application yet. In this study, we show the origin of electron appearance, N‑ and 
S‑type negative resistances, rectification, and switching effects of semiconductors with energy 
storage capacities of up to 418.5 mJ/m2 using granulated amorphous kenaf cellulose particles (AKCPs). 
The radical electrons in AKCP at 295 K appear in cellulose via the glycosidic bond  C1–O1

·–C4. Hall effect 
measurements indicate an n–type semiconductor with a carrier concentration of 9.89 ×  1015/cm3, which 
corresponds to a mobility of 10.66  cm2/Vs and an electric resistivity of 9.80 ×  102 Ωcm at 298 K. The 
conduction mechanism in the kenaf tissue was modelled from AC impedance curves. The light and 
flexible cellulose‑semiconductors may open up new avenues in soft electronics such as switching effect 
devices and bio‑sensors, primarily because they are composed of renewable natural compounds.

Almost all organic semiconductors currently used as part of semiconductor materials are π-conjugated oligomers 
and  polymers1–4. However, π-conjugated polymers are lacking in natural bio-compounds. Studies on naturally 
occurring bio-semiconductors are  scarce5. We reported an n–type bio-semiconductor based on an amorphous 
kenaf cellulose  nanofibre6 exhibiting rectification, n–type negative resistance, and DC/AC conversion. However, 
owing to their thixotropic properties that create aggregates containing entangled pores, producing dense films 
using long fibres with an aspect ratio of more than 100 is extremely  challenging7. In this study, a prototype film 
composed of amorphous kenaf cellulose particles (AKCPs), which were defibrillated and milled to a diameter 
of ~ 11 nm, was produced, and the electronic properties of AKCPs were evaluated. Subsequently, electron spin 
resonance (ESR)  measurements8,9, the only means of observing radicals in organic materials, were performed at 
295 K to investigate the origin of electrons in the n–type semiconductors. Furthermore, electron mobility was 
quantified via Hall measurements. An analysis of the AC impedance elucidated the tissue-dependent conduction 
mechanism of AKCPs. Recently, compound semiconductor devices for the  skin10, stretchable  electronics11 and 
function of the  retina12 with properties similar to those of bio-semiconductors, have been reported.

Results and discussion
Semiconducting characteristics with electric storage
The DC measurement method was used to determine the voltage-controlled I–V characteristics of AKCPs for 
a sample with a thickness of 14 µm at 298 K within the current range of 0–20 mA and voltage range of –100 
to 40 V (Fig. 1a). The I–V curve exhibits a clear forward rectification effect. Figure 1b illustrates the I–V char-
acteristics for a sample thickness of 25 µm. A clear N-type negative resistance appears between approximately 
–87 V and –71 V, as well as a small N-type negative resistance (inset of Fig. 1a). In excess of 0 V, an increase 
is observed in the current value in the forward direction. Meanwhile, the I–V characteristics of a sample with 
a thickness of 19 µm in a current-controlled measurement at 0.105 A are shown in Fig. 1c, where the current 
value increases sharply from approximately 88 V during an increase from 0 to 100 V. The enlarged curve shown 
in the inset of Fig. 1c shows an S-type negative resistance, as in the Ni–Nb–Zr–H amorphous  alloy13. Based on 
the semiconducting theory, the negative resistance characteristics are classified into static negative resistance 
characteristics, such as those of tunnel diodes and  thyristors14, and dynamic negative resistance characteristics 
considering the carrier transfer time and material band structure specificity, such as those of impact avalanche 
transit diodes and Gunn  diodes15. This study considers the latter (see Supplementary Information (SI). S9). The 
semiconductor properties of AKCPs obtained from the aforementioned experiments are shown in the SI, Fig. S4, 
which shows a Schottky junction n–type  semiconductor16. The observed S-type negative resistance (Fig. 1c), in 
addition to the N-type negative properties (Fig. 1b), may be attributed to the kenaf becoming granular instead 
of fibrous. Figure 1d presents the R–V characterisation on a logarithmic scale from –20 to 40 V for AKCPs with 
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a thickness of 12 μm. The R–V curve exhibits a three-field change in magnitude between 0 and 10 V, indicating a 
switching effect. In contrast, a specimen with a thickness of 101 µm exhibits a storage effect (Fig. 1e) that is not 
observed in the case of amorphous kenaf cellulose  nanofibres17. The storage capacity increases with voltage, and 
a storage capacity of 418.5 mJ/m2 is obtained at 450 V. The discharge curve at 450 V is shown in the inset. This 
value is less than half the values for amorphous kenaf cellulose  nanofibres18 and amorphous alumina (AAO)19 
(1416.7 and 1710.3 mJ/m2, respectively). These phenomena may be attributed to an increase in the capacitance 
of the AKCPs with increasing thickness. The analysis results of trace impurities in the AKCPs are presented in 
Table S1. However, the effect of trace impurities on semiconductor properties is currently unclear. The effects of 
bound water will be addressed in a subsequent study.

Origin of radical electrons derived from cellulose structure
The results of the ESR measurements are displayed in Fig. 2a. The curve obtained at 295 K is the isotropic peak 
of a singlet. As the unpaired electrons shown in the ESR spectrum are extremely sensitive to the molecular 
arrangement around the electrons, the g-value of the ESR signal presents a decisive guideline for identifying 
the organic radical  species20. Based on the molecular structure of cellulose  (C6H10O5)n, the g-values of 2.004 
and 2.009 correspond to the alkoxy radical  CO·21. In this study, we identify the position of the radical group for 
the cellulose molecule relative to the radical electron, which is the origin of electron conductivity. The alkoxy 
groups generated at the side chain Cs  (C2,  C3,  C6) are more reactive than the alkoxy group generated at  C1 on the 
main chain and are rapidly deactivated by secondary  reactions22; therefore, the  C2–O2,  C3–O3, and  C6–O6 groups 
in Fig. 2c are excluded as radical electron candidates. The radical electrons in the AKCPs appear in cellulose 
via the glycosidic bond between the two glucose units and  O1. Attenuated total reflection-Fourier transform 
infrared (ATR-FTIR) measurements were performed to confirm the existence of glycosidic bonds. The results 
are shown in Fig. 2b. Peaks of COC stretching motion are observed at 1184 and 884  cm−1 (Ref.23). Considering 
the electronegativity values of 2.20, 2.55, and 3.44 for H, C, and O, respectively, the electron-induced effects are 
depicted in Fig. 2d when applied to cellulose molecules (see S7 in SI for details). The locations of the appearance 
of the radical electrons obtained from ESR are shown in Fig. 2c, as  C1–O1

·–C4. The electrons induced in conven-
tional organic semiconductors are π-electrons from the C=C double  bond24. The Hall coefficient measurements 
showed an electron mobility of 10.66  cm2/Vs, a carrier density of –9.89 ×  1015 (1/cm3), and an electric resistivity of 
9.80 ×  102 Ωcm at 298 K. The mobility is two orders higher than 0.5–1.0  cm2/Vs25 for amorphous Si and 0.08–2.5 
 cm2/Vs26,27 for π-conjugated organic semiconductors. However, Farka et al.28 reported a relative high value of 
40.8  cm2/Vs in p-doped polyethylene-(3,4-dioxythiophene) (PEDOT: sulfate).

Figure 1.  Voltage-controlled I–V characteristics of AKCPs with a thickness of 14 (a), 25 (b), and 12 µm (d) at a 
sweep rate of 51.5 V/s. (c) I–V characteristics in a current-controlled measurement at 0.105 A for AKCPs with a 
thickness of 19 μm. Inset of (c) shows an enlarged S-type figure. (e) Discharging behaviour of the AKCP device 
with a thickness of 101 µm for a constant current of 1 μA after 2 mA–10 V charging for 5 s. Inset of (e) shows 
discharging behaviour.
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Complex evaluation of I–V characteristics
To non-destructively analyse the electronic contribution of the sample, its AC impedance was measured from 
1 mHz to 1 MHz. The Nyquist diagram of the impedance data, corresponding to 14 μm in Fig. 1a, is illustrated 
in Fig. 3a and b. The impedance of the AKCPs with respect to frequency exhibits a linear slope with a change of 
π/4 rad, as shown in Fig. 3b, and a combined pattern of two semicircles. The π/4 rad region (Warburg region) 
can be attributed to the porous  sample6,29,30. The two semicircles represent a tissue composed of two fibres, such 
as the bast and core in  kenaf31. The peak frequency fmax of the semicircle is 1.48 mHz; therefore, a relaxation time 
of 107.6 s can be calculated using the relationship RCtotal = 1/(2πfmax). In the low-frequency region of the Bode 
diagram shown in Fig. 3c, the real impedance increases sharply to 8 MΩ, whereas the imaginary impedance 
peaks at 1.48 mHz and decreases at relatively low frequencies. The 1.48-mHz peak corresponds to dielectric 
dispersion owing to interfacial polarisation in the low-frequency  range32. In the phase angle diagram of Fig. 3d, 
the capacitance behaviour for frequencies lower than 0.073 Hz (near zero phase angle) is clearly similar to that 
of a parallel RC circuit. The series capacitance Cs and parallel capacitance Cp increase as the frequency decreases; 
however, the increase in Cs is relatively rapid. Cs plays a vital role in determining the DC I-V characteristics of the 
sample. In the relationship between the time constant RC and frequency, as shown in Fig. 3e, in both logarithmic 
displays, the time constants RCs and RCp increase almost linearly with decreasing frequency; RCs and RCp at 
1 mHz are 448 and 50 s, respectively. A larger duration (from 0.1 s to a few hours) is required for practical use.

Mechanism of electron conduction
Based on the Nyquist diagram (Fig. 3a) and Debye relaxation peak in the Bode diagram (Fig. 3c), the equivalent 
electrical circuit of the AKCP can be regarded as a series coupling of three equivalent parallel circuits, as shown in 
Fig. 4a. Because the sample used in this study consists of 18 nanofibrils and their boundaries, the total resistance 
of the sample including the electrodes (Fig. 4b) is the resistance Rf of the nanofibrils in the AKCP, the boundary 
resistance Rfb between the AKCPs (Fig. 4c), and the electrode interface resistance Rer (Fig. 4d). The capacitance 
Cf of the nanofibrils in the AKCPs, the boundary capacitance Cfb between the AKCPs, and the electrode inter-
face resistance Cer shown in Fig. 4a also play an important role in determining the semiconductor properties in 
this study. However, because the bonds between nanofibrils and the structure of AKCPs are unknown, precise 
structural analysis using soft X-rays is required.

Conclusion
If cellulose, the most abundant natural renewable compound, is found to exhibit semiconductor properties, it 
can be used to develop many applications. In the present study, we reported the rectification effect of n-type 
semiconductors with N- and S-type negative resistivity properties derived from the glycosidic bond,  C1–O·–C4, 
between two glucose units and  O1 of cellulose molecules in AKCPs. The electron mobility was found to be 10.66 

Figure 2.  (a) Singlet symmetrical ESR spectra at  298 K. (b) ATR-FTIR spectroscopic analysis at 298 K for the 
AKCPs. (c) Cellulose comprising  (C6H10O5)n  with the green, pink, and light-blue dots representing carbon, 
oxygen, and hydrogen atoms, respectively. (d) Electron-induced effects for cellulose structure.
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Figure 3.  (a,b) Nyquist plots as a function of frequency for the AKCP device. (c) Frequency dependence of real 
and imaginary impedances, (d) phase angle, and series and parallel capacitances. (e) Frequency dependence of 
RCs and RCp.

Figure 4.  (a) Equivalent circuit corresponding to the Nyquist diagram shown in Fig. 3a,b. (b) Image of a 
semiconductor composed of AKCPs and their boundaries measured via the direct current method. (c) Image 
figure of cellulose nanoparticles. (d) Equivalent circuit for semiconductor conduction comprising fibril 
resistance Rf, boundary resistance Rb and electrode interface resistance Rer.
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 cm2/Vs, which is two orders of magnitude higher than that of conventional polymer semiconductors. The N- 
and S-type negative resistance effects may open up new fields in place of conventional p–n junction devices. 
We are working on conifers and hardwoods with the aim of expanding into areas different from conventionally 
engineered semiconductors.

Methods
The AKCP specimen was fabricated on an Si substrate via spin coating, which was performed at a speed of 
400 rpm for 5 s using a 2% (w/v) AKCP/water dispersion. The AKCP films were dried in a ventilated oven at 
363 K. The specimens (12 mm wide, 14–101 μm thick, and 15 mm long) were mechanically sandwiched between 
an Al electrode and carbon electrode on the AKCPs (SI, Fig. S4). ESR measurements were performed at 295 K 
using a Q–band ESR spectrometer. Hall measurements were performed at 298 K using the conventional Van 
der Pauw technique. The current–voltage (I–V) and resistivity–voltage (R–V) characteristics were measured 
within 30 min after sample preparation and under DC voltages ranging from –210 to 210 V in air at a sweep rate 
of 51.4 V/s, using a Precision Source/Measure Unit (B2911A, Agilent). The AC impedance and frequency were 
measured using a potentiostat/galvanostat (SP-150, BioLogic Science). I–V measurements were performed using 
a Precision Source/Measure Unit (B2911A, Agilent).

Data availability
The authors declare that the data supporting the findings of this study are available within the paper, its sup-
plementary information files, and from the National Tibetan Plateau Data Centre (https:// doi. org/https:// doi. 
org/ 10. 11888/ Cryos. tpdc. 272747).
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