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Research on depth measurement 
calibration of light field camera 
based on Gaussian fitting
Miao Yang 

Optical field imaging technology does not require a complicated optical path layout and thus reduces 
hardware costs. Given that only one single exposure of a single camera can obtain three-dimensional 
information, this paper proposes an improved calibration method for depth measurement based on 
the theoretical model of optical field imaging. Specifically, the calibration time can be reduced since 
the Gaussian fitting can reduce the number of refocused images used to obtain the optimal refocusing 
coefficient calibration. Moreover, the proposed method achieves the same effect as the multiple 
refocusing calibration strategy but requires less image processing time during calibration. At the same 
time, this method’s depth resolution is analyzed in detail.
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In recent years, light field imaging technology has attracted significant interest from various fields due to its 
advantage in obtaining three-dimensional spatial information of objects in a single  shot1. Light field imaging uses 
a light field camera to capture the four-dimensional light field information of the measurement space, namely the 
spatial and angle  information2. The difference from the traditional two-dimensional camera is that a microlens 
array is added between the main lens and the  sensor3. Given that during the measurement process, the accuracy 
of the camera depth calibration directly affects the accuracy of the entire measurement system, this paper further 
studies the depth calibration of the light field camera. The existing methods for calibrating the depth values of 
light fields can be divided into traditional and deep learning-based. Traditional methods are generally based 
on digital refocusing parameters or the optimal slope of linear structures in epipolar-plane images (EPI). The 
depth estimation algorithm based on digital refocusing parameters is a method of calculating a series of images 
focused at different positions (i.e., refocused images), and then obtaining the position information of the region 
based on a series of refocused image information at different positions. Lin et al.4 designed a matching term for 
depth estimation based on the symmetry of the focusing sequence, based on the principle that the offset on both 
sides of the true depth direction has consistent color. Tao et al.5 proposed combining consistency, focusing, and 
defocusing clues in a four-dimensional polar plane image to optimize the depth map by utilizing complementary 
information provided by each other, in response to the blurring of the corresponding area caused by the occlusion 
of the focusing sequence and the corresponding changes in the focusing degree. Park et al.6 proposed an adap-
tive constrained defocus matching method, which divides the original focusing sequence into different image 
blocks and selects the unobstructed parts for defocus degree calculation to eliminate the influence of occlusion. 
Strecke et al.7 proposed to calculate the symmetry of refocused sequences by using views from four directions: 
up, down, left, and right, in order to address occlusion in depth extraction based on focused sequences.Suzuki 
et al.8 solved the problem of the limited range of optical field disparity. The principle of calculating depth based 
on the optimal slope of linear structures in Epipolar Plane Image (EPI) is that when fixing one dimension of 
the image plane coordinates and camera plane coordinates in a light field camera, the corresponding pixels are 
stacked in the perspective direction. Pixels located in different perspectives form a straight line, and the slope 
of the line reflects the depth information at the corresponding point. Depth can be estimated directly by cal-
culating the slope of the line. Wanner et al.9 first proposed using structural tensors to estimate the slope of the 
oblique line in polar plane images, and then integrated local depth using fast denoising and global optimization 
methods. Li et al.10 proposed a new approach to reconstruct continuous depth maps using light fields, obtaining 
dense and relatively reliable local estimates from the structural information of densely sampled light field views, 
and then proposing an optimization method based on conjugate gradient method for iteratively solving sparse 
linear systems. Chen et al.11 focused on regularizing the initial label confidence map and edge strength weights, 
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detecting partially occluded boundary regions through superpixel based regularization, and then applying a 
series of shrinkage and reinforcement operations on the label confidence map and edge strength weights of 
these regions to improve the accuracy of depth estimation in the presence of occlusion. Zhang et al.12 proposed a 
Spinning Parallelogram Operator (SPO) based on the assumption of maximizing the two regions of the epipolar 
line. By comparing the weighted histogram distance differences between the two regions of the epipolar line, 
the direction of the straight line is fitted. This method has good robustness for some weak occlusion situations. 
Sheng et al.13 further proposed a strategy for extracting polar plane images in all available directions based on 
SPO, and designed a depth information estimation framework that combines local depth and edge direction. 
Williem et al.14 used corner blocks and refocused images to measure the constrained angular entropy cost and the 
constrained adaptive defocus cost, and then combined these two new data costs to reduce the impact of occlu-
sion. The depth estimation algorithm based on polar plane images is prone to interference from occlusion, noise, 
and other environments, and it requires a large amount of computation, usually requiring subsequent complex 
optimization to obtain a smoother depth map. Compared to traditional methods, deep learning-based methods 
have strong feature extraction and representation processing capabilities and use multi-layer neural networks 
to extract deep clues from light field data and generate depth values. These networks utilize the linear structural 
features of EPI or the correlation features of sub-aperture images to obtain the depth of the corresponding scene. 
For instance, Guo et al.15 designed an occlusion perception network to estimate the depth of light field images 
and optimize occlusion edges. Shi et al.16 used an optical flow network to obtain the initial depth map of the 
light field and optimized the depth using the hourglass network structure. Yoon et al.17 introduced the light field 
Convolutional neural network (LFCNN) to improve the angle and spatial resolution of the light field. However, 
most of the existing neural network-based light field depth estimation methods use branch weight sharing and 
end-to-end training for the entire network, thus failing to fully utilize the consistency and complementarity 
of depth information in different directions of the light field data. At the same time, the robustness of neural 
network logarithmic data is insufficient.

For the focus stack based digital refocusing method of light field, the more times a light field image is refo-
cused, the more accurate the result will be obtained, but the more time it takes to refocus, this article mainly 
develops a depth calibration method based on the principle of light field imaging and theoretically analyzes 
the depth resolution. A method for identifying the optimal refocusing coefficient based on the Gaussian fitting 
is also proposed to reduce calibration and measurement time. Specifically, we built a microlight field imaging 
system, conducted calibration experiments, and analyzed the impact of different numbers of calibration points 
on identifying the optimal refocusing coefficient and calibration curve fitting. This is important, as using dot 
calibration plates and luminescent micropores for depth calibration provides a depth recognition method for 
particle images that saves calibration time and improves calibration efficiency. At the same time, from the per-
spective of fitting principles, reducing the number of refocuses will not decrease the robustness to noises. The 
method is an optimization and improvement of the refocusing method based on the light field focus stack. This 
method is equally effective in scenarios with occlusion.

Measurement principles
Principles and sampling of light field imaging
Figure 1 illustrates the light transmission of two kinds of focused light field cameras: Keplerian and Galilean, 
where a and l are the distance from the microlens plane to the virtual imaging plane of the main lens and the 
sensor plane, respectively. fL is the focal length of the main lens, and BL(= a+ bL) is the distance from the main 
plane of the main lens to the microlens. aL(= a0 + d) is the distance between the distance between the position 
of interest in the object to the plane of the main lens, where a0 is the distance from the front end of the main lens 
(lens group) to the main plane of the main lens, and d is the object’s depth mentioned in this article.

The imaging detector of the unfocussed light field  camera18 is located at one time the focal length fm of the 
microlens, and the main lens and imaging sensor are conjugated with respect to the microlens. The virtual image 
plane of the main lens and the imaging sensor plane in Fig. 1 are conjugated concerning the microlens. When the 
distance l from the microlens to the imaging detector is 1 ~ 1.5 times the microlens focal length, it is a Keplerian 
light field camera. Accordingly, it is a Galilean light field camera when the distance l from the microlens to the 
imaging detector is 0.5 ~ 1 times the focal  length19. Assuming that along the optical axis of the main lens, the 
direction from the object point to the imaging detector is the positive direction. In the Kepler-type light field 
camera, the distance a from the virtual image plane to the microlens is positive, and the image on the detector is 
inverted. In the Galileo light field camera, the distance a from the virtual image plane to the microlens is nega-
tive, and the image on the detector is  positive20. As depicted in Fig. 1, in the focused light field camera, the object 
point o is imaged on the virtual image plane via the main lens to the virtual image point oL . The microlenses 
image the virtual image plane on the imaging sensor plane. The imaging detector of traditional two-dimensional 
cameras is located at the virtual image plane, where the virtual image point oL occupies  NT pixels (nine pixels in 
the figure), all with spatial information of the object points. The virtual image point oL via the  NM microlenses 
(presented in Fig. 1) are imaged on the imaging detector, making its spatial resolution NT

NM
 times that of tradi-

tional 2D cameras. This increases the angle information by  NM, thus sacrificing spatial information in exchange 
for angle information. In a light field camera, each microlens images the main lens to form a macro pixel, and 
several pixels at the same position relative to the center of the microlens are spliced to form a single view image 
according to the position sequence of the microlens in the  sensor21. As depicted in Fig. 1, the pixels of each color 
are spliced to form a single view image, and the number of single view sampling pixels in each macro pixel of the 
focused light field camera exceeds 1. Figure 1 aims to enhance the reader’s understanding; thus, only one pixel 
is drawn from a single perspective under each microscope.
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Refocus of light field
The light field can be parameterized by light rays and two parallel planes intersecting in  space22. Let L

(

u, v, x, y
)

 
represent the Radiant intensity of the beam passing through the point (u, v) on the plane where the microlens 
is located and the point (x, y) on the plane where the detector is located. Then the total energy I

(

x, y
)

 from the 
beam L

(

u, v, x, y
)

 received by the point (x, y) is:

According  to23, refocusing involves extracting a four-dimensional light field from the original two-dimen-
sional light field image and reprojecting it onto a new imaging surface to obtain two-dimensional images at dif-
ferent plane positions. The refocusing principle diagram of a simplified two-dimensional light field is presented 
in Fig. 2.

A virtual image point oL is imaged as om on the sensor through a microlens. or is om , which is the point after 
refocusing transformation. u, x, and x′ are the coordinates of the intersection point between the beam L and 
the microlens plane U, the imaging detector plane X, and the refocusing plane X′ , respectively. l′ is the distance 
between the microlens plane and the refocusing plane X′ and l′ = αl , where α is the refocusing coefficient. From 
the similarity principle and coordinate relationship, it can be obtained that:
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Figure 1.  Schematic diagram of light transmission sampling for focusing light field camera.
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Figure 2.  Schematic diagram of light field refocusing.
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Similarly, in the other two dimensions of the four-dimensional light field, the relationship between the coordi-
nates of the intersection point y′ of the beam and the refocusing plane Y ′ and the coordinates y of the intersection 
point of the beam and the detector plane are:

Combining Eqs. (2), (3), and (1) provides the refocusing formula:

Depth measurement and depth resolution based on refocusing
Principle of depth measurement
According to the Gaussian imaging formula, it can be concluded that:

Parameter αopt is the optimal refocusing coefficient corresponding to the refocusing plane at the clearest 
position of the object point imaging. The relationship between depth d and the optimal refocusing coefficient is 
obtained by combining Fig. 1 and 2 with the Gaussian optics formula:

Formula (7) is organized as follows:

Among them:

where the coefficients c0 , c1 , and c2 depend only on the fixed parameters of the imaging system. Next, a detailed 
theoretical analysis will be conducted on the depth resolution of this method, and further research will be con-
ducted on the optimal refocusing coefficient for each depth position.

Depth resolution
In order to analyze the depth resolution, based on formula (8), taking the derivative of d over αopt yields:

By organizing formula (8) and bringing it into formula (12), it can be concluded that:

We set the depth resolution of a certain depth position d to �d . The increment of the optimal refocusing 
coefficient at the corresponding depth position is �αopt . Thus:
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From the previous analysis, c0 , c1 , and c2 are the coefficients comprising the fixed parameters of the imaging 
system. So, formula (14) infers that the depth resolution �d and depth position d are related to the increment of 
the optimal refocusing coefficient, which can be resolved at this depth position �αopt . Note that �αopt is related 
to adjacent refocused images during image processing. Hence, in the same batch of image processing, �αopt can 
be considered a fixed value, and thus, the depth resolution varies with the depth position. The minimum depth 
resolution is particularly important for depth resolution. From formula (14), it is known that �αopt

c2+c1c0
> 0 . There-

fore, formula (14) is a parabolic curve with an upward opening, and the depth is dms when the depth resolution 
reaches the minimum value. Then:

By incorporating formulas (10) and (11) into formula (15), it can be concluded that:

Experiment and processing
Qualitative verification of the rendering effect of refocused light field images
To qualitatively verify the relationship between the refocusing coefficient α and depth d and demonstrate the 
effect of refocusing light field rendering, we experimented using the qualitative verification experimental device 
for the refocusing effect shown in Fig. 3. This setup uses a LED backlight, the depth of field target is photographed 
with a Raytrix R12 Micro light field camera, and the VSZ-0745CO lens is configured. The aperture and magni-
fication of this lens can be adjusted. For the experimental conditions, the camera’s exposure time is 20 ms, the 
magnification is 2.74, and the F-number is 26, which is equal to the F-number of the Raytrix R12 Micro light 
field camera.

Figure 4a and b illustrate the refocusing results obtained from the refocusing formula for α = 1.39231 and 
α = 3.27949.

The refocused images in Fig. 4a and b were divided into 38 sub-images along the vertical direction. The 
sharpness of the pixels was characterized based on the point sharpness function Edge Acutance Value (EAV) 
 gradient24, and the sum of the sharpness of each sub-image was calculated. The obtained sharpness curve of 
the target refocused image along the vertical direction is presented in Fig. 5a and b, with the abscissa being the 
number of sub-images.

When the imaging is the clearest, then α = αopt . In the experiment, the upper edge of the depth of the field 
target is relatively far from the lens. That is, d is larger, and the lower edge is the reverse. When α = 1.39231 , the 
clear position of the refocused image is near the upper edge, which is marked by the red line in Fig. 4a. When 
α = 3.27949 , the clear position of the refocused image is near the lower edge, which is marked by the red line 
in Fig. 4b and is consistent with Eq. (8).

Figure 6b shows the stripe lines (i.e., red vertical lines) at the edge of the depth plate in Fig. 6a, with a width of 
5 and 7 pixels, respectively, divided into 40 parts vertically. The clarity of each image region is calculated using the 
EAV gradient to represent the sharpness of each pixel. Since the side of the depth of field plate is a right-angled 
triangle, the lower edge surface is closer to the lens, i.e., d is smaller, and the upper edge surface is further away 

(14)�d =
(c1d + c2)

2

c2 + c1c0
�αopt

(15)dms = −
c2

c1

(16)dms =
fL
(

fm − BL
)

fm + fL − BL
− a0

Figure 3.  Photo of the experimental setup for qualitative verification of the refocusing effect.
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from the lens, i.e., d is larger. Referring to the inverse relationship between the optimal refocusing coefficient αopt 
and d in the formula in Section 2.3, the experimental results are as follows: The sum of the sharpness for each 
segment is plotted on the graph, which reveals that the clarity gradually decreases as we move from the upper 
edge toward the center region of the image. This finding is consistent with the theoretical expectations. From 
the center region to the lower edge of the depth of the field plate, the sharpness slowly increases, which can be 
attributed to the image extending beyond the measurement range of the system.

Deepth calibration experiment
Figure 7 depicts the experimental system setup for depth calibration using a point light source. The experimental 
system comprises a Raytrix R12 light field camera, a VSZ-0745CO main lens, a one-dimensional displacement 

(a) Refocus coefficient α = 1.39231        (b) Refocus coefficient α = 3.27949

Figure 4.  Refocus image of depth plate focusing on different depth planes.

(a) Refocus coefficient α = 1.39231           (b) Refocus coefficient α = 3.27949

Figure 5.  Sharpness map of different regions of the refocused image along the vertical direction.

(a) Depth of field plate                           (b) Sharpness

Figure 6.  Sharpness map of different areas along the vertical direction in the stripe area of the depth plate 
refocused image.
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platform, and an electric guide rail. The imaging object is an LED point light source with an aperture diaphragm 
diameter of 5 microns.

Using an electric displacement platform, we gradually move the point light source from a distance of 99.0 mm 
from the front end face of the lens to 104.5 mm from the front end face in steps of 0.1 mm. Then, we extract the 
four-dimensional light field information in the five original light field images captured at each position and then 
take the average to obtain the average light field image at that position for subsequent processing to reduce noise 
impact. This process provides 56 groups of images. Figure 8 illustrates a partially enlarged image of the original 
light field of a point light source at different depths.

The image standard deviation δ is used to represent image clarity, and 500 refocusing images are formed at 
equal intervals within α ∈ (0.1, 5) . Comparing the clarity among the 500 refocusing images, the value of α that 
provides the image with the highest clarity is αopt , corresponding to depth d. In response to the time-consuming 
problem of creating many refocused images during depth calibration, this paper conducts fewer refocusing 
operations on the light field images at each depth position. Each refocused image corresponds to a refocusing 
coefficient α , and then the clarity of each refocused image is calculated. A Gaussian function, which describes 
the imaging property and quality of the optical imaging system, is used to calculate the refocusing coefficient α 
that fits with the sharpness of the refocused  image25,26. The value of α that corresponds to the sharpness peak of 
the Gaussian function obtained after fitting is the αopt , which corresponds to depth d.

where σ is the standard deviation, and µ is the mathematical expectation.

Analysis of calibration results
Results of calibrating the optimal refocusing coefficient with fewer points
Figure 9 shows the α–δ curve after Gaussian fitting with 5, 8, 10, 15, and 500 refocusing images when 
d = 103.6 mm. It can be seen from Fig. 9 that the peak value of δ at this depth position is around 3.2, and the 
corresponding optimal refocusing coefficients αopt are all around 1.5. When five refocusing images are used, the 
peak value of δ differs more compared to using more or fewer images, but it is still around 3.2 and αopt is also 
around 1.5. The optimal refocusing coefficient without Gaussian fitting is also around 1.5, proving our method’s 
feasibility.

Figure 10 illustrates the results of calibrating each depth position with a 5-micron point light source. The 
graph represents the relationship between each depth value d, and its corresponding optimized alpha αopt . The 
numbers 5, 8, 10, 15, and 500 denote the number of refocusing performed at each depth position. The resulting 
curve is obtained by Gaussian fitting α and δ , where the α value that corresponds to the maximum value of δ is 
αopt . Figure 9 highlights that when performing five refocusing at each depth position and using Gaussian fitting 

(17)α(δ) =
1

√
2πσ

exp

(

−
(δ − µ)2

2σ 2

)

Figure 7.  Schematic diagram of the point light source depth calibration experimental device.

       
(a) d =102.0 mm             (b) d=103.0 mm           

Figure 8.  Partial enlarged image of the original light field of a point light source (0.344 mm × 0.344 mm).
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to determine αopt , a deviation occurs around the depth range of 99–100 mm. The results are better aligned using 
8, 10, 15, and 500 refocusing.

Therefore, when using the Gaussian fitting method to determine αopt it is important to consider the influ-
ence of the number of refocusing images on the depth calibration range. This study suggests selecting around 10 
refocusing images per depth position to determine αopt , which reduces the time required for depth calibration 
significantly. Indeed, only 1/50 of the time is required when using 500 refocusing iterations.

(a) Five refocused images           (b) Eight refocused images

(c) 10 refocused images       (d) 15 refocused images

 (e) 500 refocused images

Figure 9.  d = 103.6 mm α–δ chart.
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Analysis of depth results and depth resolution for less point calibration
Figure 11 illustrates the depth calibration results obtained by selecting the optimal refocusing coefficient using 
10 refocusing images. The rectangular and pentagonal markers represent the 5 and 9 data points used during 
calibration. The solid line, dashed line, and dotted line correspond to the results obtained from calibration using 
5, 9, and 56 points, respectively. Table 1 reports the values of c0 , c1 , and c2 associated with the indicated points.

In Eq. (14), the values of the denominator c2 + c1c0 are − 1.18955, − 1.17691, and − 1.25267, respectively. 
Additionally, it is worth noting that all values of c1 are greater than 0, while all values of c2 are less than 0. This 
indicates that the depth resolution of the system used in this study decreases as depth increases.

Conclusion
This paper describes the image rendering method for refocusing by combining ray tracing and integral imag-
ing principles. We apply this method to capture and process images of a depth-of-field chart, with the results 
demonstrating that the refocused images agree well with the theoretical analysis. Furthermore, the experimental 
methodology for depth calibration based on the light field imaging theory model is improved. We showcase the 
α–δ curve obtained by Gaussian fitting and quantitatively select the optimal refocusing coefficient using different 
numbers of refocusing images at specific depths and the corresponding d ~ αopt curve within the measurement 

Figure 10.  5 micron point light source d~αopt diagram.

Figure 11.  Depth calibration curve.

Table 1.  Depth calibration results.

Coefficient 5 points 9 points 56 points

c0 105.4044 105.3868 105.5332

c1 0.0476 0.0509 0.0447

c2 − 6.2068 − 6.5411 − 5.9700
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range. The results indicate that when using Gaussian fitting to determine αopt The applicable range is limited with 
a few refocusing images, e.g., five images examined in this paper. It is found that selecting around 10 refocusing 
images is preferable, significantly reducing the processing time required for image handling during the depth 
calibration process. Moreover, from the perspective of imaging principles combined with image processing, a 
detailed theoretical analysis of the depth resolution of this depth measurement method is conducted. For the 
specific light field system used in this study, the numerical value of the depth resolution decreases with increasing 
depth and increasing optimal refocusing coefficient.

Data availability
Data sets generated during the current study are available from the corresponding author on reasonable request.
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