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Convolutional spiking neural 
networks for intent detection 
based on anticipatory 
brain potentials using 
electroencephalogram
Nathan Lutes 1, Venkata Sriram Siddhardh Nadendla 2 & K. Krishnamurthy 1*

Spiking neural networks (SNNs) are receiving increased attention because they mimic synaptic 
connections in biological systems and produce spike trains, which can be approximated by binary 
values for computational efficiency. Recently, the addition of convolutional layers to combine the 
feature extraction power of convolutional networks with the computational efficiency of SNNs has 
been introduced. This paper studies the feasibility of using a convolutional spiking neural network 
(CSNN) to detect anticipatory slow cortical potentials (SCPs) related to braking intention in human 
participants using an electroencephalogram (EEG). Data was collected during an experiment wherein 
participants operated a remote-controlled vehicle on a testbed designed to simulate an urban 
environment. Participants were alerted to an incoming braking event via an audio countdown to elicit 
anticipatory potentials that were measured using an EEG. The CSNN’s performance was compared 
to a standard CNN, EEGNet and three graph neural networks via 10-fold cross-validation. The CSNN 
outperformed all the other neural networks, and had a predictive accuracy of 99.06% with a true 
positive rate of 98.50%, a true negative rate of 99.20% and an F1-score of 0.98. Performance of the 
CSNN was comparable to the CNN in an ablation study using a subset of EEG channels that localized 
SCPs. Classification performance of the CSNN degraded only slightly when the floating-point EEG 
data were converted into spike trains via delta modulation to mimic synaptic connections.

Significant advancements in computing hardware, such as graphics processing units and field-programmable 
gate arrays, along with the availability of large datasets, has enabled researchers to develop highly effective neural 
networks in the last decade. However, training and utilizing these networks often involves a large amount of 
energy consumption, thus restricting the deployment of neural networks for data, and/or energy, limited settings: 
typically applications in dynamic/mobile environments. On the contrary, biology-inspired neural networks need 
only very few or even only one data point to perform at a competitive level compared to “traditional” neural 
networks (see page 54 in ref1). Therefore, machine learning architectures more closely resembling biological 
neural networks are quickly gaining in popularity. One such example is the spiking neural network (SNN)2–4 
which mimics biological neural networks through its layers composed of spiking neurons. These neurons more 
closely resemble the synaptic connections between neurons in biological neural networks through their emis-
sion of aperiodic spikes as opposed to floating point numbers in the case of the traditional artificial neuron. 
This sparse and discrete behavior of SNNs has been shown to reduce energy consumption by orders of magni-
tude when implemented on emerging neuromorphic hardware5. However, shallow SNNs can be insufficient to 
detect patterns that occur at random times/locations in tasks such as object detection/segmentation, similar to 
standard multi-layer perceptrons. This has inspired the development of hybrid convolutional and spiking neural 
networks, referred to as convolutional spiking neural networks (CSNNs)6–8, which combine the convolutional 
layer’s power of extracting spatio-temporal features with the energy efficiency of spiking neuron layers. In the 
past few years, CSNNs have received increased attention in diverse applications such as computer vision9,10, 
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speech recognition11, hand-gesture recognition12 and detection of Alzheimer’s disease13 reinforcing their utility 
in deciphering complex and multi-dimensional data.

The main contribution of this study is to evaluate the use of CSNNs in advanced driver-assist systems (ADAS), 
specifically those approaches that utilize electroencephalograms (EEGs). ADAS can be summarized as a group 
of assistive technologies designed to decrease the cognitive load associated with the driving task by assisting 
with driving and/or parking decisions thus aiding the driver in safely operating their vehicle. This technology 
has been rapidly introduced in modern vehicles and has shown to greatly improve road safety and reduce traffic 
accidents14. EEG is a method of measuring and recording electrical potentials from across various points in the 
human brain, thus serving as a primary method of discerning a person’s current cognitive activity. EEG-based 
applications are commonly explored in the field of brain-computer-interface (BCI)15, which has contributed in 
the development of machine learning models dedicated specifically to the analysis and interpretation of EEG 
signals, for example “EEGNet”16. The inclusion of EEG as an auxiliary input source effectively fuses the fields of 
ADAS and BCI and gives subsequently developed technologies the advantage of an accurate real-time measure 
of otherwise unknown aspects of the driver state17–20 and also allows for the prediction of a driver’s intended 
action (e.g. braking)21–23 before it occurs. Literature has reported anticipatory potentials being observed as early 
as 130 ms24 and 320 ± 200 ms25 before action onset. The present study focuses on the latter advantage of EEG and 
seeks to train a CSNN as the predictive classifier to detect these anticipatory brain potentials and thus predict 
braking intention.

Although some initial studies have been made to demonstrate the effectiveness of shallow SNNs in typical 
BCI applications26–32, the proliferation of other convolutional networks in the realm of BCI (e.g. EEGNet) and 
the reported success of deep learning methods in EEG decoding problems33 implies that the inclusion of deep 
learning methods, such as the addition of convolutional layers, leads to a performance gain in classification 
tasks involving EEG data. Furthermore, the relative ease with which SNNs and their deep learning counterparts, 
CSNNs, can be mapped to emerging high-efficiency neuromorphic-computing hardware5,34–37 makes them ideally 
suited for deployment in mobile, energy-limited applications. The use of energy-efficient neuromorphic hardware 
becomes even more advantageous when implementing various learning methods for online continuous learning 
or one-shot learning38 in energy-constrained applications.

To the author’s knowledge, the potential of CSNNs for EEG-based ADAS has not yet been explored and will 
be a novel contribution. To achieve a fairer juxtaposition than directly comparing the CSNN’s performance in this 
study to other methods in the literature, additional neural network models were trained on the same dataset to 
provide clearer context. These models include: i) a CNN of similar architecture; ii) EEGNet; and iii) three graph 
neural networks (GNNs). The CNN was chosen to be a direct comparison of the spiking architecture to a non-
spiking architecture, the EEGNet was chosen as the “state of the art” benchmark model because of its previous 
history of generalizing better across different BCI paradigms and high performance achievement as compared 
to existing CNNs and traditional approaches16. Lastly, the inclusion of GNNs was motivated as an alternative to 
standard CNN networks because of their similar performance on adjacent EEG decoding tasks39–42.

Related work
Previous studies on BCI-based driver intent detection present a gamut of technical approaches that mainly 
differ in the pre-processing strategies and various classifiers used. Popular approaches include linear and quad-
ratic discriminant analysis methods. Teng et al.43 combined regularized linear discriminant analysis with the 
sequential forward-floating search method of feature engineering, Kim et al.44 combined EEG, tibalis anterior 
electromyography (EMG) and brake pedal signal, and Haufe et al.24 compared EEG, EMG and brake pedal 
response to determine the input features that predict braking intention the fastest. Khaliliardali et al.25,45, on 
the other hand, used quadratic discriminant analysis in conjunction with bandpass filtering the EEG inputs in 
a low frequency range of 0.1–1 Hz.

As competitors to discriminant analysis methods, other classification methods prevalent in the literature 
are shallow and deep neural networks. For example, Hernandez et al.46 investigated support vector machines 
and convolutional neural networks (CNNs) to differentiate normal driving and braking intention EEG signals 
achieving a reported average accuracy of 71% and 72% for support vector machines and CNNs, respectively. 
Nguyen et al.47 featured a multilayer perceptron neural network in a comparison of EEG band power-based 
and autoregressive-based feature selection methods, reporting a better accuracy of 91% with the autoregressive 
based method. Lee et al.48 used recurrent convolutional neural networks (RCNNs) for an EEG braking intention 
decoding task, achieving an AUC score of 0.86. It is evident from the literature that a variety of methods have 
been used with mixed results. Although there are some examples of neural network usage, the use of SNNs for 
the braking intention EEG decoding problem is noticeably absent.

The EEG pattern studied here is the contingent negative variation (CNV), which is a type of slow cortical 
potential (SCP) that occurs prior to movement in the central region of the brain. The CNV, in particular, mani-
fests when a subject is given a warning stimulus followed closely by an imperial stimulus, or stimulus requiring 
an action. It is featured in previous movement intention literature that also focused on driver braking intent 
detection21,25,45 and has a strong theoretical foundation on being a key anticipatory signal. Using CNV as a 
measure of how global and local temporal prediction affects expectancy implementation, it is seen that the signal 
has a larger amplitude when a given stimulus is expected to occur versus when it is unexpected49. Furthermore, 
Mento50 provided a comprehensive treatment of CNV as a marker for cognitive expectancy and motor prepara-
tion for the warning-imperative stimulus pair paradigm. However, the CNV is not the only EEG pattern used for 
intention detection in the literature. Event-related desynchronization (ERD) and Bereitschaftpotentials (readiness 
potentials) are both alternative indications of movement preparatation. ERD is an EEG phenomenon occurring 
in the mu and beta frequency bands up to two seconds before movement is realized. It is marked by a decrease 
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in the spectral power of EEG within those bands that is not restored until after the movement is completed. On 
the other hand, Bereitschaftpotentials are slowly building neural signals which occur 1–2 s before movement 
onset, similar to CNV.

Previous research illustrating ERD as a movement preparation indicator include a study to find a suitable 
classifier for ERD using data from self-determined reaching movement experiments51, development of a novel 
algorithm for using ERDs to detect hand movement intention using adaptive wavelet transform52 and using ERDs 
as model inputs to reduce false positives in a motor imagery for rehabilitation application using a two-phase 
classifier design53. Bereitschaftpotentials have also received attention with advancements made in their under-
standing and prediction. Nguyen et al.54 conducted a study simultaneously integrating acquired EEG and fMRI 
through computational modeling and determined that reciprocal connections between the SMA and anterior 
mid-cingulate cortex are important to maintain sustained activity of the readiness potential before movement. 
Mirzabagherian et al.55 developed two convolutional neural networks composed of temporal-spatial, separable 
and depth-wise layers and used these networks to detect a type of Bereitschaftpotentials known as movement-
related cortical potentials (MRCPs), indicating five different hand movements performed by patients with cervical 
spinal cord injury. Gatti et al.56 also studied harnessing MRCPs for movement speed and force intent detection. 
Mussini and Di Russo57 investigated how anxiety can affect anticipatory brain functions by observing its effect 
on pre-stimulus ERP and the Bereitschaftspotential when performing tasks with and without feedback. Both 
ERD and Bereitschaftpotentials are popular and useful EEG related signals that could serve as an alternative to 
slow cortical potentials for movement intention related applications. To the author’s knowledge, use of SNNs for 
predicting ERD or Bereitschaftpotentials is yet to be explored.

Results
Identification of braking intention signature in EEG signals
An example of the pre-processed EEG signals from 19 channels with data markers signifying the temporal 
locations of the audible countdown commands is shown in Fig. 1a. Each marker is denoted by its associated 
countdown number from 5 to 1 and ending with “STOP” when the stop command was given. The Cz grand 
average of the pre-processed data is shown in Fig. 1b along with scalp plots visualizing how the channel grand 
averages changed over time. The grand averages were calculated by averaging the Cz electrode signal from all 
participants and across all trials, similar to the procedure followed by Khaliliardali, Chavarriaga, Gheorghe and 
Millan25. The following observations can be made from Fig. 1. 

1.	 The negative EEG potential, termed contingent negative variation (CNV) potential, started after the “2” count 
marker and reached the maximum negative value between the “1” count marker and “Stop” command.

2.	 The negativity rate sharply increased at the “1” count marker and the potential rate became sharply positive 
midway between the “1” count marker and “Stop” command.

3.	 Anticipatory potentials were clearly observed before the actual braking action.
4.	 The more negative potentials were spatially localized in the centro-medial electrodes.

The results obtained are consistent with other past studies on CNV21,25,45.

Classification performance—case 1: 32‑bit single precision floating‑point EEG input data
The final pre-processed dataset used for training the models included 10702 data segments collected from 15 
participants in an experiment described in the Experimental Design section and preprocessed according to the 
procedure outlined in the Data Preprocessing section: 8573 data segments labelled as class ‘0’ (no intention 
signal) and 2129 data segments labelled as class ‘1’ (intention signal). The models were evaluated by means of 
tenfold stratified cross-validation where the training and testing partitions of each fold maintained the original 
class distribution. The data segments in each fold were shuffled before training and testing. To mitigate the skewed 

Figure 1.   Pre-processed EEG signals. (a) Channel potentials with associated countdown and “Stop” command 
markers and scale. (b) Cz grand average signal with scalp maps representing the grand average at the midpoint 
between two neighboring markers and color bar on the right displaying the potential in µV.
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distribution of the classes, wherein approximately 80% of the dataset was negative class and approximately 20% 
was positive class, the samples belonging to each class were given a weight used in the training loss function. 
The class weights were calculated as:

where ND and Nc,i are the total number of data points in the training partition and the number of class i data 
points in the training partition, respectively.

The convolutional layers in the CSNN and CNN contained a kernel size of 5× 5 , a stride of 1, a padding of 
0, and 12 and 64 filters for the first and second convolutional layers, respectively. All max pooling layers of both 
architectures used a 2× 2 pooling region with a stride of 2. The sigmoid surrogate function smoothness value, 
k, for the surrogate backpropagation of the CSNN was chosen as 0.25. The GCN and GCS graph convolutional 
layers had output sizes of 115, 28, 14 and 3. The GIN had graph convolutional layers with output sizes of 924, 462 
and 231. The multi-layer perceptrons used in the GIN contained 5 hidden layers, each with 256 hidden neurons. 
All GNN architectures utilized in this work were implemented using the Spektral Python package58. The CSNN 
and CNN models were implemented using PyTorch59. EEGNet was implemented using tensorflow60 with default 
values with the exception of the length of the 2D convolutional kernel, which was set to 250.

All architectures were trained for up to 1000 epochs per fold with a batch size of 8, and with early termination 
if the loss did not improve for 50 subsequent epochs. The architectures had the same respective weight initializa-
tion for each fold. The CSNN Leaky-Integrate-and-Fire (LIF) layer had a memory decay rate of 0.5, a spiking 
threshold of 0.5 and used 25 input steps. All models used the ’ADAM’ optimizer with learning rate γ = 5e − 4 , 
running average coefficients β1 = 0.9 and β2 = 0.999 , stability parameter ǫ = 1e − 8 , and binary or categorical 
(for EEGNet) cross entropy as the loss function.

Table 1 shows the mean and standard deviation for predictive accuracy (Acc), true positive rate (TPR), true 
negative rate (TNR), F1-score, number of epochs trained, and total training time for each model. The table also 
shows each model’s inference time for a single data point. The p-values from two-sample t-tests comparing the 
CSNN with the other models are shown for each classification metric. No attempt was made to optimize the 
learning parameters of each network. The results indicate that the CSNN outperformed all the other models in 
every classification metric category albeit closely followed by EEGNet. The CSNN also showed small standard 
deviations showcasing the consistency in results across folds. The GNNs exhibited a tendency to get stuck in 
local minima, evidenced by large standard deviations in all the performance metrics. However, the CSNN had 
the largest average training time and largest inference time out of all of the models.

Classification performance—case 2: abalation study with 32‑bit single precision floating‑point 
EEG input data from five channels
Laboratory experiments offer the privilege of using state-of-the-art equipment that is typically unhindered in 
its data collection methods. However, real-world scenarios may present unique challenges where a full 20 chan-
nel EEG headset is not possible or practical. To study how a reduced number of available channels would affect 
the performance of the classifier, a five-channel analysis was performed. The Cz channel and four surrounding 
channels (Pz, C3, C4 and Fz) were considered for the ablation study. Table 2 shows results for the classification 
performance with a reduced number of channels.

Classification performance—case 3: delta‑modulated spike train input data
The effect of processing the input EEG data from all 19 channels into spike train data before passing to the 
CSNN network was also studied, namely its impact on classification performance of the network. The filtered 
and segmented EEG data, normalized to lie in the range of 0 to 1 inclusively, was transformed into a 19 channel 
array of spike train data by monitoring the change in value of successive data points in each channel. If the value 
change was greater than a threshold value, a spike ’1’ was recorded. If not, a ’0’ was recorded. The result was a 
binary array of the same dimensions as the floating-point input. The threshold value was varied from 0.05 to 1 
which resulted in spike trains of differing densities. The CSNN model used had the same parameters as in Case 1.

(1)wc,i =
ND

2Nc,i

Table 1.   Classification performance with floating-point EEG input data (best performance in each 
classification measure highlighted in bold font).. a Proposed model.

Model

Accuracy (%) TPR (%) TNR (%) F1-score Epochs Train Time (s) Inference

Mean (SD) p-value Mean (SD) p-value Mean (SD) p-value Mean (SD) p-value Mean (SD) Mean (SD) Time (s)

CSNN 99.06 (0.32) N/Aa
98.50 (1.05) N/Aa

99.20 (0.28) N/Aa
0.98 (0.01) N/Aa 270 (87) 17756 (5680) 2.533

CNN 79.46 (30.67) 0.088 79.29 (39.66) 0.18 79.50 (39.75) 0.172 0.61 (0.41) (0.043) 130 (63) 2348 (13) 0.002

EEGNet 97.64 (0.36) < 0.001 93.61 (2.03) < 0.001 98.64 (0.38) 0.01 0.94 (0.01) < 0.001 50 (0) 7238 (0.1) 0.767

GCS 57.09 (28.31) 0.002 36.93 (46.00) 0.003 62.10 (46.75) 0.041 0.13 (0.16) < 0.001 110 (10) 350 (34) 0.293

GCN 62.03 (27.51) 0.003 44.83 (45.74) 0.007 66.31 (43.79) 0.051 0.21 (0.23) < 0.001 96 (15) 281 (45) 0.024

GIN 54.66 (17.08) < 0.001 45.97 (29.57) < 0.001 56.82 (28.56) 0.002 0.25 (0.10) < 0.001 82 (29) 926 (328) 0.759
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Table 3 shows the tenfold classification results for Case 3. The results indicate that good predictive perfor-
mance can still be achieved when the floating-point EEG data were converted into spike trains prior to being 
input to the network, if a suitable threshold value was selected. Spike train conversion thresholds that are too 
small or too large constrain the abilities of the CSNN to learn effectively, most likely because features important 
to the correct classification of data were being obscured. If the threshold was too small, then the spike train 
becomes saturated, making it difficult for the network to determine the important features. If the threshold was 
too large, then important features may not be captured at all.

The best results were obtained with a threshold of 0.5. The sensitivity of the classification results to the 
threshold value was studied using two-sample t-tests comparing the classification measures corresponding to 
the 0.5 threshold with the measures corresponding to the other thresholds. The t-test results shown in Table 3 
indicate significant performance degradation above a threshold of 0.625 and below 0.375. This implies that a 
range of threshold values could be used to obtain statistically similar results, offering flexibility in the threshold 
selection. The performance of the CSNN using a threshold value of 0.5 was comparable to the EEGNet results 
when trained on the floating-point data. A two-sample t-test showed that TNR for the CSNN was statistically 
better (p-value was 0.041), but the accuracy and F1-score metrics were statistically similar (p-values were 0.700 
and 0.537, respectively). On the other hand, the TPR for EEGNet was significantly better (p-value was 0.028).

Discussion
The results presented here show that the CSNN can be used as a classifier for detecting features in EEG data that 
predict braking intention, which occurs before the actual physical activity. To benchmark the CSNN performance, 
results were compared to a standard CNN, EEGNet and three GNN models using a 10-fold cross-validation 
scheme with the CSNN achieving the highest performance and with more consistency. The p-values from two-
sample t-tests in Table 1 show a significantly higher performance of the CSNN over the GNNs in almost every 
metric category (except TNR of the GCN network, where the p-value was slightly above 0.05). This result is not 
surprising when the means of the metrics are compared. This fact is in stark contrast to the p-values of the CNN 
and EEGNet, where the CNN has noticeably lower mean values than the CSNN and is statistically similar; how-
ever, EEGNet is the closest of any of the other models and is statistically different. This can be explained by the 
fact that the CNN had enough folds containing results that were nearly identical to the CSNN performance, but 
also had a couple of folds with poor performance that biased the grand averages. As a result, the overall model 
performance was not significantly different than the CSNN. On the other hand, although EEGNet performance 
was competitive and consistent, it did not quite match the CSNN performance on any fold. Therefore, the p-values 
indicated statistically significant higher performance of the CSNN compared with EEGNet. The authors hypoth-
esize that a possible explanation for the CSNN’s success is that converting the floating-point numbers to spike 
trains allows it to filter more efficiently, passing the most important feature maps to the next layer.

Table 2.   Five-channel ablation study with floating-point EEG input data (best performance in each 
classification measure highlighted in bold font).. aProposed model.

Model

Accuracy (%) TPR (%) TNR (%) F1-score Epochs Train time (s) Inference

Mean (SD) p-value Mean (SD) p-value Mean (SD) p-value Mean (SD) p-value Mean (SD) Mean (SD) Time (s)

CSNN 99.07 (0.27) N/Aa 98.35 (0.90) N/Aa
99.24 (0.22) N/Aa

0.98 (0.01) N/Aa 338 (77) 20772 (4692) 2.494

CNN 99.11 (0.32) 0.618 98.97 (0.91) 0.128 99.15 (0.29) 0.270 0.98 (0.01) 0.582 999 (0) 2365 (12) 0.002

EEGNet 92.22 (0.64) < 0.001 64.00 (4.10) < 0.001 99.22 (0.36) 0.856 0.77 (0.03) < 0.001 50 (0) 7239 (0.1) 0.121

GCS 65.67 (25.34) 0.003 45.0 (41.53) 0.004 71.07 (39.87) 0.063 0.29 (0.26) < 0.001 118 (36) 7 (1) 0.144

GCN 61.78 (25.57) 0.001 45.0 (43.78) 0.004 62.5 (35.84) 0.01 0.29 (0.30) < 0.001 165 (99) 7 (2) 0.024

GIN 52.67 (26.05) < 0.001 60 (45.95) 0.027 50.89 (41.64) 0.005 0.28 (0.22) < 0.001 94 (38.56) 47 (10) 0.641

Table 3.   Classification performance with delta modulated spike train input data (best performance in each 
classification measure highlighted in bold font). aThreshold tested.

Threshold

Accuracy (%) TPR (%) TNR (%) F1-score Epochs

Mean (SD) p-value Mean (SD) p-value Mean (SD) p-value Mean (SD) p-value Mean (SD)

0.05 90.43 (0.339) < 0.001 69.74 (2.60) < 0.001 95.57 (0.53) < 0.001 0.74 (0.01) < 0.001 286 (100)

0.25 94.57 (0.65) < 0.001 82.61 (2.29) < 0.001 97.54 (0.71) < 0.001 0.86 (0.02) < 0.001 208 (38)

0.375 96.89 (0.49) 0.021 89.38 (2.54) 0.035 98.75 (0.37) 0.098 0.92 (0.01) 0.020 243 (51)

0.5 97.56 (0.43) N/Aa
91.64 (1.98) N/Aa

99.03 (0.23) N/Aa 0.94 (0.01) N/Aa 270 (45)

0.625 97.27 (0.55) 0.150 91.26 (2.06) 0.646 98.76 (0.47) 0.142 0.93 (0.02) 0.165 184 (40)

0.75 95.80 (0.62) < 0.001 85.95 (3.19) < 0.001 98.25 (0.44) < 0.001 0.89 (0.02) < 0.001 261 (77)

1 88.83 (1.13) < 0.001 63.77 (4.79) < 0.001 95.05 (0.83) < 0.001 0.69 (0.04) < 0.001 208 (49)
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Despite the CSNN’s success in classification, it had the longest average training time and largest inference 
time by a large margin. While computational efficiency could be improved by deploying CSNNs on neuromor-
phic hardware, those gains were not realized in this study where only a von Neumann computer was utilized. 
Neuromorphic chips, such as the Intel Loihi chip, have been shown to produce faster training times than von 
Neumann processors and deep learning accelerators5.

Results of the five-channel ablation study indicate that a few strategically chosen channels may be sufficient 
with the CSNN’s classification performance being nearly identical to that attained with all 19 channels. It can 
also be seen that the CNN performance increased considerably compared to the results shown in Table 1 with 
all 19 channels. Although the mean performance of the CNN was substantially lower when all 19 channels were 
used, the p-values in Table 1 indicate that the results were not significantly different from the CSNN. As noted 
previously, a couple of folds with poor performance biased the CNN grand average. Therefore, the boost in 
CNN performance to the level of CSNN in the ablation study is not altogether surprising and could simply have 
resulted from more consistent performance across folds when using only five channels.

The spike train conversion results shown in Table 3 have significant implications because converting the 
floating-point EEG data to spike trains at the outset could allow for additional energy savings, thereby taking full 
advantage of any neuromorphic computing hardware used to implement the CSNN for large, complex datasets 
and/or in real-time applications. Findings from this study can be exploited in future work to implement the 
CSNN on a neuromorphic platform to study the actual energy efficiency and feasibility for on-line learning in 
real-time applications.

The Cz grand average calculation and the analysis itself is based on the assumption of zero phase shift of the 
CNV pattern relative to the external stimuli. Lew et al.21 and Khaliliardali et al.25 discuss in great detail SCPs, of 
which CNVs are a subset. In these studies, the SCP was determined to begin as early as 1.5 s before the onset of 
movement and therefore the crucial aspects of the CNV should be contained within the data between the “1” 
count marker and the stop marker. Variations of the exact timing of the pattern will occur between trials but 
as mentioned above, the grand average pattern obtained in this study are consistent with the results reported 
in the literature. Also, it is well known that EEG has poor spatial resolution. For this reason, the CNV pattern 
in Fig. 1 appears to occur across the entire brain instead of the central area as expected. Results with a higher 
number of channels than the 19 channels considered in this study have reported greater regional localization25. 
Furthermore, ablation study results presented in Table 2 confirm that the CNV is occurring in the central area.

The EEG data was collected from 15 participants with the dataset containing a total of 3244 trials that were 
cleaned and segmented into 10,702 data segments. Although the number of participants in this study is rela-
tively small, it is on par with other studies in the literature. The classification experiment conducted in-house 
involved using a simulated-realistic testbed with the participant operating a remote-controlled vehicle using a 
live video feed under ideal conditions. Although this study focused on a narrow frequency band of 0.1–1 Hz as 
suggested by Garipelli et al.22 and similar to other studies21,25,45, a much wider 0.1–45 Hz bandpass filter has also 
been investigated44,46,49. A possible extension to this work could examine the performance of the CSNN using 
the full neural dynamics. It would also be interesting to study the performance of the CSNN with participants 
operating under cognitive stress, for example, when under fatigue or in the presence of distractions or to study 
the abilities of the CSNN in other EEG-BCI applications such as P300, motor imagery, motor-related cortical 
potentials and steady-state evoked potentials. Exploring the use of CSNNs for movement intention detection 
using Bereitschaftpotentials, which are well-known as an indicator of movement preparation within the brain, 
much like CNVs, is also compelling. Their use in braking intention, or other driving related task intention, using 
CSNNs would be another interesting research direction.

Methods
Convolutional spiking neural networks
CSNNs are deep networks comprised of standard convolutional layers that extract feature maps from the input 
data before passing these feature maps to subsequent spiking layers. These combination layers are referred to here 
as “convolutional-spiking” layers. For classification, the output layer is composed of a fully connected layer with 
linear activation function followed by a spiking layer. Figure 2a shows a schematic of the specific CSNN used in 
this study. It is comprised of two convolutional-spiking layers followed by the output layer. Each convolutional-
spiking layer is comprised of a two-dimensional convolution layer followed by a two-dimensional max pooling 
layer and ending with an output spiking layer. The spiking layer in each convolutional-spiking layer is composed 
of a tensor of LIF neurons having the same shape as the shape of the input to the layer. In the output layer, the 
fully connected layer and the subsequent output LIF spiking layer both have two neurons for the two classes in 
the EEG dataset. The predicted output of the CSNN was determined by counting the number of spikes output 
by these two neurons and setting the predicted label to the class represented by the neuron which produced the 
most spikes. A tie would result in a predicted class of ‘0’.

Due to the non-differentiable nature of the output of spiking neurons, training SNNs is difficult and requires 
special approaches beyond simply using standard backpropagation. If the spiking behavior of a neuron is rep-
resented as:

where �(·) is the heavy-side function, Umem[t] is the membrane potential of the neuron and θ is the spiking 
threshold, the derivative of (2) with respect to Umem is the dirac delta function:

(2)S[t] = �(Umem[t] − θ)

(3)
∂S

∂Umem[t]
= δ(Umem[t] − θ) ∈ {0,∞}
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which is defined as zero for all time except where Umem = θ at which it is infinity. This leads to the “dead neu-
ron” problem for training using backpropagation. To mitigate this, the surrogate gradient approach is employed 
wherein during the “backward-pass”, when the gradient of the loss function due to the network parameters is 
being computed, the heavy-side function is approximated using a sigmoidal function, thereby creating a readily 
differential function. The exact function used as the surrogate in this paper is described as:

where k is known as the ’slope’ and determines the smoothness of the surrogate function. The derivative of (4) 
is then obtained as:

From (5) it can be seen that as k increases, (5) converges to (3). For a more detailed explanation of SNNs and 
their training, the reader is referred to61.

Convolutional neural network
For the sake of a direct spiking vs. non-spiking comparison, a CNN composed of a largely identical architecture as 
that of the CSNN is considered to fully quantify any differences in performance that may arise by the addition of 
the spiking layers. As shown in Fig. 2b, the CNN has two convolutional layers, each including a max pooling layer, 
followed by a fully connected linear layer and ending with a logistic sigmoid output layer for class prediction.

EEGNet
EEGNet is a single CNN architecture designed for classification tasks across multiple EEG-based BCI domains 
(P300 visual-evoked potentials, error-related negativity responses, movement-related cortical potentials and 
sensory motor rhythms)16. It consists of two blocks of convolutional layers followed by a dense layer with finally 
a softmax layer. It is compact in terms of the number of model parameters (see Fig. 3). In the first block, two 
convolutional operations are done in sequence. This block starts with a temporal convolution to learn frequency 
filters followed by “depthwise” convolution to learn frequency-specific spatial filters. The second block also 
includes two convolutional operations. The first is another “depthwise” convolution to individually learn the 
temporal feature map and the second is “pointwise” convolution to optimally combine the feature maps. These 
two convolutions are combined into one layer, termed “Separable 2D Convolution”. The output of the second 
block of layers is then flattened and passed to the dense and softmax layer for generation of the predicted class.

Graph neural networks
GNNs are a specialized version of neural networks designed to operate on graph data. A graph is a grouping 
of data with defined internal relationships (edges) between objects (nodes) where these relationships may or 
may not be euclidean in nature. Mathematically, a graph is typically represented as: G = (V ,E ,A) where V 
represents a finite set of nodes having length |V | = N , E is a set of edges between the nodes, and A ∈ R

N×N 
is the adjacency matrix containing the edge weights. Graph data is input to a GNN as a matrix of node feature 
vectors: X ∈ R

N×n , where N is the number of nodes and n is the number of node features, along with its adja-
cency matrix, A, and sometimes a set of edge features, E. Some graph operations also include the diagonal degree 
matrix D where Dii =

∑

j Aij . For more details on graph theory and a detailed survey providing a comprehensive 
overview of GNNs, the reader is referred to62,63. Because of the spatial relationship between electrodes, EEG data 
can naturally be represented as graphs with each data input sharing the same node and edge structure, thereby 
differing only in node data. Expressing the data as graphs allows for the non-euclidean spatial relationships to 
be exploited as extra information available to the classifier. For this reason, EEG-BCI applications have used 
GNNs previously, to notable effect.

(4)S̃ =
Umem[t] − θ

1+ k|Umem[t] − θ |

(5)
∂ S̃

∂Umem[t]
=

1

(k|Umem[t] − θ | + 1)2

Figure 2.   Schematic of neural network architectures. (a) CSNN. (b) CNN.
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As shown in Fig. 4, the three GNN architectures used in this work differ only in their initial graph processing 
layers, whilst universally sharing the last three layers. Each network possessed a global attention sum pool graph 
aggregation layer which feeds into a fully-connected hidden layer with rectified linear unit (ReLu) activation. 
The final layer is a classification output layer consisting of one neuron with a logistic sigmoid activation function. 
The global attention sum pool layer computes

where a is a trainable weight vector, X is the layer input tensor, N is the number of nodes in the input graph, and 
the softmax operation is applied over nodes instead of features.

As shown in Fig. 4a, the first architecture, GCNConv network64, consists of four graph convolutional (GCN) 
layers. The GCN layers perform the operation:

where Y is the output of the layer, Â = A+ I is the adjacency matrix of the input graph plus the identity matrix 
of appropriate shape, D̂ =

∑

j Âij is the degree matrix, X is the layer input tensor, W is the layer weights, and b 
is the layer matrix.

Figure 4b shows the second architecture, which is the GCSConv network. This consists of four GCS layers, 
which are GCN layers with an added, trainable skip connection. The GCS layer operation is described by:

where Y is the output of the layer, D is the degree matrix, A is the adjacency matrix, X is the node feature matrix, 
W1 and W2 are the two sets of layer weights, and b is the layer bias.

The third architecture is the GIN architecture65 and is shown in Figure 4c. This architecture contains three 
graph isometric network (GIN) layers where each layer performs the following operation for each node in the 
input matrix:

(6)X
′

=

N
∑

i=1

αiXi , α = softmax(Xa)

(7)Y = D̂−1/2ÂD̂−1/2XW + b

(8)Y = D−1/2AD−1/2XW1 + XW2 + b

Figure 3.   Schematic diagram of EEGNet.

Figure 4.   Schematic diagrams of GNNs. (a) GCNConv, (b) GCSConv, (c) GINConv.
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where MLP(·) is a multi-layer perceptron, ǫ is a learned parameter and xi is the ith node of the input matrix.
The adjacency matrix, which would be common to all data samples, for all the three GNNs, was calculated 

as follows:

where A ∈ R
N×N is the adjacency matrix, |P| ∈ R

N×N
+  is the absolute value of the Pearson’s correlation coefficient 

of the dataset and IN×N is the identity matrix.

Experimental design
The total number of participants in the experiment was 15 (13 male, 2 female). They consisted of Missouri Uni-
versity of Science and Technology students and professors, all in healthy condition. The participants had normal 
or corrected to normal vision and had normal hearing. The experiment received approval from the University of 
Missouri Institutional Review Board, and all experiments were performed in accordance with relevant guidelines 
and regulations. Written informed consent was obtained from all subjects and/or their legal guardian(s) prior to 
their participation. Further, written informed consent was obtained for publication of identifying information/
images in an online open-access publication.

The objective of the experiment was to induce a predictable response in the participants such that any antici-
patory signals that may occur can be reliably measured and recorded using an EEG. The experiment simulated 
a real-world driving environment wherein the participants operated an open-source remote-controlled robot 
called JetBot (built using Waveshare’s Jetbot AI Kit and Nvidia’s 4GB Jetson-Nano) on a novel testbed designed 
to simulate urban roadways (see picture inserted in Fig. 5) . The testbed boundary was marked with standard 
masking tape and the track material was Delxo’s anti-slip tape (with 80-grit granularity) to provide additional 
traction to the JetBot wheels. The participants navigated the JetBot in the testbed lanes using a Logitech G29 
Driving Force racing wheel and pedal setup, while watching a live video feed cast to a computer monitor from 
an on-board camera. The JetBot was programmed to drive at a constant speed without the participant pressing 
the acceleration pedal, necessitating only the use of the steering wheel and brake pedal for full control. There 
were no other ’vehicles’ or obstructions on the testbed lanes and participants were free to navigate anywhere 
within the testbed boundaries.

The EEG signals of the participants were recorded using a Neuroelectrics ENOBIO 20 EEG headset. The elec-
trode setup used was the international 10–20 standard and the sampling frequency during the experiment was 
500 Hz. Data was collected from 19 channels by applying a high conductivity Signagel saline gel on the electrodes 
to increase the quality of data capture. The data acquisition software used was the Neuroelectrics NIC2 software, 
which featured its own EEG signal quality monitor. The quality monitor assessed the EEG signal by computing 
a quality index (QI) that was dependent on: (i) line noise, which was defined as electrical noise originating from 
surrounding power lines; (ii) main noise, which was defined as the signal power of the standard EEG band; and 
(iii) offset, which was the mean value of the waveform. Specifically, QI was calculated as66:

where ζL(t) and WζL denote the line noise and line noise normalizing weight (= 100 µV), respectively, ζm(t) 
and Wζm denote the main noise and main noise normalizing weight (= 250 µV), respectively, and O(t) and WO 
denote the offset and offset normalizing weight (= 280 mV), respectively. The NIC2 software indicators used a 
color scheme to indicate different levels of QI. A green indicator meant that the signal had a QI between 0 and 
0.5, an orange indicator meant a QI of between 0.5 and 0.8, and a red indicator meant a QI of 0.8 to 1. For this 
experiment, green indicators for all channels was the standard; however, brief periods of orange indicator were 

(9)Yi = MLP



(1+ ε) · xi +
�

j∈N(i)

xj





(10)A = |P| − I

(11)QI(t) = tanh

(

√

(

ζL(t)

WζL

)2

+

(

ζm(t)

Wζm

)2

+

(

O(t)

WO

)2)

Figure 5.   Experimental design illustration of a trial. Photo by Micheal Pierce/Missouri S &T.
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considered acceptable. The data was filtered using a 60 Hz filter during capture to help reduce electrical noise 
and all channels were captured with reference to the Common Mode Sense channel (20th channel) which was 
fixed to the participant’s right ear lobe.

The experimental design was based, in part, on the experiment conducted in25 and is illustrated in Fig. 5. Each 
participant underwent eight sets of 30 trials each for a total of 240 trials, with short 5–10 min breaks between 
sets. Each trial consisted of a set of audible commands issued by MATLAB that included a “Start” command, 
upon hearing which the participant would release the brake allowing the JetBot to move, followed by a count-
down from 5 to 1 and ending with a “Stop” command, when the participant would immediately stop the JetBot 
by pressing the brake. To ensure that the participants responded in a timely fashion, activity at the brake pedal 
was monitored and any trial where the brake pedal depression did not register a numerical reading higher than 
0.05% of its total depression range within 0.25 seconds of the issuance of the “Stop” command were marked 
for removal. Trials where the participant braked too early were manually marked for removal as well. The EEG 
recording would begin concurrently with the issuance of the “Start” command, markers corresponding to the 
countdown numbers would be applied to the data concurrently with each audio count and the EEG recording 
would stop at detection of braking action or after the 0.25 s delay to check brake pedal depression.

Data preprocessing
The data was processed in several steps using the open source EEG toolkit EEGLAB67 along with the TBT plugin68 
for only the trials that were not marked for removal during the experiments (see Fig. 6). 

1.	 Each trial was: 

(a)	 Spectrally filtered using a FIR bandpass filter from 0.1 Hz to 1 Hz as suggested in22.
(b)	 Cleaned using EEGLAB’s built-in automated cleaning function “Clean_RawData and ASR” (Artificial 

Subspace Reconstruction) to remove bad channels under the following criteria: If the channel: (i) 
was flat for more than 5 s; (ii) correlated at less than 0.8 to an estimate based on nearby channels; and 
(iii) contained more than four standard deviations of line noise relative to its signal. The ASR cor-
rected bad data periods containing high-amplitude artifacts69, such as eye blinks, and its maximum 
acceptable 0.5 s window standard deviation limit was set to a conservative 20 standard deviations. 
The values used in this step were the standard default values in EEGLAB and were also used as part 
of a pre-processing scheme in a previous study70.

(c)	 Segmented by slicing the data according to the markers corresponding to the countdown numbers 
or the “Stop” command. For example, as shown in Fig. 5, the first segment consisted of taking only 
the data that occurred between the “5” count marker and the “4” count marker. The segments from 
5 to 1 were given a “0” label or were regarded as not containing an intention signal and the segment 
between “1” and “Stop” was labelled as “1” and was regarded as containing the signal of interest. Each 
segment was then baseline corrected by subtracting the mean value of the segment from every value 
in the segment.

2.	 Each segment was then further cleaned using the TBT plugin to remove high amplitude noise. Channels 
were removed from the segment if either of the following two criteria was met for a data period duration of 
10% of an segment or more70: (i) if they exceeded ±100 µ v in magnitude, or (ii) if the joint probabilities (i.e., 
probabilities of activity) exceeded 3 standard deviations for local or global thresholds. If either criterion was 
met for less than 10% of an segment, then the offending data period was removed and subsequently inter-
polated. Segments with more than 50% of channels removed (i.e., 10 channels) were omitted entirely. Any 
removed channels were re-interpolated after the cleaning was finished for consistency in input dimension. 
Similar segment-by-segment cleaning strategies utilizing the TBT plugin have been employed in a previous 
study49.

3.	 Every data point was padded to a uniform length of 1848, the size of the largest dataset in a trial, by appending 
zeros to the end. Padding data should not significantly change the prediction results and is commonly done 
when using machine learning algorithms on datasets containing images having different sizes. Furthermore, 
padding the data should less significantly alter the dataset versus truncating data, which allows for the pos-
sibility of deletion of key features.

4.	 Finally, each channel was normalized such that the data lay within a range of 0 to 1. The particular equation 
used was: 

Figure 6.   Data processing pipeline.
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 where i is the ith data channel and X is the data vector corresponding to that channel, max(·) and min(·) are 
the maximum and minimum channel values per segment, respectively.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Code availability
The Python code written to obtain the results is publicly available at https://​github.​com/​sid-​naden​dla/​BI-​Spike​
EEG.
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